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Abstract. Recently, there is a surge of network embedding algorithms,
which embed information network into a low dimensional space. Howev-
er, contemporary network embedding algorithms focus on homogeneous
networks, while we know that many real-world systems can be construct-
ed with heterogeneous information networks (HINs). Compare to homo-
geneous networks, HINs contain heterogeneity types of nodes and edges,
which leads to new challenges for traditional network embedding: hand-
ing mixed heterogeneous nodes and fusing rich semantic information.
Although several HIN embedding algorithms have been proposed, these
challenges have not been well dressed. How to explore the rich semantic
information and integrate these information still remain to be solved. In
this paper, we propose a novel attention based meta path fusion model for
HIN embedding (called AMPE). In order to handle node heterogeneity
and extract rich information, AMPE first extracts multiple homogeneous
networks from HIN with meta paths, and then employs adopted auto-
encoders to embed these homogeneous networks. After that, AMPE fus-
es these embeddings learned from homogeneous networks with attention
mechanism. Experimental results on two real-world datasets demonstrate
the effectiveness of the proposed model.

1 Introduction

Recent years, network representation learning [1–3] (e.g. network embedding) has
attracted a great deal of attention. The goal of network representation learning
is to embed a network into a low dimensional latent space, in which each node
is represented as a latent vector. Such representations can preserve the proxim-
ities between the nodes, which can be treated as feature vectors and applied in
subsequent data mining tasks, such as node classification, community detection
and link prediction.

However, most network embedding algorithms focus on homogeneous net-
work containing the same types of node or edge. In the real world, networks
usually contain multiple types of nodes or edges, named heterogeneous informa-
tion networks (HINs). Since HINs can model much more complex relationships
and structures than homogeneous information networks, it has been widely used
in graph mining [4–7]. Meanwhile, meta path [5], a relation composition connect-
ing two types of nodes, has been widely used to capture rich semantic information



contained in HIN. Taking Fig. 1 (b) as an example, a meta path between two
businesses can be Business-City-Business, which means these businesses located
in the same city. Due to the complexity of HIN, traditional homogeneous network
embedding methods cannot be directly applied to HIN because of the following
two reasons:

(1) Heterogeneous information networks have various types of nodes and
edges. How to preserve the heterogeneous neighbors of each node is an urgent
problem that need to be solved. (2) Heterogeneous information networks contain
rich and complex semantic information. How to extract and fuse these infor-
mation is an open problem. A novel fusion model that can select some useful
information and combine them will be desired.
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Fig. 1: Two examples of heterogeneous information network in experiments.

Some HIN embedding algorithms have been proposed to overcome above
challenges. Dong et al. [8] introduce meta path based random walk to embed
heterogeneous network, which only utilizes single meta path to extract seman-
tic information. HIN2Vec [9] is designed to capture the semantic embeded by
exploiting different meta paths among nodes. Esim [10] tries to capture seman-
tic information from multiple meta paths. However, it relies heavily on user-
specified meta path and adopts grid search to obtain the weights of meta paths.
The network embedding algorithms aforementioned usually embed the semantic
information via random walk model, which maybe unable to fully capture the
deep semantic information. What’s more, since HINs contain rich semantic in-
formation, instead of utilizing a single meta path, the combination of multiple
meta paths can give a more comprehensive description of HINs.

To better solve challenges faced by HIN embedding, we propose a novel
Attention based Meta Path fusion heterogeneous network Embedding mod-
el, named AMPE, which can embed various kinds of semantic information ex-
tracted from multiple meta paths and fuses them for specific tasks. In AMPE, we
first transform the original heterogeneous network into several homogeneous net-
works based on corresponding meta paths. Then AMPE extends auto-encoder to
the heterogeneous scenario that can extensively embed these semantics informa-



tion simultaneously. Significantly different from current weight learning for meta
paths, we propose an attention based deep fusion module, which can weight the
importance of each meta path and fuses them for specific tasks.

The remainder of this paper is organized as follows. We first review the related
work in Sect. 2 and Sect. 3 gives the preliminary concepts in heterogeneous
information network. In Sect. 4, we introduce the proposed model in details.
Datasets and experiments are presented in Sect. 5. Finally, some conclusions
and future works are showed in Sect. 6.

2 Related Work

Originally, network embedding algorithms were proposed to embed network into
a low dimensional latent space, in which each node is represented as a latent
vector. The motivation behind those algorithms is to preserve the structural
information of nodes, so the learned embeddings can be applied to further data
mining tasks.

Recently, some network embedding algorithms based on random walk and
deep learning have been proposed. Inspired by word embedding [11], Deep-
Walk [12] embeds network structures by truncated random walk. Along with
DeepWalk, node2vec [13] designs a biased random walk to sample the neigh-
bors. Meanwhile, LINE [14] is an efficient network embedding method that can
deal with large-scale networks. Wang et al. [15] introduce deep learning to per-
form network embedding. However, all of these algorithms cannot be applied to
HINs directly because they didn’t consider the heterogeneity of HINs.

There are also some heterogeneous network embedding algorithms. Esim [10]
proposes a meta path guided embedding method to perform similarity search
for HINs. Metapath2vec [8] designs a meta path based random walk and apply
skip-gram to learn network representations. ASPEM [16] preserves the multiple
aspects semantics information in HINs. HIN2Vec [9] captures the rich semantics
information in HINs by exploiting different types of relationships among nodes.
However, most of existing methods can’t learn the importance of meta paths
and combine them for specific tasks.

3 Preliminaries

A heterogeneous information network is a special kind of information network,
denoted as G = (V, E), which consists of an object set V and a link set E . A
HIN is also associated with a node type mapping function φ : V → A and a link
type mapping function ψ : E → R. A and R denote the sets of predefined object
types and link types, where |A|+ |R| > 2.

The complexity of heterogeneous information network drives us to provide
the meta level (i.e., schema-level) description for understanding the object types
and link types better in the network. Given the typed essence, a HIN can be
abstracted as a network schema, denoted as S = (A,R) [4, 7], which is a meta



template define over object types. Figure 1 gives network schemas on both DBLP
and Yelp.

A meta path Φ [17] is a path defined on a schema S = (A,R), and denoted

in the form of A1
R1−→ A2

R2−→ ...
Rl−→ Al+1. Given a meta path Φ, we can

translate the original HIN G into a homogeneous network GΦ which can capture
the semantic information of meta path. The adjacency matrix of GΦ can be
represented as MΦ ∈ Rn·n , where MΦ(i, j) = 1 iff node i connects to node j via
meta path Φ.

4 The Proposed Method

In this section, we propose a novel deep model to embed nodes in HIN into low-
dimensional vectors, called AMPE. AMPE is composed of three major compo-
nents. First, we transform the original HIN into several homogeneous networks.
After that, AMPE embeds these homogeneous network simultaneously by an
adopted auto-encoders. Finally, AMPE can learn the weight of each meta path
based embedding and fuses them via attention mechanism. Figure 2 presents the
framework of AMPE.
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Fig. 2: The framework illustration of the proposed AMPE approach.

4.1 Meta Path based Homogeneous Network

Heterogeneous information networks usually have various kinds of complex se-
mantic information. Here we utilize a set of meta paths (e.g., Φ0, Φ1, . . . , Φ|P | )
to extract semantic information and transform the original HIN G into several
homogeneous networks (e.g., GΦ0

, GΦ1
, . . . , GΦ|P |). Each homogeneous network

GΦ contains one type of semantic information which means every node is con-
nected to its neighbors through meta path Φ. Here we give the adjacency matrix



of each homogeneous network GΦ, denoted as MΦ. In homogeneous network GΦ,
if node i is connected to node j through meta path Φ, then MΦ(i, j) = 1.

4.2 Homogeneous Network Embedding via Auto-encoder

After obtaining several meta path based homogeneous networks, we extend tra-
ditional auto-encoder to embed these homogeneous networks simultaneously.

Here we give a brief review of auto-encoder. Auto-encoder [18–21] is an un-
supervised deep learning model that can copy its input to its output. It usually
involves two parts: encoder, which encodes the original feature representations
into a latent space; decoder, which try to reconstruct the original representations
from latent space. Formally, let xi denotes the original feature representation of
node i, and

{
y1i , y

2
i , . . . , y

k
i

}
denote the hidden representation of each encoder

layer. The relationships between these representations can be shown as follows:

y1i = σ(W 1xi + b1) , (1)

yki = σ(W kyk−1 + bk), k = 2, ...,K , (2)

zi = σ(WK+1yki + bK+1) . (3)

Here zi means the learned representation and σ is sigmoid function. Af-
ter obtaining zi, we try to reconstruct the original representation, denoted as
x̂i. In decoder, the latent representations of hidden layers can be denoted as{
ŷki , ŷ

k−1
i , . . . , ŷ1i

}
and the relationships between them can be shown as follows:

ŷK = σ(ŴK+1zi + b̂K+1) , (4)

ŷk−1i = σ(Ŵ kŷk + b̂k), k = 2, ...,K , (5)

x̂i = σ(Ŵ 1ŷ1i + b̂1) . (6)

The learning process of auto-encoder is to minimize the distance between
the original feature representation xi and the reconstructed representation x̂i,
denoted as follows:

L =
n∑
i=1

||xi − x̂i||22 . (7)

Unfortunately, such an auto-encoder cannot directly be applied to network
embedding due to the sparsity problem, which means the number of zero ele-
ments in adjacency matrix is far more than non-zero elements. In order to solve
this problem, we impose more penalty on non-zero elements. Then auto-encoder
will pay more attention to these non-zero elements and gives priority to recon-
structing them. The modified loss function can be shown as follows:

L =

n∑
i=1

||(xi − x̂i)� bi||22 = ||(X̂ −X)�B||2F . (8)



where � means Hadamard product, bi is a weight vector and bi,j = xi,j ∗ (β −
1)+1. Here β is penalty coefficient, the higher β means we impose more penalty
on non-zero elements.

By fitting these auto-encoders adjacency matrix of each homogeneous net-
work simultaneously, we can obtain a group of node embeddings. The overall
loss function for these auto-encoders can be summarized as below:

Lae =

|P |∑
i=1

||(X̂Φi −XΦi)�BΦi ||2F . (9)

After training these auto-encoders, we can obtain |P | groups of node embeddings,
denoted as

{
ZΦ0

, ZΦ1
, . . . , ZΦ|P |

}
.

4.3 Fusing Embeddings via Attention Mechanism

After obtaining |P | groups of node embeddings, the proposed AMPE can au-
tomatically fuse these embeddings and learn their importances via attention
mechanism for the specific task. The fusion process F can be shown as follows:

Z = F (ZΦ0 , ZΦ1 , . . . , ZΦ|P |) . (10)

Inspired by the attention mechanism in neural machine translation [22], we
define the attention value as follows:

att′Φi
= hT · Tanh(W · ZΦi + b) , (11)

attΦi
=

exp(att′Φi
)∑|P |

i=1 exp(att
′
Φi

)
, (12)

where W is a weight matrix, b is a bias vector, h is weight vector, attΦi
is the

weight of meta path Φi. Obviously, the higher attΦi
, the more important meta

path Φi is. With the learned weights as coefficients, we can weight combine these
embeddings to obtain the final embedding. The final embedding Z is shown as
follows:

Z =

|P |∑
i=1

attΦi
· ZΦi

. (13)

Then we can apply the final embedding to specific tasks and learn the atten-
tion value via the back propagation algorithm. For example, in node classifica-
tion, we try to minimize the Cross Entropy between the ground-truth and the
predictions:

Latt = −
∑

yi log(wzi) , (14)

where w is the parameter of the classifier, yi is the label of zi. With the guide
of labeled data, we can optimize the proposed model and learn the weights of
meta paths. Here we only need a few labeled data to fine-tune the pre-trained
auto-encoders.



Table 1: Statistics of the datasets

Dataset
Relations

(A-B)
Number

of A
Number

of B
Number of

A-B
Avg.degree of A Avg.degree of B

DBLP
Paper-Author 14328 4057 19645 1.3 4.8
Paper-Conf 14328 20 14328 1.0 716.4
Paper-Term 14327 8789 88420 6.2 10.1

Yelp

Business-City 4352 253 4352 1.0 17.2
Business-Tip 4352 41359 52262 12.0 1.3

Tip-User 41359 25608 42262 1.0 1.7
User-Review 125684 176860 176860 1.4 1.0

Review-Business 176860 4352 176860 1.0 40.6

5 Experiments

5.1 Datesets

To verify the effectiveness of the proposed AMPE, we conduct some experiments
on two real-world datasets. The detailed descriptions of these datasets are shown
in Table 1, and their schemas are shown in Fig. 1.

– DBLP1. We extracted a subset of DBLP which contains papers (P), authors
(A), conferences (C), terms (T). We obtain the ground truth from the dataset
dblp− 4area [17], which labels each author according to their research area.
Here we employ the meta path set {APA, APCPA, APTPA} to extract
homogeneous networks.

– Yelp2. We extracted businesses located in North Carolina (NC), Wisconsin
(WI), Pennsylvania (PA) and Edinburgh (EDH). Then we constructed a
HIN that comprises businesses (B), users (U), cities (C), reviews (R) and
tips (T). We employ the meta path set {BCB, BRURB, BTUTB} to extract
homogeneous networks. Here we use the state information provided in the
dataset as the ground truth.

5.2 Baselines

We compare with the following network embedding methods:

– DeepWalk [12]: A random walk based network embedding method for ho-
mogeneous network. Here we run DeepWalk on whole HIN and ignore the
heterogeneity of nodes.

– AE [21]: A deep auto-encoder (AE) that can embed networks via a series
of non-linear mappings. Here we only report the best result of single meta
path.

1 https://dblp.uni-trier.de
2 https://www.yelp.com/dataset/download



– AEconcat: A variant of the auto-encoder model. We first apply auto-encoders
to learn node representations for each meta path, and concatenate them as
the final representation.

– Metapath2vec [8]: A heterogeneous network embedding method which can
embed the semantic information extract from a single meta path. Here we
only report the best result of single meta path.

– ESim [10]: A heterogeneous network embedding method which can capture
semantics information from multiple meta paths. Since it is difficult to search
the weights of a set of meta paths, we assign the weights learned from AMPE
to ESim.

– AMPEavg: A variant of the proposed AMPE. We treat all meta paths equally
and average the learned embeddings.

– AMPE: Our proposed approach for heterogeneous network embedding, which
can fuse multiple meta paths according to their importances.

5.3 Parameter Settings

For DBLP, the architecture of auto-encoder is 4057-1000-100-1000-4057 and β
is set to 30. We use RMSprop to optimize AMPE and the learning rate is 0.001.
Here we select 400 labeled data to fine-tune the auto-encoder and learn the
weights of meta paths. For Yelp, the architecture of auto-encoder is 4352-100-
4352. Here we utilize 200 balanced labeled data to fine-tune the model. Since
such an auto-encoder already work well, we don’t need a deeper model.

For DeepWalk and metapath2vec, we set window size as 5, walk length as
20, walks per node as 40, num of negative samples as 5. For a fair comparison,
we set embedding dimension as 100 for all above algorithms.

Table 2: Qantitative results on the node classifcation task

Datasets Algorithms
30% 50% 70%

Macro-F1 Micro-F1 Macro-F1 Micor-F1 Macro-F1 Micro-F1

DeepWalk 0.7456 0.7488 0.7785 0.7785 0.7930 0.7947
AE 0.8928 0.8931 0.8978 0.8979 0.8894 0.8998

AEconcat 0.8889 0.9055 0.9068 0.9068 0.9086 0.9086
DBLP metapath2vec 0.8894 0.8889 0.8910 0.8905 0.8991 0.8998

ESim 0.9135 0.9144 0.9125 0.9134 0.9172 0.9177
AMPEavg 0.9042 0.9041 0.9087 0.9085 0.9136 0.9138

AMPE 0.9237 0.9239 0.9239 0.9239 0.9248 0.9248

DeepWalk 0.8970 0.8970 0.9189 0.9233 0.9333 0.9378
AE 0.9218 0.9272 0.9500 0.9522 0.9606 0.9642

AEconcat 0.9491 0.9639 0.9808 0.9844 0.9846 0.9879
Yelp metapath2vec 0.9728 0.9690 0.9760 0.9718 0.9742 0.9688

Esim 0.9818 0.9793 0.9882 0.9890 0.9890 0.9890
AMPEavg 0.9510 0.9673 0.9682 0.9771 0.9746 0.9824

AMPE 0.9855 0.9866 0.9926 0.9927 0.9968 0.9965



5.4 Classification

We start by conducting a task of multi-label classification to evaluate the ef-
fectiveness of the proposed model. First, we randomly divide the dataset into
training set and test set. Then, we utilize KNN classifier with k = 5 to predict
the labels of the test samples. We repeat the process for 10 times and report the
average Macro-F1 and Micro-F1. The results are presented in Table 2.

The results show that, by distinguishing the importances of meta paths,
AMPE achieves the best performance. Compare to HIN embedding methods, ho-
mogeneous network embedding methods including DeepWalk and auto-encoder
fail to performa well. For HIN embedding, through integrating multiple meta
paths to perform HIN embedding, ESim and AMPE perform much better than
other methods. Taking one step further, with weight learning for meta paths,
AMPE performs much better than AMPEavg. Overall, by utilizing deep model
to embed and fusing semantics information extracted from HIN, AMPE achieves
the best results in node classification task.

Table 3: Qantitative results on the node clustering task
Algorithms DBLP Yelp

DeepWalk 0.6656 0.6460

AE 0.6647 0.6631

AEconcat 0.6874 0.6386

metapath2vec 0.7195 0.8563

ESim 0.6205 0.6292

AMPEavg 0.5225 0.6578

AMPE 0.7474 0.9681

5.5 Clustering

We also conduct clustering task to evaluate the embeddings learned from above
algorithms. Here we introduce the K-Means to perform node clustering and use
NMI to evaluate the performances. Since the performance of K-Means is affected
by initial centroids, we repeat the process for 10 times and report the average
results. The results are shown in Table 3.

It’s obviously that AMPE performs better than all baselines. Similar to the
node classification, homogeneous network embedding methods fail to perform
well. It’s interesting that AMPEavg has the worst performance in DBLP. We
will explain this phenomenon by analysing the attention value in next section.
Besides, by concatenating the embeddings learned from different meta paths,
the AEconcat also performs well. Generally speaking, AMPE can give a compre-
hensive description of HIN.



5.6 Analysis of Attention Mechanism

An interesting characteristic of AMPE is that it can learn the importances of
meta paths via attention mechanism. In Fig. 3, we record the performances
based on single meta path and corresponding attention value. For DBLP, AMPE
gives APCPA the highest weight, which means AMPE considers the APCPA
to be the most important meta path in identifying the author’s research area.
This is reasonable because we labeled the authors according to the conferences
they submit. Meanwhile, APA cannot identify the author’s research area. If
we treat these meta paths equally (e.g., AMPEavg), the performance will drop
significantly. For Yelp, the results show that AMPE gives the largest weight to
BRURB (the business that reviewed by the same user). One possible explanation
is that users usually visit and review the businesses which is located near to
their home for convenience. Obviously, there is a positive correlation between
performance of single meta path and its attention value. It proves that the
proposed AMPE can reveal the difference among these meta paths and weights
them properly.

BCB BRURB BPUPB0

20

40

60

80
NMI Attention Value

(a) NMI values on Yelp.

BCB BRURB BPUPB0

20

40

60

80

100
Macro-F1 Attention Value

(b) Macro-F1 on Yelp.

APA APCPA APTPA0

20

40

60

80
NMI Attention Value

(c) NMI values on DBLP.

APA APCPA APTPA0

20

40

60

80

100
Macro-F1 Attention Value

(d) Macro-F1 on DBLP.

Fig. 3: Performance of single meta path and corresponding attention value.



5.7 Visualization

For a more intuitive comparison, we visualize the learned embeddings on a 2-
dimensional space. Here we utilize t-SNE [23] to visualize the author embedding
in DBLP. The results are shown in Fig. 4.

It’s obvious that single auto-encoder barely separates the authors from d-
ifferent groups (represented by the same color), but the distribution of blue
points are scattered. Deepwalk can basically separate the authors without sharp
boundaries. Metapath2vec performs much better than above methods, but the
boundary is still blurry. Finally, AMPE achieves the best performance among
these methods, since it can separate the authors in different research area clearly
with obvious borders among these clusters.
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Fig. 4: Visualization Results on DBLP.



5.8 Parameters Experiments

Here we investigate the sensitivity of different parameters in our model, includ-
ing embedding dimension and non-zero element penalty β. We first compare
the performances of AMPE on DBLP with various numbers of embedding di-
mensions. The results are shown in Fig. 5. We can see that with the growth
of embedding dimension, the performance raises first and then remains stable.
The reason is that AMPE needs a suitable dimension to encode these semantics
information and larger dimension may introduce some redundancies. Then we
show how the β affects the performances. Large β means that the model will pay
more attention to non-zero elements. From the Fig. 5, We can see that AMPE
achieves the best performance with a balanced β.

50 100 150 200 250
#Dimension

0.71

0.72

0.73

0.74

0.75

NM
I

(a) dimension.

10 30 50 70 90
beta

0.71

0.72

0.73

0.74

0.75

NM
I

(b) β.

Fig. 5: Parameter study on the number of embedding dimensions and the value
of non-zeros element penalty β.

6 Conclusion

In this paper, we study the problem of heterogeneous information network em-
bedding, which aims to embed heterogeneous information network into a low-
dimensional space. And we propose a novel heterogeneous information network
embedding model, named AMPE, which can capture rich semantics information
in HIN and fuses them for specific tasks. By extending the auto-encoder to the
heterogeneous scenario, AMPE can embed the semantics information extracted
by meta paths simultaneously. In addition, the proposed AMPE can combine
these information via attention mechanism. Experiment results including node
classification and node clustering demonstrate the effectiveness of AMPE. In the
future, we plan to conduct attributed heterogeneous information network em-
bedding that can integrate attribute information and structural information at
the same time.
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