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ABSTRACT

Heteregeneous information networks (HINs) are ubiquitous in the

real world, and discovering the abnormal events plays an impor-

tant role in understanding and analyzing the HIN. The abnormal

event usually implies that the number of co-occurrences of en-

tities in a HIN are very rare, so most of the existing works are

based on detecting the rare patterns of events. However, we find

that the number of co-occurrences of majority entities in events

are the same, which brings great challenge to distinguish the nor-

mal and abnormal events. Therefore, we argue that considering

the heterogeneous information structure only is not sufficient for

abnormal event detection and introducing additional valuable in-

formation is necessary. In this paper, we propose a novel deep

heterogeneous network embedding method which incorporates

the entity attributes and second-order structures simultaneously to

address this problem. Specifically, we utilize type-aware Multilayer

Perceptron (MLP) component to learn the attribute embedding, and

adopt the autoencoder framework to learn the second-order aware

embedding. Then based on the mixed embeddings, we are able to

model the pairwise interactions of different entities, such that the

events with small entity compatibilities have large abnormal event

score. The experimental results on real world network demonstrate

the effectiveness of our proposed method.
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1 INTRODUCTION

Heterogeneous information networks (HINs), consisting of multi-

typed entities and links, are ubiquitous in the real world, since

various interconnected data in different complex systems can be

naturally modeled as HIN [5]. For example, in a collaboration HIN,

the types of entities include author and paper, and the links can

model the collaboration relations as author-paper-author. One im-

portant step towards understanding and analyzing the HIN is the

abnormal event detection. Abnormal event detection aims to dis-

cover the events with different patterns or behaviors from other

events in the HIN. Taking the collaboration HIN as an example, it is

well known that different authors in a same research area usually

work together to publish a paper. However, we can notice that it

is also possible for two authors with different research areas to

join in a same paper. Discovering such events can make us bet-

ter understand the relations among different authors and research

areas, and further promote a wider research collaboration in the

future. Moreover, in a movie recommendation system, a user may

always write review on action movies, but he/she suddenly writes

a review on an emotion movie. Mining such event enables us to

deeply analyze the user’s latent interests, and further recommend

more diverse movies.

The basic assumption of many previous works is that the ab-

normal event usually rarely occurs in a HIN, i.e., if the number of

co-occurrences of entities in an event are very rare, then this event

can be considered as an abnormal event [1, 2]. However, because of

the sparsity of HIN, most of the events happen rarely. We analysed

on Aminer [7] co-author network, in this network, the links repre-

sents the author-paper-author relation. We computed the number

of co-occurrences of the authors, and we found that at least 60%

authors only co-authored once. This fact implies that the links can

hardly provide useful information to distinguish the normal and

abnormal events. Therefore, we argue that considering the hetero-

geneous information network structure only is not sufficient for

abnormal event detection and introducing additional valuable infor-

mation is necessary. Besides the network structure, the attribute is

another widely used source to describe the entities. It provides the

clue to re-define the events, that is, even if two entities have rare

relation, if they have similar attributes, their relation still should

be normal. High-order structure is also an effective information

to alleviate the sparsity issue. Therefore, considering both of the

attributes and high-order structure can help us detect events with

rare attributes and high-order patterns.

In this paper, we propose a novel deep heterogeneous network

embedding method which incorporates the entity attributes and

second-order structure simultaneously to detect the abnormal event
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in HIN. First, due to different entity types have different attribute

spaces, we utilize different type-aware Multilayer Perceptron (MLP)

components to learn the attribute embeddings. Second, in order

to keep computational efficiency, we only select specific type of

entities and adopt the autoencoder framework to learn embeddings

which encode the second-order information. Finally, based on the

mixed embeddings, we are able tomodel the pairwise interactions of

different entities, such that events with small attributes and network

structures entity compatibilities may have large abnormal event

scores. We conduct extensive experiments, including the quantita-

tive experiment and case study, demonstrate the effectiveness of

our proposed method.

2 PRELIMINARIES

Heterogeneous Information Network. A HIN is defined as a

graph G = (V, E) with an entity type mapping function ϕ : V →

A and a link type mapping function φ : E → R. A and R denote

the sets of predefined entity and link types, where |A| + |R | > 2.

In HIN, two entities can be connected via different semantic paths,

defined as meta-paths. There are multiple specific paths under

the meta-path ρ, which is called a meta-path instance [6]. In

Fig. 1(a), we present an example of HIN. We can see that the HIN

contains multiple types of entities connected by links. And meta-

path Author-Paper-Author (APA) indicates two authors co-author

a paper. Then we can get ai -pi -aj and aj -pj -az instances for the

APA meta-path.

Abnormal Event Detection in HIN. Given a HIN, each event (in-

stance) e = (a1, · · · ,am ) is collected by specificmeta-path, whereai
denotes an entity from the typeAi , and each entity in an event may

have the same type with others. Given n events D = {e1, · · · en },
abnormal event detection aims to discover the rare pattern events

in D.
Because previous work [1, 2] only treats each entity as a categor-

ical value, here, we take Aminer dataset [7] as an example, and we

count the number of two authors’ collaboration. Specifically, for

authors A1 and A2, we count the number N1,2 of all the meta-path

instances A1-P-A2, where P denotes all the paper which the two

authors have been co-authored. Then for all the authors n, we can
get the numbers N = {N1,2, . . . ,Nn−1,n }. We sort the numbers

in N by ascending order, then we get x-th percentile c , denoting
that there are at least x% numbers in N is equal or smaller than c .
As shown in Table 1, we find that at least 60% authors have been

co-authored only once. Based on this fact, we think that we need

to introduce more extra information to HIN, in order to get more

meaningful results.

Table 1: Percentile of APA instances in Aminer

Percentile 10-th 30-th 50-th 60-th 70-th 90-th 99-th

count(c) 1 1 1 1 2 3 11

3 THE PROPOSED MODEL

Our model AEHE, which is abbreviated for Abnormal Event detec-

tion via Heterogeneous information network Embedding, is shown
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Figure 1: The overall architecture of the proposed model.

The same color indicates the shared weights.

in Fig.1(b). As can be seen, for the entity attributes of each type, we

utilize a specific multi-layer projection to learn the attribute embed-

ding, also, for the second-order structures of each type of entities,

we adopt the autoencoder framework to learn the second-order

structure preserving embedding. Then we concentrate the embed-

dings to model the likelihood of events. Next, we will introduce the

details.

3.1 Heterogeneous Attribute Embedding

Each entity in HIN is usually associated with additional attributes,

and different types of entities should have different attribute spaces.

The main goal of the heterogeneous attribute embedding is to learn

the mapping functions to project attributes from different types of

entities to a low dimension space, so that the attributes of them

become comparable. Specifically, assumingAt is an attribute matrix

for type-t (t ∈ A) entities, and i-th row of At is the attribute vector

of ai . We adopt a MLP component to learn its low-dimensional

nonlinear dt
I
-dimensional attribute embedding Fti as:

F
t
i = MLPt (At

i ), (1)

where the MLPt is the nonlinear component for type-t , which
consists of two hidden layers with ReLU as activation function. Each

typed MLP component can have different structures. As shown in

Fig.1(b), same color of components means the shared weights.

3.2 Heterogeneous Second-order Structure
Embedding

The second-order Proximity of HIN measures the proximity of

two entities with respect to their neighborhood structures, and we

use this information to represent entities, then further find abnor-

mal events with rare second-order patterns. Given a heterogeneous

network, we can use symmetry meta-path (e.g. APA) to degenerate

meta-path instances to links, which connect two authors. Then we

get a homogeneous network G = (V , E), which V is the set entities

with the same type, E is the set of links connect the nodes in V ,
and S denotes its adjacency matrix, Sti is adjacency vector of entity
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ati . We use S as our input feature and an autoencoder [4] as the

model to preserve the neighborhood structures. The autoencoder is

composed by an encoder and decoder. The encoder is a non-linear

mapping from feature space S to latent representation space R and

decoder is a non-linear mapping from latent representation R space

back to origin feature space Ŝ, autoencode step of i-th entity with

type-t is shown as follows:

R
t
i = σ (Wt

1 ∗ S
t
i + b

t
1), Ŝ

t
i = σ (Ŵt

1 ∗ R
t
i + b̂

t
1), (2)

whereσ is the ReLU function,Rti is latent representation of entitya
t
i ,

and Ŝ
t
i is reconstruct representation of Sti . {W

t
1, b

t
1} and {Ŵt

1, b̂
t
1}

are the parameters of encode and decode layer.

However, due to the sparsity of the input adjacency matrix S,

the number of zero elements is much larger than that of non-zero

elements. To encode more valuable information, we set different

weights to different elements, and the loss function for all entities

in an event is shown as follows:

Lae (e) =
∑

1≤i≤m

‖β ∗ siдn(Sti ) � (Sti − Ŝ
t
i )‖, (3)

wherem is the number of entity in a single event, sign is sign func-

tion, “�” means the Hadamard product, and β > 1 is the weight

for reconstructing the non-zero elements. Furthermore, in HIN, the

entities often have various types, considering the special character-

istics of different types, in our model, each heterogeneous entity

type has their own autoencoder model as shown in Fig. 1(b).

3.3 The Probabilistic Model for Event

In order to utilize different type of entities’ embeddings to com-

pute the normality of events, we need to project different entities’

embeddings to the same dimension. Specifically, we set L as the

dimension of mixed embeddings of attribute and second-order em-

beddings, and set Lt
R
as the dimension of Rti , and a linear layer is

used to transform dimension of attribute embedding as Lta = L−Lt
R
,

the linear transformation matrices, denoted by Pt ∈ R
d t
I
×Lta . The

transformed attributes are denoted by F̂
t
i , where we have:

F̂
t
i = P

T
t · Fti , (4)

where PTt is the transpose of Pt . Then, we combine the attribute

embedding and second-order structure embedding into a unified

representation of the current entity ai as follows:

v̂ai = F̂
t
i ⊕ R

t
i , (5)

where “⊕” denotes the vector concatenation operation.

After getting a single event e = {a1, . . . am } in event space, sim-

ilar as [2], we model the scoring function by pairwise interactions

among embedded entities to quantify its normality:

Sθ (e) =
∑

i , j :1≤i<j≤m

wi j (v̂ai · v̂aj ), (6)

the dot product between a pair of entity embedding v̂ai and v̂aj

encodes the compatibility of two entities co-occurrence in a single

event. wi j is the nonnegative weight for pairwise interaction be-

tween entity typeAi andAj . Then we model the event probability

using the following parametric form:

Pθ (e) =
exp(Sθ (e))

Σe ′ ∈Ωexp(Sθ (e
′))
, (7)

where θ is the set of parameters, and Ω is the event space. Similar

as [2], we generate negative samples e ′ by randomly replacing one

entity in positive sample e , and our objective function is:

Lp = loдσ (Sθ (e)) +
∑

e ′

loдσ (−Sθ (e
′)). (8)

As can be seen, by maximizing Eq. 8, the first term makes the

embeddings v̂ai and v̂aj from positive sample e closer, so the normal

score of the event will become large. The second term forces the

embeddings v̂′ai and v̂
′
aj from negative samples e ′ far away from

each other, so the normal score will become small.

3.4 Overall Architecture

To preserve the ability of modeling event probability, as well as the

reconstruction ability of second-order information , we combine

the objectives in Eqs. 3 and 8. For each e and its negative sample e ′,
our model jointly optimizes the objective function is:

L = −Lp + α[Lae (e) +
∑

e ′

Lae (e
′)] + ηLr eд, (9)

here, two hyper-parameters α and η are used to trade-off different

parts. Besides, Lr eд is an L2-norm regularizer of MLP components

in section 3.1 to prevent overfitting. At last, we adopt Adam algo-

rithm to minimize the objective in Eq. 9.

Discussion. Usually, introducing attribute and second-order infor-

mation both will obtain much better results. However, in order to

keep computational efficiency, it is easy to check that our model

is very flexible for one to consider only one source (attribute in-

formation or high-order structure or both) based on their domain

knowledge. Furthermore, when the number of entity types grow,

we can easily add corresponding typed attribute and second-order

components, then the mixed embeddings are easily to be feed in a

pairwise model. All the operation discussed above without chang-

ing the objective function Eq.9.

4 EXPERIMENTS

4.1 Datasets

Aminer [7] is an online academic website. In this network, authors

collaborate with different people on different topics, and we de-

tect the abnormal co-authored event (APA) which is different from

others. We construct co-authored attributed heterogeneous infor-

mation network which consists of 12755 authors, 13795 papers and

73957 APA instances. For each author, we match its research topic

distribution, which is a 200 dimension vector, and each dimension

denotes the weight of the topic for the author. For each paper, we

extract its abstract, and we use Term Frequency - Inverse Docu-

ment Frequency (TF-IDF) to represent abstracts. Then we reduce

the dimension of topic distribution to 50 and TF-IDF vector to 100

via SVD. In order to evaluate our method, similar to [2], for each

event in the testing data, we randomly replace one of entities with

other entities of the same type, and make sure the newly generated

events do not occur in both training and testing datasets, so that

they can be considered more abnormal than the observed events.
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4.2 Experimental Settings

Baselines. We choose the following state-of-the-art methods for

abnormal event detection and embedding. (1)Count Number: this

is a straightforward method count the number of co-occurrences

of entity pairs in the HIN. The abnormal score of an event can be

computed by negative of the sum of the number of its entity pairs’

co-occurrences in our counting results. (2) metapath2vec [3]: we

first use it to learn the entity embeddings, and then use Eq.6 to get

the abnormal scores. (3) APE: it is an entity embedding-based ab-

normal detection method for heterogeneous categorical events. (4)

AEHE: this is the proposed method. Note that we use the negative

of Eq. 6 output as the abnormal score. (5) AEHE (attribute only):

this method is our proposed AEHE without using the second-order

information.

For baselines, we set as default parameters. For our method, we

set the dimension of attribute embeddings to 30, the dimension

of second-order embeddings to 5, the learning rate to 0.001, and

selected best-performed hyper-parameters α and β on validation

sets. We vary the size of the training set from 20% to 80% and the

remaining instances are as testing sets. We adopt MAP and AUC [2]

for evaluation.

4.3 Experimental Results

Table 2 shows the AUC and MAP of different methods on detect-

ing abnormal event. Note that our method AEHE outperforms all

the baselines in terms of both metrics. AEHE achieves 0.020-0.080

improvements in terms of MAP and 0.010-0.054 gains in terms of

AUC over APE. For count number and metapath2vec, they do not

have training precess, so all the results of different percent training

set are same.

Table 2: Performance of abnormal co-author event detection.

The number in bold is the best performance.

Metric Method 20% 40% 60% 80%

Count Number 0.020 0.020 0.020 0.020

Metapath2vec 0.911 0.911 0.911 0.911

MAP APE 0.825 0.919 0.940 0.952

AEHE (attribute only) 0.924 0.940 0.941 0.950

AEHE 0.915 0.943 0.960 0.973

Count Number 0.780 0.780 0.780 0.780

Metapath2vec 0.903 0.903 0.903 0.903

AUC APE 0.875 0.930 0.951 0.962

AEHE (attribute only) 0.916 0.934 0.941 0.944

AEHE 0.929 0.950 0.963 0.972

4.4 Case Study

We conduct a case study to demonstrate the effectiveness of in-

troducing attribute information. We first compute the abnormal

scores of all the instances, then take the top N instances, and then

compute similarity score by the following formula:

AS =
∑

1≤i≤N

(At
i1 · A

t
i2), (10)

where N = 1000 is the top number, and A
t
i1 and A

t
i2 denotes at-

tributes of entities zi1 and zi2 with same type t in event i . The

similarity of entities in an abnormal event is usually small. We can

find that the AS of APE is 25.66, while ours is 18.37, indicating that

our model can detect the event which have more abnormal attribute

patterns.

Table 3 shows some abnormal events detected by our model. In

the first event, Daniel A. Keim and D. Kokkinakis co-author a paper

named “Fingerprint Matrices”, which studies about text processing.

Daniel A. Keim’s research areas are Data Mining (DM) and Infor-

mation Visualization (IV). However, D. Kokkinakis is interested in

Computer Networks (CN) and Wireless Communication (WC). And

the second event also indicates an interdisciplinary coauthor. From

the two cases, we can see that our method can find abnormal events

which have rare attribute patterns. These patterns may have further

collaboration potential, and promote a wider research collaboration

in the future.

Table 3: Detected abnormal events examples

entity 1 2

A1 Daniel A. Keim Jan Zizka

(DM, IV) (CN, WC)

P Fingerprint Matrices SpeckleSense

(Text Processing) (Communication Hardware)

A2 D. Kokkinakis Ramesh Raskar

(CN, WC) (Physical, Digital)

5 CONCLUSIONS

In this paper, we track a challenging problem of abnormal event

detection in HIN. Different from previous work only considering

the heterogeneous information structure, we propose a novel deep

heterogeneous network embedding method which incorporates

the entity attributes and second-order structures simultaneously

to address this problem. The experimental results on real world

network demonstrate the effectiveness of our proposed method.

ACKNOWLEDGMENTS

This work is supported in part by the National Natural Science Foun-

dation of China (No. 61772082, 61702296, 61375058), the National

Key Research andDevelopment Program of China (2017YFB0803304),

and the Beijing Municipal Natural Science Foundation (4182043).

REFERENCES
[1] Leman Akoglu, Hanghang Tong, Jilles Vreeken, and Christos Faloutsos. 2012. Fast

and reliable anomaly detection in categorical data. In CIKM. 415–424.
[2] Ting Chen, Lu An Tang, Yizhou Sun, Zhengzhang Chen, and Kai Zhang. 2016.

Entity embedding-based anomaly detection for heterogeneous categorical events.
In IJCAI. 1396–1403.

[3] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable Representation Learning for Heterogeneous Networks. In SIGKDD. 135–
144.

[4] Y Lecun, Y Bengio, and G Hinton. 2015. Deep learning. Nature 521, 7553 (2015),
436.

[5] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and Philip S. Yu. 2016. A Survey
of Heterogeneous Information Network Analysis. TKDE 29, 1 (2016), 17–37.

[6] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. PathSim:
Meta Path-Based Top-K Similarity Search in Heterogeneous Information Networks.
In VLDB. 992–1003.

[7] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnet-
Miner:extraction and mining of academic social networks. In SIGKDD. 990–998.

Short Paper CIKM’18, October 22-26, 2018, Torino, Italy

1486




