
A Heterogeneous Information Network Method
for Entity Set Expansion in Knowledge Graph

Xiaohuan Cao1, Chuan Shi1 (�), Yuyan Zheng1, Jiayu Ding1,
Xiaoli Li2, and Bin Wu1

1 Beijing Key Lab of Intelligent Telecommunications Software and Multimedia,
Beijing University of Posts and Telecommunications,Beijing, China 100876

2 Institute for Infocomm Research, A*STAR, Singapore, Singapore
devil_baba@126.com,shichuan@bupt.edu.cn,zyy0716_source@163.com,

username.djy@gmail.com,xlli@i2r.a-star.edu.sg,wubin@bupt.edu.cn

Abstract. Entity Set Expansion (ESE) is an important data mining
task, e.g. query suggestion. It aims to expand an entity seed set to ob-
tain more entities which have traits in common. Traditionally, text and
Web information are widely used for ESE. Recently, some ESE meth-
ods employ Knowledge Graph (KG) to extend entities. However, these
methods usually fail to sufficiently and efficiently utilize the rich seman-
tics contained in KG. In this paper, we use the Heterogeneous Informa-
tion Network (HIN) to represent KG, which would effectively capture
hidden semantic relations between seed entities. However, the complex
KG introduces new challenges for HIN analysis, such as generation of
meta paths between entities and addressing ambiguity caused by multi-
ple types of objects. To solve these problems, we propose a novel Con-
catenated Meta Path based Entity Set Expansion method (CoMeSE).
With the delicate design of the concatenated meta path generation and
multi-type-constrained meta path, CoMeSE can quickly and accurately
detect important path features in KG. In addition, heuristic learning and
PU learning are employed to learn the weights of extracted meta paths.
Extensive experiments on real dataset show that the CoMeSE accurately
and quickly expands the given small entity set.

Keywords: Heterogeneous information network, Knowledge graph, En-
tity set expansion, Meta path

1 Introduction

Entity Set Expansion (ESE) is mainly about, given a small set of seed entities,
finding out other entities belonging to it and expanding the set to a more com-
plete one. For example, given a few seeds like “New York”, “Los Angeles” and
“Chicago”, ESE will discover the relation among them and obtain other city
instances in America, such as “Houston”. ESE has been widely used in many
applications, e.g., dictionary construction [2] and query suggestion [1].

Plenty of ESE works have been done, and most of them discover distribution
information or context pattern of seeds in text or Web resources to infer the

intrinsic relation for ESE [8]. Recently, Knowledge Graph (KG), a kind of struc-
tured data source, has been more and more important for knowledge mining. So
some ESE works use KG as a supplement for text to improve performance [7].

Steve Jobs AppleVicent van Gogh Starry Night

PersonExecutive

Bill Gates Microsoft

Inventor ComanyPainterPainting

Created

Type

…Manufacturer

Fig. 1. A snapshot in knowledge graph.

However, few researches utilize KG as individual data source for ESE. Owing
to rich semantics and structural representation of KG, it is feasible to employ KG
to extend entities. KG, constructed by triples < Subject, Property,Object >,
can be considered as a Heterogeneous Information Network (HIN) that contains
different types of objects and relations [9]. In HIN, meta path [9], a sequence
of relations connecting two objects, is widely used for semantic capture. For
example, in Fig. 1, the fact triples can form a network and the path in it can
show semantics. Therefore, we can consider KG as an HIN and employ meta path
features to solve ESE problem. However, this idea faces challenges as follows.

– It is impossible to enumerate meta paths in KG. In traditional HIN with only a
few types of objects and relations, it is easy to enumerate useful meta paths.
However, it is not the case for KG because of its complexity. For example,
DBpedia has 3 billion facts. It is impossible to find meta paths by manual.

– In KG, objects connected by a relation may affiliate to multiple types, which
will cause ambiguity. In traditional HIN, objects have a unique type, which
makes meta path have definite semantics. But in KG, objects may affiliate
to multiple types which will lead to uncertain semantics. For example, in

Fig. 1, the objects connecting to the
created−−−−−→ relation affiliate to the types of

executive, painter and etc. The
created−−−−−→ between different pairs has different

meaning. The relation between (Bill Gates, Microsoft) means establishing,
while for (Vincent van Gogh, Starry Night), it means painting.

– It is not easy to combine path features for ESE, though we extract path
features among entities. ESE problem usually has few seeds, so it is difficult
to use traditional supervised method to build a ranking or classification model.

It is not a trivial task to solve these challenges. A very recent attempt by
Zheng et al. [14] illustrates limited performance improvement on the problems
but cost huge time and space. In this paper, we propose a novel Concatenated
M eta Path based Entity Set Expansion method (CoMeSE) for ESE problem in
KG. The CoMeSE includes three steps. Firstly, in order to reduce time and reuse

visited paths, CoMeSE designs a novel random walk based Concatenated Meta
Path Generation (RWCP) method to quickly and accurately discover useful meta
paths by concatenating meta paths that have been visited in KG. Secondly, in
order to solve the ambiguity problem caused by multiple types of objects, we
propose a multi-type-constrained meta path concept to subtly capture semantics
in KG, and further design a novel similarity measure based on it. Thirdly, for
solving the problem of very limited positive samples, besides a heuristic weight
strategy, we employ a PU learning method (Learning from Positive and Unlabled
Example) to effectively learn the weights of meta paths. Plenty of experiments
on real dataset have been done to validate the effectiveness and efficiency of
CoMeSE. The experiments show that, compared to the state of the arts, CoMeSE
can quickly and accurately extend entities because of its delicate designs.

2 Preliminary

In this section, we describe some main concepts and preliminary knowledge.

Heterogeneous Information Network [4] is a kind of information net-
work defined as a directed graph G = (O,R), which consists of either different
types of objects O or different types of relations R. In an HIN, there can be
different paths connecting two objects and these paths are called meta path

[12]. A meta path P is defined as PR1◦···◦Rn = T (o1)
R1−−→ · · · Rn−−→ T (on+1),

where oi presents the object at position i in P, T (oi) is the type of oi, and Ri

is a type of relation. Note that T (oi) corresponds to a unique entity type.

Knowledge Graph [10] is a knowledge base system with semantic properties
and derived from text data of knowledge sources. KG is conducted by triples <
Subject, Property,Object >. In this paper, we model KG as an HIN, “Subject”
and “Object” as nodes, “Property” as links. This HIN is not like general HIN
with simple schema but with thousands of node and link types. Besides, in
KG, one entity is subordinate to multiple types and the meanings of links may
introduce ambiguity. So traditional meta path would capture exact semantics
badly. In order to solve the ambiguity problem, we propose a novel concept of
Multi-Type-Constrained Meta Path to more subtly capture semantic relations.

Definition 1. Multi-Type-Constrained Meta Path (MuTyPath) is a special
meta path where each object position is constrained by a set of entity types. A

MuTyPath P̃ is represented as P̃R1◦···◦Rn = T S(o1)
R1−−→ · · · Rn−−→ T S(on+1),

where T S(oi) represents the type set of object oi at position i in P̃. Different
from T (oi) in meta path, T S(oi) can correspond to multiple entity types. When
the cardinality of every T S(oi) is 1, the MuTyPath is equal to meta path.

Let’s give an example in Fig. 1 to show the difference between MuTyPath and
meta path. As the fact that Steve Jobs established Apple, meta path can not nor-
mally show their relation because entities have multiple types, like Jobs belong-
ing to Executive, Person, and Inventor. Or meta path can only describe this fact

as “Obj
Created−−−−−→ Obj” through ignoring the node types, which may cause seman-

tic ambiguity. However, we can use MuTyPath “{Person, Inventor,Excusive}
Created−−−−−→ {Company,Manufacturer}” to describe the fact more exactly.

3 The Method Description

In order to expand entity set in KG efficiently and accurately, we propose an
algorithm named Concatenated M eta Path based Entity Set Expansion
(CoMeSE) to capture semantic relations between seeds. Firstly, for reducing s-
pace and time, we design an efficient concatenated meta path generation method.
Secondly, to handle ambiguity of meta path, we extract multi-type-constrained
meta paths and design a novel similarity measure MuTySim. Thirdly, due to the
lack of negative cases, we design a heuristic weight strategy and PU learning
method to assign the importance of extracted paths for ESE model.

3.1 Random Walk based Concatenated Meta Path Generation
Method

Meta path is a kind of effective feature to capture semantic relationship among
nodes. In traditional HIN with simple schema, meta path is usually predefined,
while it is hard in KG owing to its massive types of objects and relations. Thus,
we propose an algorithm named Random Walk based Concatenated Meta Path
generation method (RWCP) to quickly and automatically generate meta paths.

A naive method to generate meta path in KG is, using a walker to wan-
der with one-directional random walk to find meta paths between seed pairs.
MP ESE [14] adopts this idea. However, it has two disadvantages. Firstly, it
has a huge space and time cost. If m is the average number of neighbors of a
node, discovering n-length paths should visit mn nodes. Secondly, many paths
are duplicately visited and the visiting information is not reused, which makes it
inefficient. For saving time and space, we can use a bi-directional random walk
where two walkers wander from two sides respectively and meet at an inter-
section node while wandering. The searching space would reduce to mn/2. For
reusing visited path, we record the wandering information of walkers, and the
walkers can continue to wander or decide to concatenate existing paths.

Specifically, given the seed set, RWCP randomly walks with a half or less of
the maximum path length to obtain a set of paths for seeds, and then concate-
nates different paths with visiting information to get useful meta paths. In fact,
RWCP is a repeating process of meta path concatenation and extension. For
explaining RWCP clearly, we give some basic structural definitions as follows.

Definition 2. Recorder is a structure to record visiting information. It in-
cludes: the meta path passed by, a series of entity pairs generated along the path
and corresponding similarity values, entity lists between the entity pairs along
the path, an arriving entity set and the score Sco of meta path defined later.

Definition 3. The score of meta path, Sco, is designed to indicate the impor-
tance of the path to seed set. The value of Sco means the priority to handle.

Sco(P) =
∑
s

1

K

∑
t

σ(s, t|P), (1)

where s and t are source and arriving node respectively on meta path P, K as the
number of arriving nodes from s, and σ(s, t|P) is the similarity value based on P,
which is calculated by MuTySim for meta path introduced in Sect. 3.2. Moreover,
AvgS is an average value of Sco of two meta paths which are pending to be
concatenated. The AvgS shows priority of Recorder pair for path concatenation.

Besides, some assistant sets are needed. We use Recorder Set (RS) to s-
tore Recorders, Extension Backlog (EB) to record serial numbers and Sco of
Recorders which would be extended, and Concatenation Backlog (CB) to record
serial number pairs and AvgS of the Recorder pairs which would be concatenat-
ed.

Definition 4. η is a threshold determining whether adding the new generated
Recorder into RS, for excluding unimportant paths.

η = ϵ · (|SS|+ |PS|), (2)

where ϵ is a limited coefficient, and |SS| is the cardinality of seed set SS, |PS|
is the number of meta paths chosen. So η is dynamically increasing according to
the number of chosen meta paths to converge faster to terminate the algorithm.

1

2
3

5
8

Owns

WorkAt

isLocatedIn

4

9

11

7

12 24

10
14

23
13

18

16

17

15

19

21

20

6

22

Created

25

26

Fig. 2. Subgraph example for RWCP.

Thus, as introduced above, we mainly use Sco and AvgS together to deter-
mine action in RWCP. In detail, comparing AvgS and Sco values, if there are
AvgS greater than all Sco values in EB, we will do path concatenation for these
Recorder pairs. When all AvgS in CB are smaller than the largest Sco, we extend
the Recorder with largest Sco to generate new Recorder pairs. Path concatena-
tion and Recorder extension take place alternately. Fig. 2 is a simple network and
seed set is {1,2,3} which means the seed pairs are {(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)}.
Fig. 3 describes how RWCP algorithm works in the sample shown in Fig. 2.

First of all, RWCP builds the initial Recorder Rec1 and puts it into RS,
(serial number SN1, score Sco1) into EB in Step A. Then, RWCP is in a loop

(A)

SN.1 Sco: 3
path:

arriving set: {1,2,3}

(1,1) 1

(2,2) 1

(3,3) 1

Recorder Set (RS)

SN.1

Extension Backlog (EB)

!"#$1 Sco: 3)

{[1]}

{[2]}

{[3]}

Concatenation Backlog (CB)

SN.2 Sco: 8/3
path:

arriving set:{4,5,6,10}

(1,5) 1
(2,4) 2/3
(2,6) 2/3
(3,10) 1

Owns

Owns

SN.1 Sco: 3

…

(B)

SN.3 Sco: 3/2
path:

arriving set:{8}

(1,8) 1/2
(2,8) 1/2
(3,8) 1/2

Created

SN.4 Sco: 7/5
path:

arriving set:{9,7,11}

(1,9) 1/2
(2!7) 1/2

isLocatedIn

isLocatedIn

add

Created

SN.1 SN.2

SN.3 SN.4
{[1],[5]}
{[2],[4]}
{[2],[6]}
{[3],[10]}

{[1],[8]}
{[2],[8]}
{[3],[8]}

{[1],[9]}
{[2],[7]}

(3,11) 2/5 {[3],[11]}
add

!"#$2 Sco: 8/3) !"#$3 Sco: 3/2)

!"#$4 Sco: 7/5)

!1+2 AvgS: 17/6) !2+2 AvgS: 8/3)

!1+3 AvgS: 9/4) !2+3 AvgS: 25/12)

!3+3 AvgS: 3/2) !1+4 AvgS: 11/5)

!2+4 …) …

add

(C)
SN.1 + SN.2 combined path:

Owns
common arriving entities: Null

SN.1 + SN.3 SN.1 + SN.4 …

SN.2 + SN.2 combined path: common arriving entities: {4,5,6,10}
Owns Owns

(1,1)
(2,2)
(3,3)

no match

SN.5 Sco: 8/7
path:

arriving set:{12}

Owns

isL
oc
at
ed
In

SN.2 Sco: 8/3
…

(D)

isLocatedIn

(1,12) 2/7
(2,12) 4/7
(3,12) 2/7

{[1],[5],[12]}
{[2],[4,6],[12]}
{[3],[10],[12]}

!"#$3 Sco: 3/2) !"#$4 Sco: 7/5)

!"#$5 Sco: 8/7)

!2+3 AvgS: 25/12)

!3+3 AvgS: 3/2)

!1+4 AvgS: 11/5)

!2+4 …)

add

add

SN.1
SN.2

SN.3

SN.4 SN.5

add

!"#$%&'

(E)
SN.2 + SN.3 combined path: common arriving entities: Null

Owns Created

SN.3 + SN.3 combined path: common arriving entities: {8}
Created Created

match

(1,2) 1/4
(2,3) 1/4
(3,1) 1/4

{[1],[8],[2]}
{[2],[8],[3]}
{[3],[8],[1]}

(1,3) 1/4
(2,1) 1/4
(3,2) 1/4

{[1],[8],[3]}
{[2],[8],[1]}
{[3],[8],[2]}

(F)
SN.3 Sco: 3/2

…
…

add

!"#$%&'

!"#$%&'

add

Recorder Set (RS)

Recorder Set (RS)

Extension Backlog (EB)

Extension Backlog (EB)

Concatenation Backlog (CB)

Concatenation Backlog (CB)

Fig. 3. A sample of RWCP process.

process of path concatenation and extension. When CB is empty and EB contains
Recorder, like in StepB, or allAvgS in CB are smaller than the largest Sco in EB,
like in Step D, RWCP pops the Recorder with the max Sco from EB to extend
outwards. When extending, like in Step B, the arriving nodes in Rec1 move one
step forward and RWCP generates new Recorders with the serial numbers SN.2−
4 based on different paths passing by, and (SN.1) is removed from EB. After that,
RWCP judges if Sco of each new generated Recorder is larger than the minimum
threshold, η. If yes, put it into RS and EB. For each Recorder in RS, pair it
with the new Recorder and put this pair with its AvgS into CB. If the largest
AvgS of Recorder pairs is larger than all Sco in EB, like in the Step C and E,
RWCP will get the Recorder pair with largest AvgS out of CB and concatenate
paths. For example, in Step E, handling the Recorder pair (SN.3, SN.3), RWCP

concatenates two meta paths of them as “
Created−−−−−→ Created←−−−−−”, and judges whether

two arriving entity sets have nodes in common or not. If yes, generate new entity
pairs based on the common node set {8}. If the new entity pairs match to seed
pairs, the concatenated path would be chosen as a path feature P. Finally, if CB
and EB are all empty, RWCP would be terminated.

3.2 Multi-Type-Constrained Meta Path Extraction and Similarity
Calculation

Traditional meta path may not well capture subtle semantics in KG, because the
type of entities at ends of a relation may be non-unique and entity may be sub-
ordinate to multiple types. To avoid ambiguity problem, we design MuTyPath in
Def. 1 to make the explored relationships more accurate and a measure named
Multi-Type-Constrained Meta Path-based Similarity measure (MuTySim) to

compute similarity of entity pairs in MuTyPath. The similarity value vectors
based on MuTyPaths can be used as features for ESE model.

Extraction of Multi-Type-Constrained Meta Path Applying RWCP al-
gorithm, we get the meta paths with relations only and a series of visited entity
lists for seed pairs along the paths. These entity lists are the path instances. With
the lists, we can change meta paths to MuTyPaths for more precise semantics.

We design an extraction strategy for MuTyPath. Given an n-length meta
path P and a list of instances {p1, · · · , pm}, every position oi of P has an object
set {a1i, · · · , ami}. We check the types of each entity aji one by one and judge
whether current entity type set T S(aji) has intersection with existing common

type sets T S
′

k(oi)(initial common type set T S
′

1(oi) = T S(a1i)). If yes, update
with T S

′

k(oi) = T S
′

k(oi)
∩
T S(aji). Otherwise, create another common type set

to store its types. Then we will have one or more common type sets CT Si =

{T S
′

1, · · · } at every position oi. After that, we use Cartesian Product, CT S1 ×
· · · × CT Sn, to get multiple common type set combinations, and combine them
with the original meta path to finally form one or more MuTyPaths.

Multi-Type-Constrained Meta Path-based Similarity Measure Based
on the common type set of seeds obtained from selected MuTyPaths, we can
get candidates sharing the same common types. To find out the relationship
between seeds and candidates, we should re-calculate the similarity of each seed-
candidate pair and seed-seed pair along MuTyPaths. Here we propose a novel
Multi-Type-Constrained Meta Path-based Similarity measure (MuTySim).

MuTySim has the following advantages. Firstly, MuTySim supports meeting
at any node along the path for RWCP. Current similarity measures have fixed
random walk direction and measurement. Secondly, MuTySim considers both
conditions of two ends between a link, while existing measures do not. Moreover,
MuTySim considers multi-type constraint of MuTyPath.

Given a MuTyPath P̃o1 = T S(o1), where T S(o1) is the common type set at
position o1 constrained by MuTyPath, the similarity of object s and itself is:

σ(s, s|P̃o1) = 1− α ·
|T S(o1)− T S(s)|)

|T S(o1)|
, (3)

where T S(s) represents the type set of s and α is the impact factor of type set
importance degree over similarity with range of [0,1]. The larger α is, the more
constraints of types will be, and the clearer the semantic will be.

Given two objects s and t, and a MuTyPath P̃o1···on = T S(o1)
R1−−→ · · · Rn−1−−−→

T S(on), considering both conditions of two ends of a relation and type set con-
straint, the MuTySim similarity of two objects along the path P̃ is defined as:

σ(s, t|P̃o1···on) = σ(t, t|P̃on)
∑

x∈I(t|Rn−1)

2|O(x|Rn−1)
∩

I(t|Rn−1)|
|O(x|Rn−1)| + |I(t|Rn−1)|

· σ(s, x|P̃o1···on−1), (4)

where O(x|Rn−1) is the out-neighbors of object x based on relation Rn−1, and
I(t|Rn−1) is the in-neighbors of t based on Rn−1.

When two objects s and t are connected by the concatenated MuTyPath
P̃o1···on and meet at any position along the MuTyPath, the MuTySim similarity
values of two objects are equal:

σ(s, t|P̃o1···on) =
∑
x∈Cj

σ(s, x|P̃o1···oj) · σ(x, t|P̃oj ···on), (5)

where oj is the meeting position and Cj is the object set at position oj .
In particular, when α equals to 0, the entity type will not be considered

and MuTySim can measure similarity based on traditional meta path, so that
it can be seen as MuTySim for meta path which is useful for random walking
in opposite way and meeting at any position. Therefore, applying MuTySim for
meta path in RWCP can discover meta path feature more accurately.

3.3 Weight Learning of Meta Paths

MuTyPaths should be combined effectively based on their importances to con-
stitute ESE model. ESE is in fact to build a ranking model that calculates the
probability of a candidate in the expansion set, and take the top K entities as the
expansion result. The formula of the ranking model can be defined as follows:

CSSim(c,SS) =
∑
s∈SS

CSim(c, s), (6)

where c is the candidate node, and SS is the seed set, and CSim(c, s) represents
the matching probability of candidate node c and seed s.

Whether the candidate matches the seed can be seen as a classification prob-
lem. We can regard the MuTySim similarity value vector of entity pair on se-
lected MuTyPaths as a feature for classification. Besides, positive data are the
seed pairs, while the pairs of candidates and seeds are all unlabeled data. How-
ever, there are no effective methods for the automatic selection of the negative
data. Without the negative data, we can not use traditional supervised learning
method to do classification. To solve the problem, we come up with two weight
learning solutions: the heuristic method and PU learning method.

Weight Learning with Heuristic Method It is easy to understand that
the meta path connecting more seed pairs will be more important, and the
path with larger similarity value indicates closer relationship. Depending on the
importance degree of each MuTyPath connecting the seed set, we calculate the
corresponding weight for each path based on the similarity information of seed
pairs and linearly combine the weight with similarity value together to form the
matching probability equation for the candidates.

CSim(c, s) =
∑

P̃i∈P̃S

ϖi · σ(c, s|P̃i), (7)

ϖi =
f(P̃i) ·

∑
sm,sn∈SS,m ̸=n σ(sm, sn|P̃i)∑

P̃t∈P̃S f(P̃t) ·
∑

sm,sn∈SS,m̸=n σ(sm, sn|P̃t)
, (8)

where P̃S is the MuTyPath set generated in Set. 3.2 and ϖi is the weight for

path P̃t. f(P̃i) = ξ|zeros(P̃i)| is a penalty function for having seed pairs not
connected by P̃i. So |zeros(P̃i)| is the number of similarity values of seed pairs
as 0 based on path P̃i and ξ is the penalty constant for it as 1/2. σ(sm, sn|P̃i)
is the MuTySim value in seed pair (sm, sn) based on P̃i.

Weight Learning with PU Learning PU learning is used to train classifier
with positive and unlabeled training data, which is suitable for ESE. In our
method, the seed pairs can be seen as positive data while the candidate-seed pairs
as unlabeled data. We adopt a novel PU learning method proposed by Elkan et
al [3], which could train a traditional classifier to distinguish the positive and
unlabeled examples and get a better result than existing PU learning methods.
The main idea is to detect the reliable negative samples and then use the positive
and negative cases to do classification training. This method is very flexible to
choose any traditional classifier for PU learning, so that we can use suitable
classifier to form the matching model for candidate nodes based on the exact
situation.

4 Experiment

In order to verify the superiority of CoMeSE for entity set expansion in KG, we
validate the effectiveness of CoMeSE with a series of experiments.

4.1 Experiment Settings

Dataset We use KG Yago [11] to conduct relevant experiments. In experiments,
we adopt “COREFact” and “yagoSimpleTypes” parts of this dataset, which
contain 4.4 million facts, 35 relationships and 1.3 million entities of 3455 types.

Four ESE tasks are chosen to evaluate the performance of CoMeSE. These
tasks are as follows: (1) in the Actor task, the seeds are actors who won Emmy
Award, and their spouses are also actors; (2) in the Company task, the seeds are
companies which own a channel in America; (3) in the Writer task, the seeds are
writers which are graduated from the universities in New York; (4) in the Movie
task, the seeds are movies, and their director won National Film Award. The
real numbers of instances in these tasks are 193, 76, 60, and 653, respectively.

Criteria We use precision-at-k (p@k) and Mean Average Precision (MAP) to
evaluate performance. Here, they are p@10, p@30, and p@60. And MAP is the
mean of the Average Precision (AP) of the p@10, p@30, and p@60.

Compared Methods We denote the CoMeSE with heuristic and PU learning
method, as “CoMeSE He” and “CoMeSE PU”, respectively. And we use four
baselines as follows: (1) Link. According to the pattern-based methods [8], it
only considers 1-hop link of an entity, denoted as Link. (2) Neighbor. Inspired
by QBEES [6], it considers 1-hop link and 1-hop entity as features, called Neigh-
bor. (3) PCRW. With path constrained random walk based similarity measure
PCRW[5], it employs different max path lengths to connect objects. The PCRW
within length-2, 3, 4 paths are denoted as PCRW-2, PCRW-3, PCRW-4, respec-
tively. (4) MP ESE [14]. The KG-based ESE method finds meta paths by an
one-directed generated method and uses a heuristic weight learning method.

MAP p@10 p@30 p@60
0

0.2

0.4

0.6

0.8

1

Evaluation Criteria

Pr
ec

is
io

n

CoMeSE_PU CoMeSE_He MP_ESE PCRW−4

PCRW−3 PCRW−2 Link Neighbor

(a) Actor

MAP p@10 p@30 p@60
0

0.2

0.4

0.6

0.8

1

Evaluation Criteria

Pr
ec

is
io

n

CoMeSE_PU CoMeSE_He MP_ESE PCRW−4

PCRW−3 PCRW−2 Link Neighbor

(b) Company

MAP p@10 p@30 p@60
0

0.2

0.4

0.6

0.8

1

Evaluation Criteria

Pr
ec

is
io

n

CoMeSE_PU CoMeSE_He MP_ESE PCRW−4

PCRW−3 PCRW−2 Link Neighbor

(c) Writer

MAP p@10 p@30 p@60
0

0.2

0.4

0.6

0.8

1

Evaluation Criteria

Pr
ec

is
io

n

CoMeSE_PU CoMeSE_He MP_ESE PCRW−4

PCRW−3 PCRW−2 Link Neighbor

(d) Movie

Fig. 4. The results of entity set expansion.

In CoMeSE, we set ϵ as 10−6 in Eq. 2, α as 1 in Eq. 3 for calculating similarity
based on MuTyPath, based on parameter study. The max length of path is set
to be 4 since meta paths with length more than 4 are almost irrelevant [13].

4.2 Effectiveness Experiments

In this section, we validate the effectiveness of CoMeSE in 4 tasks introduced
above. For each task, we randomly take three seeds from the instance set to
conduct an experiment. We run 20 times and report the average results.

We illustrate the experiment results in Fig. 4. Firstly, the meta path based
methods, CoMeSE and MP ESE, almost have higher accuracy than other meth-
ods in all tasks. That is because, in KG, path feature can effectively embody in-
trinsic relations among seeds. Secondly, the results of CoMeSE He and CoMeSE PU

are better than MP ESE in almost all tasks. Traditional meta path fails to
capture exact meanings owing to the uncertain types connected by relations,
while MuTyPath used in CoMeSE can subtly distinguishes these paths. Thirdly,
CoMeSE PU performs better than CoMeSE He in all tasks. The reason is that
PU learning judges path features more precisely than heuristic method. In all,
CoMeSE performs the best.

4.3 Efficiency Study

2 3 4 5 6
10

−2

10
0

10
2

10
4

Seed Size

R
u

n
n

in
g

 T
im

e
(s

)

CoMeSE MP_ESE PCRW−4 PCRW−3 PCRW−2

(a) Actor

2 3 4 5 6
10

−2

10
0

10
2

10
4

Seed Size

R
u

n
n

in
g

 T
im

e
(s

)

CoMeSE MP_ESE PCRW−4 PCRW−3 PCRW−2

(b) Movie

Fig. 5. Running times of different methods.

Here we validate the efficiency of finding meta paths under different seed size.
We conduct experiments by varying the seed size from 2 to 6 on the Actor and
Movie tasks. For each seed size, we randomly select the same-scale seeds to run
10 times. We show the average running time in Fig. 5. It is obvious that CoMeSE
almost has the smallest running time in both tasks. PCRW-2 only explores 1-hop
and 2-hops paths, so it has small running time. But short path exploration also
gets bad performance, shown in Fig. 4. We think the bi-directional random walk
strategy and the reuse of visited paths make the CoMeSE significant efficiency
improvement. In addition, the running time of CoMeSE and PCRW methods
near linearly increase with the increment of the seed size. It is reasonable, since
these methods need to discover more paths to connect more seed pairs. Some
strategies in MP ESE make it less affected by seed size. In all, CoMeSE has
obviously high efficiency of meta path discovery.

5 Conclusion

In this paper, we study the problem of entity set expansion in KG. We model
KG as an HIN and propose a novel Concatenated M eta Path based Entity
Set Expansion Method called CoMeSE, which proposes a random walk based
concatenated meta path generation method to detect meta paths, a multi-type-
constrained meta path algorithm to subtle capture path semantics, and uses two
path weight learning methods to determine the importance of paths. Extensive
experiments on Yago validate the performance of CoMeSE.

Acknowledgement This work is supported in part by the National Natural
Science Foundation of China (No. 61772082, 61375058), The National Key Re-
search and Development Program of China (2017YFB0803304).

References

1. H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li. Context-aware query
suggestion by mining click-through and session data. In KDD, pages 875–883,
2008.

2. W. W. Cohen and S. Sarawagi. Exploiting dictionaries in named entity extraction:
combining semi-markov extraction processes and data integration methods. In
KDD, pages 89–98. ACM, 2004.

3. C. Elkan and K. Noto. Learning classifiers from only positive and unlabeled data.
In SIGKDD, pages 213–220, 2008.

4. H. Jaiwei. Mining heterogeneous information networks: the next frontier. In
SIGKDD, pages 2–3, 2012.

5. N. Lao and W. W. Cohen. Relational retrieval using a combination of path-
constrained random walks. Machine learning, 81(1):53–67, 2010.

6. S. Metzger, R. Schenkel, and M. Sydow. Qbees: query by entity examples. In
CIKM, pages 1829–1832. ACM, 2013.

7. Z. Qi, K. Liu, and J. Zhao. Choosing better seeds for entity set expansion by
leveraging wikipedia semantic knowledge. In CCPR, pages 655–662, 2012.

8. B. Shi, Z. Zhang, L. Sun, and X. Han. A probabilistic co-bootstrapping method for
entity set expansion. In COLING 2014, 25th International Conference on Com-
putational Linguistics, Proceedings of the Conference: Technical Papers, August
23-29, 2014, Dublin, Ireland, pages 2280–2290, 2014.

9. C. Shi, Y. Li, J. Zhang, Y. Sun, and P. S. Yu. A survey of heterogeneous information
network analysis. IEEE Trans. Knowl. Data Eng., 29(1):17–37, 2017.

10. A. Singhal. Introducing the knowledge graph: things, not strings. Official google
blog, 2012.

11. F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge.
In WWW, pages 697–706, 2007.

12. Y. Sun, B. Norick, J. Han, X. Yan, P. S. Yu, and X. Yu. Integrating meta-path
selection with user-guided object clustering in heterogeneous information networks.
In KDD, pages 1348–1356, 2012.

13. C. Wang, Y. Song, H. Li, M. Zhang, and J. Han. Knowsim: A document similarity
measure on structured heterogeneous information networks. In ICDM, pages 1015–
1020, 2015.

14. Y. Zheng, C. Shi, X. Cao, X. Li, and B. Wu. Entity set expansion with meta path
in knowledge graph. In PAKDD, pages 317–329, 2017.

