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Abstract
Heterogeneous information network (HIN) embedding, aim-
ing to project HIN into a low-dimensional space, has at-
tracted considerable research attention. Most of the exit-
ing HIN embedding methods focus on preserving the inher-
ent network structure and semantic correlations in Euclidean
spaces. However, one fundamental problem is that whether
the Euclidean spaces are the appropriate or intrinsic isomet-
ric spaces of HIN? Recent researches argue that the complex
network may have the hyperbolic geometry underneath, be-
cause the underlying hyperbolic geometry can naturally re-
flect some properties of complex network, e.g., hierarchical
and power-law structure. In this paper, we make the first ef-
fort toward HIN embedding in hyperbolic spaces. We ana-
lyze the structures of two real-world HINs and discover some
properties, e.g., the power-law distribution, also exist in HIN.
Therefore, we propose a novel hyperbolic heterogeneous in-
formation network embedding model. Specifically, to capture
the structure and semantic relations between nodes, we em-
ploy the meta-path guided random walk to sample the se-
quences for each node. Then we exploit the distance in hy-
perbolic spaces as the proximity measurement. The hyper-
bolic distance is able to meet the triangle inequality and well
preserve the transitivity in HIN. Our model enables the nodes
and their neighborhoods have small hyperbolic distances. We
further derive the effective optimization strategy to update the
hyperbolic embeddings iteratively. The experimental results,
in comparison with the state-of-the-art, demonstrate that our
proposed model not only has superior performance on net-
work reconstruction and link prediction tasks but also shows
its ability of capture hierarchy structure in HIN via visualiza-
tion.

Introduction
Heterogeneous information networks (HINs) are networks
that consist of multiple types of nodes and edges. Model-
ing data in the real world as HINs can capture rich data
semantics. For example, the bibliographic network can be
modeled as an HIN with three types of nodes: author, paper,
and venue (Fu, Lee, and Lei 2017). Further, the relations
between nodes, such as author-paper (write), paper-venue
(publish), have different types of edges. Recently, HIN em-
bedding, aims at learning the node representations in the
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low-dimensional spaces while preserving the structure and
semantic information, has received increasing research at-
tention. Benefited from HIN embedding, a variety of HIN
based applications, e.g, recommendation (Shi et al. 2018;
Hu et al. 2018) and link prediction (Chen et al. 2018), can
be conducted and improved in the low-dimensional space.

So far, a number of HIN embedding methods have been
proposed. Loosely speaking, there are the works based on
random walk (Dong, Chawla, and Swami 2017; Fu, Lee, and
Lei 2017), network partition based methods (Tang, Qu, and
Mei 2015; Xu et al. 2017), and deep neural network based
HIN embedding (Chang et al. 2015; Wang et al. 2018). In
essence, because the structure and semantics are the two
most important information in an HIN, most of them fo-
cus on how to effectively preserve the HIN structures and
semantics in the low-dimensional spaces. However, another
fundamental problem is that what are the appropriate or in-
trinsic underlying isometric spaces of HIN? Because the Eu-
clidean spaces are the natural generalization of our intuition-
friendly, and visual three-dimensional space, they have be-
come the primary choice for the current HIN embedding
methods. While more and more researches demonstrate that
many types of complex data, e.g., social network, actually
exhibit a highly non-Euclidean latent anatomy (Bronstein
et al. 2017). This motivates us to rethink that whether the
current chosen low-dimensional spaces for HIN embedding,
i.e., Euclidean spaces, are optimal and are there other feasi-
ble non-Euclidean spaces?

Recently, hyperbolic spaces have gained momentum in
the context of network science. Hyperbolic spaces are spaces
of constant negative curvature (Cannon et al. 1997). A supe-
riority of hyperbolic spaces is that they expand faster that
Euclidean spaces (Nickel and Kiela 2017). For instance,
considering a circle and a disk in a 2-dimensional hyper-
bolic space with constant curvature K = −1, the length
of the circle and the area of the disk of hyperbolic radius
r are given as 2π sinh r and 2π(cosh r − 1), respectively,
and both of them grow as er with r. In a 2-dimensional Eu-
clidean space, the length of a circle and the area of a disk
of Euclidean radius r are given as 2πr and πr2, growing
only linearly and quadratically with regard to r. For this rea-
son, in hyperbolic spaces, it is easy to model complex data
with low-dimensional embedding. Due to the characteristic
of hyperbolic spaces, (Krioukov et al. 2010) assumes hyper-



bolic spaces underlies complex network and find that data
with power-law structure is suitable to be modeled in hy-
perbolic spaces. Because of these properties of hyperbolic
spaces, some works begin to study the hyperbolic embed-
dings of different data. For instance, (Dhingra et al. 2018)
embeds text in hyperbolic spaces. (Nickel and Kiela 2017)
and (Ganea, Becigneul, and Hofmann 2018) learn the em-
beddings of homogeneous networks.

In this paper, we propose a novel hyperbolic hetero-
geneous information network embedding model (HHNE)
which is able to preserve the structure and semantic informa-
tion in hyperbolic spaces. We leverage the meta-path guided
random walk to generate heterogeneous neighborhoods for
each node to capture the structure and semantic relations in
HIN. Then the proximity between nodes is measured by the
distance in hyperbolic spaces. As the distance is defined in
metric spaces, the proximity between nodes meets the tri-
angle inequality and can well preserve the transitivity in
HIN. Our model is able to maximize the proximity between
the neighborhood nodes while minimizing the proximity be-
tween the negative sampled nodes. We further derive the ef-
fective optimization strategy to optimize hyperbolic embed-
dings iteratively.

We highlight the main contributions as follows:

• To our best knowledge, we are the first to study the prob-
lem of HIN embedding in hyperbolic spaces.

• We propose a novel HIN embedding model, named
HHNE, to preserve the HIN structure and semantic cor-
relations in hyperbolic spaces based on the meta-path
guided random walk.

• We conduct extensive experiments to evaluate the perfor-
mance of HHNE in terms of representation capacity and
generalization ability on two real-world datasets. The re-
sults show the superiority of HHNE by comparing with
the state-of-the-art techniques.

Related Work
Network Embedding
Recently, a significant amount of progress has been made
toward network embedding (Cui et al. 2018). For instance,
inspired by language modeling technique, DeepWalk (Per-
ozzi, Al-Rfou, and Skiena 2014) regards the node sequences
generated from random walks as “sentences”, and nodes as
“words”, and then maximizes the co-occurrence probability
among nodes. LINE (Tang et al. 2015) is able to efficiently
learn the node embeddings while preserving both of the first-
order and second-order structures. Node2vec (Grover and
Leskovec 2016) is generalized from DeepWalk. It designs
a parameterized random walk procedure to learn a mapping
of nodes that maximizes the likelihood of preserving net-
work neighborhoods of nodes. SDNE (Wang, Cui, and Zhu
2016) uses autoencoder to capture local and global network
structures to learn user representation. Most of network em-
bedding methods embed network into low-dimensional Eu-
clidean spaces, while some researchers begin to embed net-
work into low-dimensional hyperbolic spaces. (Nickel and
Kiela 2017) embeds network into hyperbolic spaces to learn
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Figure 1: An illustrative example of a heterogeneous infor-
mation network (DBLP) and meta-paths.

hierarchical feature representations of network. (Ganea, Be-
cigneul, and Hofmann 2018) embeds the directed acyclic
graphs into hyperbolic spaces to learn their hierarchical fea-
ture representations. However, these methods only focus on
learning the representation of nodes in homogeneous net-
works and do not consider the heterogeneity of complex in-
formation network.

Heterogeneous Information Network Embedding
Recently, some methods have been proposed representation
learning methods for HIN. Metapath2vec (Dong, Chawla,
and Swami 2017) formalizes meta-paths based random
walks to obtain heterogeneous neighborhoods of a node and
leverages Skip-gram model to learn the network structure.
HIN2vec (Fu, Lee, and Lei 2017) carries out multiple pre-
diction tasks jointly to learn the presentation of nodes and
meta-paths. PTE (Tang, Qu, and Mei 2015) partitions an
HIN into a set of edgewise bipartite networks and then learn
the feature representation jointly by using LINE. EOE (Xu
et al. 2017) aims to embed the coupled HIN, which consists
of two different but related homogeneous networks. It mod-
els each homogeneous network by using the same function
as LINE. HNE (Chang et al. 2015) transfers different ob-
jects in HIN to unified feature representations and considers
contents and topological structures in networks jointly for
creating the embedding. SHINE (Wang et al. 2018) utilizes
multiple deep autoencoders to extract users highly nonlin-
ear representations while preserving the structure of original
networks.

To sum up, all the above mentioned HIN embedding
models project HIN into low-dimensional Euclidean spaces.
Nevertheless, whether the Euclidean space is the most ap-
propriate one is still an open question.

Preliminaries
Definitions in HIN
Definition 1. Heterogeneous Information Network (HIN)
(Shi et al. 2017). An HIN is defined as a graph G =
(V,E, T, φ, ψ), in which V and E are the sets of nodes and
edges. Each node v ∈ V and each edge e ∈ E are asso-
ciated with their mapping functions φ(v) : V → TV and
ψ(e) : E → TE respectively. TV and TE denote the sets of
node and relation types, where |TV |+ |TE | > 2.



Table 1: Statistics of datasets

DBLP # A # P # V # P-A # P-V
14475 14376 20 41794 14376

MovieLens # A # M # D # M-A # M-D
11718 9160 3510 64051 9160

Definition 2. Meta-path. Given an HIN G =
(V,E, T, φ, ψ), a meta-path P is a sequence of
node types tv1 , tv2 , . . . , tvn connected by edge types

te1 , te2 , . . . , ten−1: P = tv1
te1−−→ tv2

te2−−→ . . .
ten−1−−−−→ tvn .

A meta-path instance consists of specific nodes and edges,

e.g., a1
write−−−→ p1

publish−−−−−→ v1.
For example, Figure 1(a) shows an academic network

with authors (A), papers (P), venues (V) as nodes, wherein
edges indicate the write (A-P), publish (P-V). The examples
of meta-paths are shown in Figure 1(b). The meta-paths con-
tain rich semantic information, such as coauthor (A-P-A),
authors attending the same venue (A-P-V-P-A).

Definition 3. Heterogeneous Information Network Em-
bedding. Given an HIN G = (V,E, T, φ, ψ), HIN embed-
ding aims to project nodes into a latent low-dimensional
representation space while preserving the original network
structure and semantic correlations.

Relation Distribution in HIN
In order to find out whether there is some underlying correla-
tions between HIN and hyperbolic spaces, we analyze some
meta-paths in two real-world HINs. The basic statistics of
the two HINs are shown in Table 1.

• DBLP is a bibliographic dataset in computer science. We
use a subject of DBLP, i.e., DBLP-4-Area taken of (Sun et
al. 2011) which contains three types of nodes, i.e., author
(A), paper (P), venue (V) and two types of edges, i.e.,
author-paper (write), paper-venue (publish). The schema
of DBLP network is shown in Figure 2(a).

• MovieLens1 contains knowledge about movies (Canta-
dor, Brusilovsky, and Kuflik 2011). We extract a subset
of from MovieLens, which contains three types of nodes,
i.e., actor (A), movie (M), director (D) and two types of
edges, i.e., actor-movie (act in), director-movie (direct).
The schema of MovieLens is shown in Figure 2(b).

As mentioned before, data with power-law structure can be
naturally modeled in hyperbolic spaces. Therefore, we use
two real-world HINs to check whether the power-law dis-
tribution of nodes also exists with different meta-paths. We
calculate the distribution of nodes as follows: given a meta-
path P and a node v, we first calculate how many meta-
path instances can be composed started with v following P ,
and then calculate how many nodes have the same results.
The two results are plotted as the horizontal axis and verti-
cal axis, respectively. For DBLP dataset, we show the distri-
bution of author-paper-author (A-P-A) relation and author-
paper-venue (A-P-V) relation in Figure 3(a) and Figure 3(b),

1https://grouplens.org/datasets/hetrec-2011/
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Figure 2: Schemas of two HINs.

respectively. For MovieLens dataset, we show the distribu-
tion of actor-movie-director (A-M-D) relation in Figure 3(c).
We can see these distribution presents the power-law dis-
tribution. This fact implies that hyperbolic spaces may be
the alternative spaces for embedding HINs. Please note that
there exist a lot of meta-paths in an HIN, it makes sense
that the nodes with some specific meta-paths may not al-
ways have power-law distribution, but as can be seen in the
following experiments, the results are still very competitive.
More fine-grained analysis on the meta-paths will leave for
the future work.

Embedding HIN in Hyperbolic Spaces
Hyperbolic Geometry and Embedding
Hyperbolic geometry is a non-Euclidean geometry which is
obtained by replacing Euclids fifth geometric postulate (the
parallel postulate). Hyperbolic geometry studies the spaces
of constant negative curvature. A key property of hyperbolic
spaces H is that they expand faster than Euclidean spaces
because Euclidean spaces R expand polynomially while hy-
perbolic spaces H expand exponentially. Specifically, each
tile in Figure 4(a) (Tay, Tuan, and Hui 2018) is of the equal
area in hyperbolic space but diminishes towards zero in Eu-
clidean space towards the boundary. Because of this prop-
erty, hyperbolic spaces can be thought of as a continuous
version of trees. Specifically, as show in Figure 4(b) (Nickel
and Kiela 2017), consider a tree with branching factor b, the
number of nodes at level l or no more than l hops from
the root are (b + 1)bl−1 and [(b + 1)bl − 2]/(b − 1) re-
spectively. The number of nodes grows exponentially with
their distance to the root of the tree, which is similar to hy-
perbolic spaces as they expand exponentially. In hyperbolic
spaces, the data with tree structure can be embedded into
2-dimensional hyperbolic spaces naturally. Given a node at
level l, the node can be placed on a sphere in hyperbolic
spaces with distance dH ∝ l to the origin of the sphere, and
the branching factor b can be modeled by the constant cur-
vature of hyperbolic spaces as K = − ln2 b. As mentioned
above, the number of nodes of a tree grows exponentially
with their distance to the root, and the nodes distribution of a
tree follow the power-law distribution. Hence, the power-law
distribution can naturally emerge as a direct consequence of
the basic properties of hyperbolic geometry underlying the
network. The data with power-law distribution is suitable to
be modeled in hyperbolic spaces (Krioukov et al. 2010).

Hyperbolic spaces cannot be isometrically embedded into
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Figure 3: The distribution of some relations in two datasets.
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Figure 1: (a) Due to the negative curvature of B, the distance of points increases exponentially (relative to their
Euclidean distance) the closer they are to the boundary. (c) Growth of the Poincaré distance d(u,v) relative to
the Euclidean distance and the norm of v (for fixed ‖u‖ = 0.9). (b) Embedding of a regular tree in B2 such that
all connected nodes are spaced equally far apart (i.e., all black line segments have identical hyperbolic length).

[1] proposed a measure based on Gromov’s δ-hyperbolicity [12] to characterize the tree-likeness of
graphs. Ontrup and Ritter [25] proposed hyperbolic self-organizing maps for data exploration. Asta
and Shalizi [3] used hyperbolic embeddings to compare the global structure of networks. Sun et al.
[33] proposed Space-Time embeddings to learn representations of non-metric data.

Euclidean embeddings, on the other hand, have become a popular approach to represent symbolic
data in machine learning and artificial intelligence. For instance, in addition to the methods discussed
in Section 1, Paccanaro and Hinton [26] proposed one of the first embedding methods to learn from
relational data. More recently, Holographic [24] and Complex Embeddings [34] have shown state-
of-the-art performance in Knowledge Graph completion. In relation to hierarchical representations,
Vilnis and McCallum [36] proposed to learn density-based word representations, i.e., Gaussian
embeddings, to capture uncertainty and asymmetry. Given ordered input pairs, Vendrov et al. [35]
proposed Order Embeddings to model visual-semantic hierarchies over words, sentences, and images.
Demeester et al. [10] showed that including prior information about hypernymy relations in form of
logical rules can improve the quality of word embeddings.

3 Poincaré Embeddings

In the following, we are interested in finding embeddings of symbolic data such that their distance in
the embedding space reflects their semantic similarity. We assume that there exists a latent hierarchy
in which the symbols can be organized. In addition to the similarity of objects, we intend to also
reflect this hierarchy in the embedding space to improve over existing methods in two ways:

1. By inducing an appropriate structural bias on the embedding space we aim at improving
generalization performance as well as runtime and memory complexity.

2. By capturing the hierarchy explicitly in the embedding space, we aim at gaining additional
insights about the relationships between symbols and the importance of individual symbols.

Although we assume that there exists a latent hierarchy, we do not assume that we have direct access
to information about this hierarchy, e.g., via ordered input pairs. Instead, we consider the task of
inferring the hierarchical relationships fully unsupervised, as is, for instance, necessary for text and
network data. For these reasons – and motivated by the discussion in Section 2 – we embed symbolic
data into hyperbolic space H. In contrast to Euclidean space R, there exist multiple, equivalent
models of H such as the Beltrami-Klein model, the hyperboloid model, and the Poincaré half-plane
model. In the following, we will base our approach on the Poincaré ball model, as it is well-suited for
gradient-based optimization. In particular, let Bd = {x ∈ Rd | ‖x‖ < 1} be the open d-dimensional
unit ball, where ‖ · ‖ denotes the Euclidean norm. The Poincaré ball model of hyperbolic space
corresponds then to the Riemannian manifold (Bd, gx), i.e., the open unit ball equipped with the
Riemannian metric tensor

gx =

(
2

1− ‖x‖2
)2

gE ,

3

(b) a tree with branching fac-
tor 3

Figure 4: Two examples of Poincaré disk model of hyper-
bolic spaces.

Euclidean spaces, so they are difficult to envisage (Kri-
oukov et al. 2010). Fortunately, there exist many equivalent
models of hyperbolic spaces such as Poincaré disk (ball)
model, Poincaré half-plane model, Beltrami-Klein model,
hyperboloid model (Cannon et al. 1997). As Poincaré ball
model is well-suited for gradient-based optimization, our
work makes use of Poincaré ball model. Let Dd = {x ∈
Rd : ‖x‖ < 1} be the open d-dimensional unit ball. The
Poincaré ball model is defined by the manifold Dd equipped
with the following Riemannian metric tensor gDx :

gDx = λ2
xg

E where λx :=
2

1− ‖x‖2 , (1)

where x ∈ Dd, gE = I denotes the Euclidean metric ten-
sor. It is worth noting that the Poincaré model is conformal,
meaning that Euclidean angles between hyperbolic lines in
the model are equal to their hyperbolic angles that makes it
suitable for gradient-based method.

The HHNE Model
We aim to learn the representation of nodes to preserve
the structure and semantic correlations in hyperbolic spaces.
Given an HING = (V,E, T, φ, ψ) with |TV | > 1, we are in-
terested in learning the embeddings Θ = {θi}|V |i=1, θi ∈ Dd.
We preserve the structure by facilitating the proximity be-
tween the node v ∈ V and its neighborhoods ct ∈ Ct(v)
with type t. We use meta-path guided random walks (Dong,

Chawla, and Swami 2017) to obtain heterogeneous neigh-
borhoods of a node. In meta-path guided random walks,
the nodes sequences are restrained by the node types which
are defined by meta-paths. Specifically, given a meta-path

P = tv1
te1−−→ tv2

te2−−→ . . .
ten−1−−−−→ tvn , the transition proba-

bility at step i is defined as follows:

p(vi+1|vitvi,P)=
{

1
|Ntvi+1

(vitvi
)| (v

i+1, vitvi )∈E, φ(v
i+1)= tvi+1

0 otherwise,
(2)

where vitvi is node v ∈ V with type tvi , and Ntvi+1
(vitvi

)

denotes the tvi+1 type of neighborhood of node vitvi .
The meta-path guided random walk strategy ensures that

the semantic relationships between different types of nodes
can be properly incorporated into HHNE.

In order to preserve the proximity between nodes and
its neighborhoods in hyperbolic spaces, we use distances
in Poincaré ball model to measure their proximity. Given
nodes embeddings θi, θj ∈ Dd, the distance in Poincaré ball
is given by:

dD(θi, θj) = cosh−1

(
1 + 2

‖θi − θj‖2
(1− ‖θi‖2)(1− ‖θj‖2)

)
.

(3)
It is worth noting that as the Poincaré ball model is defined
in metric spaces, the distance in Poincaré ball meet the trian-
gle inequality and can well preserve the transitivity in HIN.
Then, we use a probability to measure the node ct is a neigh-
borhood of node v as following:

p(v|ct; Θ) = σ[−dD(θv, θct)],

where σ(x) = 1
1+exp(−x) . Then the object of our model is

to maximize the probability as following:

arg max
Θ

∑

v∈V

∑

ct∈Ct(v)

log p(v|ct; Θ). (4)

To achieve efficient optimization, we leverage the nega-
tive sampling proposed in (Mikolov et al. 2013), which basi-
cally samples a small number of negative objects to enhance
the influence of positive objects. In HHNE, for a given node
v, we want to maximize the proximity between v and its
neighborhood ct while minimize the proximity between v



and its negative sampled node n. Therefore, the objective
function Eq. 4 can be rewritten as following:

L(Θ) = log σ[−dD(θct , θv)]

+

M∑

m=1

Enm∼P (n){log σ[dD(θnm , θv)]},
(5)

where P (n) is the pre-defined distribution from which a
negative node nm is drew from for M times. Our method
builds the node frequency distribution by draw nodes regard-
less of their types.

Optimization
As the parameters of the model live in a Poincaré ball which
has a Riemannian manifold structure, the back-propagated
gradient is a Riemannian gradient. It means that the Eu-
clidean gradient based optimization, such as θi ← θi +
η∇EθiL(Θ), makes no sense as an operation in the Poincaré
ball, because the addition operation is not defined in this
manifold. Instead, we can optimize Eq. 5 via a Riemannian
stochastic gradient descent (RSGD) optimization method
(Bonnabel and others 2013). In particular, let TθiDd denote
the tangent space of a node embedding θi ∈ Dd, and we
can compute the Riemannian gradient∇RθiL(Θ) ∈ TθiDd of
L(Θ). Using RSGD, parameter updates to maximize Eq. 5
are in the form:

θi ← expθi(η∇RθiL(Θ)), (6)

where expθi(·) is exponential map in the Poincaré ball. In
Euclidean spaces , the exponential map is familiar with us:
given a node embedding θi ∈ Dd, s = η∇RθiL(Θ), the expo-
nential map is given by expθi(s) = θi+ s. In our model, the
exponential map is given by (Ganea, Becigneul, and Hof-
mann 2018):

expθi(s) =

λθi

(
cosh(λθi‖s‖) + 〈θi, s

‖s‖ 〉 sinh(λθi‖s‖)
)

1 + (λθi − 1) cosh(λθi‖s‖) + λθi〈θi, s
‖s‖ 〉 sinh(λθi‖s‖)

θi

+

1
‖s‖ sinh(λθi‖s‖)

1 + (λθi − 1) cosh(λθi‖s‖) + λθi〈θi, s
‖s‖ 〉 sinh(λθi‖s‖)

s.

(7)

As the Poincaré ball model is a conformal model of hyper-
bolic spaces, i.e., gDx = λ2

xg
E, the Riemannian gradient ∇R

is obtained by rescaling the Euclidean gradient ∇E by the
inverse of the metric tensor, i.e., 1

gDx
:

∇RθiL =

(
1

λθi

)2

∇EθiL. (8)

Furthermore, the gradients of Eq. 5 can be derived as fol-
lows:

∂L
∂θum

=
4

α
√
γ2 − 1

[Iv[um]− σ(−dD(θct , θum))]

·
[
θct
βm
− ‖θct‖

2 − 2〈θct , θum〉+ 1

β2
m

θum

]
,

(9)

∂L
∂θct

=

M∑

m=0

4

βm
√
γ2 − 1

[Iv[um]− σ(−dD(θct , θum))]

·
[
θum

α
− ‖θum‖2 − 2〈θct , θum〉+ 1

α2
θct

]
,

(10)

where α = 1 − ‖θct‖2, βm = 1 − ‖θum‖2, γ = 1 +
2
αβ ‖θct − θum‖2 and when m = 0, u0 = v. Iv[u] is an in-
dicator function to indicate whether u is v. Then, our model
can be update by using Eq. 9-10 iteratively.

Complexity Analysis
The overall complexity of HHNE is O(τ · l · k · n · d · |V |),
where τ is the number of random walks, l is the length of
random walks, k is the neighborhood size, n is the number
of negative sampling, d is the embedding dimension, |V | is
the number of nodes in the network.

Experiments
Experiments Setup
Datasets The datasets have been introduced in the Prelim-
inaries.

Baselines We compare our method with the following
state-of-the-art methods: (1) the homogeneous network em-
bedding methods, i.e., DeepWalk (Perozzi, Al-Rfou, and
Skiena 2014), LINE (Tang et al. 2015) and node2vec
(Grover and Leskovec 2016); (2) the heterogeneous in-
formation network embedding methods, i.e., metapath2vec
(Dong, Chawla, and Swami 2017); (3) Moreover, the hy-
perbolic homogeneous network embedding methods, i.e.,
PoincaréEmb (Nickel and Kiela 2017).

Paremeter Settings For random walk based methods
DeepWalk, node2vec, metapath2vec and HHNE, we set
neighborhood size as 5, walk length as 80, walks per node
as 40. For LINE, metapath2vec, PoincaréEmb and HHNE,
we set the number of negative samples as 10. For methods
based on meta-path guided random walks, we use “APA” for
relation “P-A” in network reconstruction and link prediction
experiments in DBLP; “APVPA” for relation “P-V” in above
experiments in DBLP; “AMDMA” for all relation in above
experiments in MovieLens. In visualization experiment, in
order to focus on analyzing the relation of “A” and “P”, we
use “APA”.

Experimental Results
Network Reconstruction A good HIN embedding
method should ensure that the learned embeddings can
preserve the original HIN structure. The reconstruction
error in relation to the embedding dimension is then a
measure for the capacity of the model. More specifically,
we use network embedding methods to learn feature
representations. Then for each type of links in the HIN, we
enumerate all pairs of objects that can be connected by such
a link and calculate their proximity (Huang and Mamoulis
2017), i.e., the distance in Poincaré ball model for HHNE



Table 2: AUC scores for network reconstruction

Dataset Edge Dimension Deepwalk LINE(1st) LINE(2nd) node2vec metapath2vec PoincaréEmb HHNE

DBLP

P-A

2 0.6933 0.5286 0.6740 0.7107 0.6686 0.8251 0.9835
5 0.8034 0.5397 0.7379 0.8162 0.8261 0.8769 0.9838

10 0.9324 0.6740 0.7541 0.9418 0.9202 0.8921 0.9887
15 0.9666 0.7220 0.7868 0.9719 0.9500 0.8989 0.9898
20 0.9722 0.7457 0.7600 0.9809 0.9623 0.9024 0.9913
25 0.9794 0.7668 0.7621 0.9881 0.9690 0.9034 0.9930

P-V

2 0.7324 0.5182 0.6242 0.7595 0.7286 0.5718 0.8449
5 0.7906 0.5500 0.6349 0.8019 0.9072 0.5529 0.9984

10 0.8813 0.7070 0.6333 0.8922 0.9691 0.6271 0.9985
15 0.9353 0.7295 0.6343 0.9382 0.9840 0.6446 0.9985
20 0.9505 0.7369 0.6444 0.9524 0.9879 0.6600 0.9985
25 0.9558 0.7436 0.6440 0.9596 0.9899 0.6760 0.9985

MoiveLens

M-A

2 0.6320 0.5424 0.6378 0.6402 0.6404 0.5231 0.8832
5 0.6763 0.5675 0.7047 0.6774 0.6578 0.5317 0.9168

10 0.7610 0.6202 0.7739 0.7653 0.7231 0.5404 0.9211
15 0.8244 0.6593 0.7955 0.8304 0.7793 0.5479 0.9221
20 0.8666 0.6925 0.8065 0.8742 0.8189 0.5522 0.9239
25 0.8963 0.7251 0.8123 0.9035 0.8483 0.5545 0.9233

M-D

2 0.6626 0.5386 0.6016 0.6707 0.6589 0.6213 0.9952
5 0.7263 0.5839 0.6521 0.7283 0.7230 0.7266 0.9968

10 0.8246 0.6114 0.6969 0.8308 0.8063 0.7397 0.9975
15 0.8784 0.6421 0.7112 0.8867 0.8455 0.7378 0.9972
20 0.9117 0.6748 0.7503 0.9186 0.8656 0.7423 0.9982
25 0.9345 0.7012 0.7642 0.9402 0.8800 0.7437 0.9992

and PoincaréEmb. Finally, we use the AUC (Fawcett 2006)
to evaluate the performance of each embedding method.
For example, for link type “write”, we calculate all pairs
of authors and papers in DBLP and compute the proximity
for each pair. Then using the links between authors and
papers in real DBLP network as ground-truth, we compute
the AUC value for each embedding method.

The results are shown in Table 2. As we can see, HHNE
consistently performs the best in all the tested HINs. The re-
sults demonstrate that our proposed method can effectively
preserve the original network structure and reconstruct the
network, especially on the reconstruction of P-V and M-D
edges. Also, please note that our method can achieve very
promising results when the embedding dimension is very
small. This suggests that regarding hyperbolic spaces under-
lying HIN is reasonable and hyperbolic spaces have strong
ability of modeling network when the dimension of spaces
is small.

Link Prediction Link prediction aims to infer the un-
known links in an HIN given the observed HIN structure,
which can be used to test the generalization performance of
a network embedding method. We set our experiments sim-
ilar to (Xu et al. 2017). For each type of edge, we remove
20% of edges randomly from the network while ensuring
that the rest network structure is still connected. To generate
negative samples, we randomly sample an equal number of
node pairs from the network which have no edge connecting
them. We split the chosen edges and negative samples into
validation and test. In our experiments, we train the embed-
dings on the residual network, and use the validation data
to tune the model parameters. We calculate proximity of all
pair of nodes in the test. We still use AUC as the evaluation
metric.

From the results in Table 3, HHNE outperforms the base-
lines upon all the dimensionality, especially in the low di-
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Figure 5: Visualization analysis of authors in DBLP dataset.

mensionality. The results can demonstrate the generalization
ability of HHNE. In DBLP dataset, the results of HHNE in
10 dimensionality exceed all the baselines in higher dimen-
sionality results. In MovieLens dataset, HHNE with only 2
dimensionality surpasses baselines in all dimensionality. Be-
sides, both of LINE(1st) and PoincaréEmb preserve proxim-
ities of node pairs linked by an edge, while LINE(1st) embed
network into Euclidean spaces and Poincaré embed network
into Hyperbolic spaces. PoincaréEmb performs better than
LINE(1st) in most cases, especially in dimensionality lower
than 10, suggesting the superiority of embedding network
into hyperbolic spaces. But because HHNE can preserve
high-order network structure and handle different types of
nodes in HIN, HHNE is more effective than PoincaréEmb.

Visualization To evaluate whether our embeddings can re-
flect the latent hierarchy in HIN, we show the visualiza-
tion in the two-dimensional embedding of authors in DBLP



Table 3: AUC scores for link prediction

Dataset Edge Dimension Deepwalk LINE(1st) LINE(2nd) node2vec metapath2vec PoincaréEmb HHNE

DBLP

P-A

2 0.5813 0.5090 0.5909 0.6709 0.6536 0.6742 0.8777
5 0.7370 0.5168 0.6351 0.7527 0.7294 0.7381 0.9041

10 0.8250 0.5427 0.6510 0.8469 0.8279 0.7699 0.9111
15 0.8664 0.5631 0.6582 0.8881 0.8606 0.7743 0.9111
20 0.8807 0.5742 0.6644 0.9037 0.8740 0.7806 0.9106
25 0.8878 0.5857 0.6782 0.9102 0.8803 0.7830 0.9117

P-V

2 0.7075 0.5160 0.5121 0.7369 0.7059 0.8257 0.9331
5 0.7197 0.5663 0.5216 0.7286 0.8516 0.8878 0.9409

10 0.7292 0.5873 0.5332 0.7481 0.9248 0.9113 0.9619
15 0.7325 0.5896 0.5425 0.7583 0.9414 0.9142 0.9625
20 0.7522 0.5891 0.5492 0.7674 0.9504 0.9185 0.9620
25 0.7640 0.5846 0.5512 0.7758 0.9536 0.9192 0.9612

MoiveLens

M-A

2 0.6278 0.5053 0.5712 0.6349 0.6168 0.5535 0.7715
5 0.6353 0.5636 0.5874 0.6402 0.6212 0.5779 0.8255

10 0.6680 0.5914 0.6361 0.6700 0.6332 0.5984 0.8312
15 0.6791 0.6184 0.6442 0.6814 0.6382 0.5916 0.8319
20 0.6868 0.6202 0.6596 0.6910 0.6453 0.5988 0.8318
25 0.6890 0.6256 0.6700 0.6977 0.6508 0.5995 0.8309

M-D

2 0.6258 0.5139 0.6501 0.6299 0.6191 0.5856 0.8520
5 0.6482 0.5496 0.6607 0.6589 0.6332 0.6290 0.8967

10 0.6976 0.5885 0.7499 0.7034 0.6687 0.6518 0.8984
15 0.7163 0.6647 0.7756 0.7241 0.6702 0.6715 0.9007
20 0.7324 0.6742 0.7982 0.7412 0.6746 0.6821 0.9000
25 0.7446 0.6957 0.8051 0.7523 0.6712 0.6864 0.9018

dataset in Figure 5(a). Each dot in Figure 5(a) represents
an author’s position in two-dimensional Poincaré ball (disk).
The distances between nodes and origin of the disk can re-
flect the latent hierarchy of authors. In general, authors have
high latent hierarchy if their distances to the origin are small.
The distances between nodes and origin are defined as norms
in Poincaré disk. The norm can be computed by:

‖x‖D := dD(0, x).

We split the authors in Poincaré disk into 3 regions by their
norms. As the maximum norm of authors is slightly smaller
than 6 in Figure 5(a), we split the authors who have norm
between 0 and 2 into region 1, norm between 2 and 4 into
region 2, norm between 4 and 6 into region 3. Therefore,
the authors in region 1 have the highest hierarchy while the
authors in region 3 have the lowest hierarchy. We mark the
two boundaries of three regions by blue lines in Figure 5(a).
In order to evaluate the influence of authors quantitatively,
we calculate the average number of papers written by an au-
thor in each region. The results are shown in Figure 5(b).
We can see that the average number of papers written by an
author in a region decreases from region 1 to region 3. More-
over, we find that some high-impact researchers in computer
science (i.e., Christos Faloutsos in Carnegie Mellon Univer-
sity, H. V. Jagadish in University of Michigan, Philip S. Yu
in University of Illinois at Chicago, Surajit Chaudhuri in Mi-
crosoft Research, Wei Wang in University of California, Los
Angeles), marked by red dot, are also in the region 1. These
results demonstrate that the learned hyperbolic embeddings
can reflect the latent hierarchy in HIN.

Parameters Sensitivity Due to the page limitation, we
take the DBLP dataset as an example to conduct the param-
eter sensitivity analysis. In all parameters sensitivity exper-
iments, we set dimensional as 5. Except for the parameter
being tested, all other parameters are set as default. As can
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Figure 6: Parameter sensitivity in network reconstruction

be seen in Figure 6(a) and 6(b), the performance is relatively
stable with respect to the number of walks per node and the
walk length. Figure 6(c) suggests the negative size is rele-
vant to the reconstruction. An appropriate negative size can
make HHNE achieve better results. Figure 6(d) shows too
large neighborhood size could make the results descent, so a
smaller neighborhood size actually produces better embed-
dings for network reconstruction.

Conclusion
In this work, we study the problem of embedding HIN in hy-
perbolic spaces. We propose the HHNE method, which aims
to maximize proximity in consideration of multiple types



of neighborhoods for a given node. We exploit the distance
in hyperbolic spaces as the proximity measurements, which
meets the triangle inequality and can well preserve the tran-
sitivity in HIN. To update the hyperbolic embeddings, we
use a stochastic Riemannian optimization method. Exten-
sive experiments demonstrate that HHNE is outperformed
than some state-of-the-art network embedding methods, es-
pecially the dimension of embedding spaces is small and
verify HHNE can discover the latent hierarchy in HIN.
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