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Abstract—Community detection in complex networks
has attracted a lot of attentions in recent years. Compared
with the traditional single-objective community detection
approaches, the multi-objective approaches based on evo-
lutionary computation can provide a decision maker with
more flexible and promising solutions. How to make effec-
tive use of the optimal solution set returned by the multi-
objective community detection approaches is an important
yet unsolved issue. Through leveraging an existing multi-
objective community detection algorithm, this paper pro-
poses four model selection methods to aid the decision
makers to select the preferable community structures. The
experiments with three synthetic and real social networks
illustrate that the proposed method can discover more
authentic and comprehensive community structures than
traditional single-objective approaches.

Index Terms—Complex network, community detection,
multi-objective ptimization, evolutionary computation

I. INTRODUCTION

Analysis of large complex networks, such as social
network, World Wide Web, have drawn great interests
in various research communities. This topic is im-
portant because those communities often play special
roles in the network systems. Detecting the community
structure in a complex network helps better understand
the network system and thus has practical applications.

Many methods and algorithms have been devel-
oped for Community Detection (CD) [3], [4]. Most
contemporary community detection algorithms choose
a cost function, such as modularity Q [1] and ”cut”
[2] function, which measures the quality of community
partitions first, and then optimize this function through
searching the solution space. These algorithms can be
regarded as single-objective methods. That is, a single-
objective function is designed beforehand and the al-
gorithm returns a single solution as results.

Although these single-objective approaches achieve
great successes in both artificial and real networks, they
have some fundamental drawbacks. For example, they
often cause a fundamental discrepancy that different
algorithms may produce distinct solutions for the same
network. Moreover, these approaches have the resolu-

tion limit problem [6], that is, modularity optimization
fails to find small communities in large networks.

In order to alleviate disadvantages in single-objective
community detection algorithms, a natural approach
may be to consider community detection as a multi-
objective optimization problem. Moreover, some evo-
lutionary multi-objective community detection algo-
rithms have been developed recently [21] [22]. These al-
gorithms simultaneously optimize multi-objectives and
return a set of optimal solutions. These multi-objective
methods have preliminarily shown their advantages in
detecting more accurate community structures. How-
ever, it is still an unsolved issue to make best use of
these optimal solutions. These solutions are generated
by the different trade-offs of the objectives, and they
reveal different community structures from different
perspectives. It is promising to detect more accurate
and comprehensive structures through exploiting the
tradeoffs among these optimal solutions.

This paper adapts a multi-objective community de-
tection algorithm proposed by Shi et al. in [21]. This
method generates a set of optimal solutions. Further-
more, three model selection criteria and a Possibility
Matrix method are proposed to divide the set of opti-
mal results into four parts according to their qualities,
which not only assists the Decision Makers(DMers) to
select the preferable ones from them, but also helps
reveal more complex and real community structures.
Experiments on synthetic and real networks show
that the multi-objective method with the proposed
model selection criteria can discover more authentic
and comprehensive (e.g., hierarchical and overlapping)
community structures than traditional single objective
approaches.

This paper is arranged as follows. Section 2 in-
troduces the related work. Section 3 describes the
multi-objective community detection algorithm and the
model selection methods. The experiments on artificial
and real networks are done to validate the effectiveness
and efficiency of the algorithm in Section 4. Section 5
concludes the paper.
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II. RELATED WORK

Many different algorithms have been designed to
analyze the community structure in complex networks.
The algorithms use methods and principles of physics,
artificial intelligence, graph theory and even electrical
circuits [4]. One of the most known algorithms pro-
posed so far is the Girvan-Newman (GN) algorithm
that introduces a divisive method by iteratively cutting
the edge with the greatest betweenness value [1]. Some
improved algorithms have been proposed [11], [12].
These algorithms are based on a foundational measure
criterion of community, modularity Q, proposed by
Newman [1]. The larger the value of Q the more
accurate a partition into communities is. As a conse-
quence, the community detection becomes a modular-
ity optimization problem. Because the search for the
optimal (largest) modularity value is an NP-complete
problem [13], many heuristic search algorithms have
been applied to solve the optimization problem, such
as extremal optimization [14], simulated annealing [3]
and genetic algorithm [15].

Some other criteria are also used as the optimiza-
tion objective. The Hamiltonian-based method intro-
duced by Reichardt and Bornholdt (RB) [7] is based on
considering the community indices of nodes as spins
in a q-state Potts model. Recently, Arenas, Fernandez
and Gomez (AFG) [8] proposed a multiple resolution
procedure that allows the modularity optimization to
go deep into the structure. These methods vary the
thresholds by using a tuning parameter in their criteria
and investigate the community structure at various
resolutions. The modularity Q can be regarded as a
special case of these two criteria. In addition, Fosvall
and Bergstrom [5] proposed an information-theoretic
foundation for the concept of modularity in networks,
in which the network is composed of modules by
finding an optimal compression of its topology. Al-
though these criteria could effectively assess the quality
of the community, the recent research show that the
optimization based on single criterion has a funda-
mental disadvantage [6], [9]. That is, the optimization
based on single criterion may fail to identify modules
smaller than a scale which depends on the total size of
the network and on the degree of interconnectedness
of the modules, even in cases where modules are
unambiguously defined. The genetic algorithm (GA),
as an effective optimization technique, has also been
used for community detection. In order to optimize
the modularity Q, the GAs in ref. [15] and [18] use
the cluster centers and the locus-based adjacency as
the encoding scheme, respectively. Pizzuti proposes
another GA to optimize the ”community score” cri-
teria [19], [20]. These algorithms have the advantage
that the number of communities can be automatically
determined during the evolutionary process. However,
these algorithms also have the resolution limit, because

a single objective is applied.
More recently, some researchers regard the CD as a

Multi-objective Optimization Problem (MOP) and solve
the MOP with the Multi-Objective Evolutionary Algo-
rithm (MOEA) [21], [22]. Pizzuti [22] proposed MOGA-
Net to optimize the community score and community
fitness. Shi et al. [21] proposed a MOEA to optimize
two components of modularity Q. The two multi-
objective methods show their benefits in detecting more
accurate community structures. However, they did not
further explore the benefits of multi-solutions returned
by multi-objective methods.

III. MULTI-OBJECTIVE COMMUNITY DETECTION
ALGORITHM AND ITS MODEL SELECTION

This section proposes a multi-objective evolution-
ary algorithm for community detection. The approach
consists of two phases. The first community detection
phase adapts a multi-objective evolutionary algorithm
to discover communities, and returns a set of optimal
solutions. The second model selection phase proposes
three community selection criteria to assist DMers’
decision making.

A. Community Detection Phase

In the community detection phase, we adapt a multi-
objective community detection algorithm, MOCD [21],
to generate a set of Pareto optimal solutions. We make
a brief description here. They are described in detail in
[21].

Algorithm framework The Pareto Envelope-based
Selection Algorithm version 2 (PESA-II) [17], is used
to form the basis of MOCDs community discovery
phase. PESA-II follows the standard principles of an EA
with the difference that two populations of solutions
are maintained: an internal population (IP ) of fixed
size, and an external population (EP ). The IP explores
new solutions and achieves these by the standard EA
process of reproduction and variation. The EP is to
exploit good solutions by maintaining a large and
diverse set of the non-dominated solutions discovered
during search. Selection occurs at the interface between
the two populations, primarily in the update of EP .
The detailed implementation can be seen in ref. [17].

Objective function The objective functions quantify
the optimality of a solution, so we should select opti-
mization objectives that reflect the fundamentally dif-
ferent aspect of a good community partition. One of the
most important objective functions is the modularity [1]
which is defined as follows:

Q(C) =
∑

c∈C

[
|E(c)|

m
− (

∑
v∈c deg(v)

2m
)
2

] (1)

where the sum is over the modules of the partition,
|E(c)| is the number of links inside module c, m is the
total number of links in the network, C is a partition
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result, and deg(v) is the degree of the node v in module
c. We transform the Q function into two parts, intra(C)
and inter(C), which are used as two objectives for the
MOEA. These two conflict objectives reflect different
aspects of a community.

intra(C) = 1 − ∑
c∈C

|E(c)|
m

inter(C) =
∑

c∈C (
∑

v∈c deg(v)

2m )2

Q(C) = 1 − intra(C) − inter(C)

(2)

Since the inter objective function increases with
larger number of communities while the intra objective
function decreases, MOEA can keep the community
number dynamic and avoid convergence to trivial solu-
tions(the detail analysis can be seen in ref.[16]). Though
more objective functions can be used, our experiments
indicate that additional objective functions do not nec-
essarily lead to better solutions. We will explore more
possible objective functions in future work.

Genetic representation and its operations The locus-
based adjacency encoding scheme is used as the genetic
representation. In this graph-based representation, each
genotype g consists of n genes g1, g2, . . . , gn and each
gi can take one of the adjacent nodes of node i. Thus, a
value of j assigned to the ith gene, is then interpreted
as a link between node i and j. In the resulting solu-
tion, they will be in the same community. We choose
the locus-based adjacency encoding scheme due to its
many advantages. For one part, there is no need to
fix the number of communities in advance. In contrast,
many other methods need prior knowledge to set the
number of communities. For another, compared with
the former genetic algorithms [15], the search space is
reduced to O(dn), where d is the degree of nodes.

The crossover operation in MOCD is done by in-
tersecting two chromosomes selected randomly from
the population. For simplicity, the two chromosomes
are called source and destination, respectively. Firstly,
a gene is selected randomly from the source chromo-
some, and then we iteratively search the gene values
that the gene link to and transfer these values in source
chromosome to the corresponding genes in the desti-
nation chromosome. The exchange of gene segments
is bidirectional. The crossover operator is prone to
replicate the good structures generated by evolution to
the new individual. Moreover, it is able to effectively
generate the individual with different structures. The
operator’s computational complexity is O(l) (where l
is the length of the gene segment, namely the size of
the community selected). l is usually smaller than n.
In the mutation operation, we randomly select some
genes and assign them with other randomly selected
adjacent nodes.

B. Model Selection Phase

MOCD does not return a single solution, but a set
of Pareto optimal solutions. These community parti-
tions correspond to different tradeoffs between the two
objectives and also consist of communities of different
sizes. Domain expertise can be leveraged to make the
final decision through analyzing the alternative solu-
tions. This is crucial for a problem with unknown struc-
ture, like CD. In addition, the DMer may desire that
the set of candidate solutions can be further narrowed
or some representative ones can be recommended. In
this section, we therefore introduce some methods for
assessing the quality of the Pareto optimal partition
solutions. These methods are able to further identify
some promising partitions from the optimal solutions.

Formally, let CSet be the set of community partitions
(i.e., the optimal solutions set returned by MOCD), C
be a partition in CSet, and there are k communities in
the partition C : C = c1 ∪ c2 ∪ ...∪ ck. A partition result
is also called a clustering model M .

Maximum Q criterion. The criterion selects the
model with maximum modularity Q. Because of the
relationship of Q and two objective functions (see Equa-
tion 2), it is easy to select the model with maximum Q,
and the corresponding model is called MQ.

SMax−Q = argmax
C∈SF

{1 − intra(C) − inter(C)} (3)

Strong community criterion. According to the strong
community definition given by Radicchi et al. [11], each
node i in each community c is validated whether to
satisfy the strong definition. If the ratio of communi-
ties satisfying the strong definition is larger than the
predefining strong community threshold λstr, the cor-
responding partition result is called strong community,
and the set comprising the strong communities is called
StrMSet. (kin

i (c) is the number of edges connecting node
i to other nodes belonging to c. kout

i (c) is the number of
connections toward nodes in the rest of the network.)

StrCSet = {c|kin
i (c) > kout

i (c) ∀i ∈ c}

StrRatio(C) = |StrCSet|
|C|

StrMSet = {C|StrRatio(C) > λstr}

(4)

Weak community criterion. Similarly, according to
their weak community definition [10], for each partition
result, each community could be verified whether to
satisfy the weak definition. If the ratio of communi-
ties satisfying the weak definition is larger than the
predefining weak community threshold λweak, the cor-
responding partition result is called weak community,
and the set comprising the weak communities is called
WeakMSet.
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WeakCSet = {c|∑i∈c kin
i (c) >

∑
i∈c kout

i (c)}

WeakRatio(C) = |WeakCSet|
|C|

WeakMSet = {C|WeakRatio(C) > λweak}

(5)

In the definitions, two parameters λstr and λweak need
to be settled in the range from 0 to 1 beforehand, and
they control the size of StrMSet and WeakMSet. If the
networks have obvious community structures, these
two parameters are settled with large values, or other-
wise with small values. These three criteria reflect the
quality of solutions to some extent. Generally speaking,
the community partition MQ is commonly used mea-
sure, to which the DMer should pay more attention.
Meanwhile, the solution in StrMSet and WeakMSet also
provide much valuable structure information to the
DMer.

In order to illustrate the statistical characteristics of
multi-solutions visually, a probability matrix is intro-
duced to describe the probability of a pair of nodes in
same community.

Probability Matrix.The rows and columns of the ma-
trix correspond to the indices of nodes. For a partition
solution, if two nodes are in the same community,
the corresponding matrix value is 1, or else it is 0.
For multi-solutions, their results are accumulated as a
Possibility Matrix. The matrix can be converted to a
gray graph in which the higher probability corresponds
to the darker gray.

IV. EXPERIMENTS

We validate the effectiveness of MOCD through a
synthetic hierarchical network, a synthetic overlapping
network and a real social networks. The experiments
are carried out on a 3GHz and 1G RAM computer
running Windows XP.

A. Hierarchical Network

The hierarchical network is a K40-4 network con-
sisting of a ring of cliques, connected through single
link. The network has 40 cliques, and each clique is
a complete graph with 4 nodes and 6 links. In the
network, it is clear that there are 40 unit communities
and the connected cliques can also be considered as a
community. The network has been used in [6].

We run MOCD with the following parameters: the
population size is 100, the running generation is 100,
the crossover ratio is 0.6, and the mutation ratio is
0.4, λstr and λweak both are 1. We also run two pop-
ular single-objective approaches on the network: the
betweenness-based heuristic algorithm GN [1] and the
GA-based modularity optimization algorithm GACD
[18]. Note that GACD has the same parameters with
MOCD. In this experiment, the running times of

MOCD, GN, and GACD are 26, 41, and 21 seconds,
respectively.

GN obtains a solution with 16 communities, and
GACD reaches the maximal Q value 0.881 with 15
communities. In both solutions, some connected cliques
are combined. According to the construction process,
these two solutions can both be regarded as the correct
partitions. However, they both fail to reveal the hier-
archical characteristic of the network. MOCD obtains
100 non-dominated solutions which are illustrated in
Fig.1(a). Please note that the inter and intra values
are normalized (it is same in the following section).
There are 78 correct partitions in MQ and StrCSet with
the number of communities from 26 to 40. There are
two special models in these solutions. As illustrated
in Fig.1(b), the model MQ reveals the 26 communities
with the highest granularity. Another special strong
community solution (labeled II), shown in Fig.1(c),
reveals all 40 cliques with the lowest granularity. Most
solutions lie between these two solutions. The Possi-
bility Matrix of all solutions are illustrated in Fig.1(d).
We can clearly find the hierarchical structure in which
some large communities may contain some connected
cliques. Compared to one solution with the higher
granularity returned by GN and GACD, MOCD can
find the communities with different scales in one run,
which reveals more structural information.

Using the experimental data, we analyze the rela-
tionship of the objective values and the number of
communities as shown in Fig.2(a). It is obvious that
with the increase of the number of communities, the
inter values increase, whereas the intra values decrease.
It validates that the two objective functions are con-
flicting and complementary and the modularity Q is
a trade-off between these two objectives. As for the
Q value, it seems to decrease with the increase of the
number of communities. In order to observe their re-
lationship more clearly, the relationship of the number
of communities and Q values of solutions in StrMSet
is shown in Fig.2(b). It is clear that with the increase
of the number of communities the Q value trends
to become small. As the experiments illustrated, the
single-objective approaches (e.g., GN and GACD) could
only reveal the communities with large sizes. In fact, all
the community partitions with small sizes discovered
by MOCD are also correct. The experiment further
confirms the resolution limit in the approaches with
single objective [6]: methods based on optimizing the
modularity measure or other single criterion may fail to
identify modules smaller than some thresholds. Com-
paring to those single-objective approaches, MOCD can
discover the hierarchical network with different scales
(i.e., both small and large sizes).

B. Overlapping Network
The second experiment is an example of overlapping

network. The network consists of two large communi-
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Fig. 1. Multiple resolution of modular structure in K40-4 network. (a) shows the curve of non-dominated solutions. (b) shows the Possibility
Matrix of the solution labeled I with a gray graph. (c) shows the Possibility Matrix of the solution labeled II. (d) shows the Possibility Matrix
of all solutions.

Fig. 2. Show the relationship of the number of communities and the objective values. (a) shows the relationship on the optimal solution
set. (b) shows the relationship on the strong community set.

ties A and B, each containing 128 nodes, which have
on average 12 internal links per node. Within A and
B, a subgroup of 32 nodes exists, which we denote by
a and b, respectively. Every node within this subgroup
has six of its 12 intra community links with the 31 other
members of this subgroup. The two subgroups a and b
have on average three links per node with each other.
Additionally, every node has one links with randomly
chosen nodes from the network. It is clear that the
network has two large communities (i.e., A and B) and
one overlapping community a&b between A and B. The
similar network has been used in [7].

MOCD settles the following parameters: the popu-
lation size is 200, the running generation is 500, the
crossover ratio is 0.6, and the mutation ratio is 0.4, λstr

is 0.3 and λweak is 0.5. GN and GACD are also run on
this network, and GACD is equipped with the same
parameters in MOCD. The running time of MOCD, GN
and GACD are 214, 312, and 198 seconds, respectively.

GN and GACD both reveal the the large commu-
nities A and B accurately. However, they are not able
to discover the overlapping structure. MOCD obtains
200 non-dominated solutions which are illustrated in
Fig.3(a). All the solutions are divided into four types: 1

solution for MQ, 9 solutions in StrCSet, 22 solutions
in WeakCSet, and 165 other solutions. We also find
two special clustering models in the figure. The model
MQ (labeled I in Fig.3(a)) reveals the same community
structure as that of GN and GACD (i.e., two large
communities A and B as illustrated in Fig.3(b)). An-
other special partition is a strong community solution
(labeled II) as shown in Fig.3(c). The partition consists
of three communities: two large communities, an over-
lapping community that is constituted by the nodes in
a and b. The result shows that MOCD not only finds
the obvious large community structure, but also reveals
the implicit overlapping community in one run.

The overlapping community can actually be easily
identified through an aggregation of all the solutions
obtained from MOCD. Fig.3(d) shows the Possibility
Matrix of all solutions of MOCD. We can see that an
overlapping community which spans from node 98 to
node 160 lies between the two large communities. A
single solution obtained by any single-objective ap-
proach, such as GN or GACD can hardly discovers the
overlapping structures. Whereas, the aggregation of all
the optimal solutions obtained by MOCD can reveal
it statistically. In ref. [7], Reichardt and Bornholdt also
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Fig. 3. Multiple resolutions of modular structure in the overlapping network. (a) shows the curve of non-dominated solutions. (b) shows
the Possibility Matrix of the solution labeled with I with a gray graph. (c) shows the Possibility Matrix of the solution labeled with II. (d)
shows the accumulated Possibility Matrix of all solutions.

found the two partitions in Fig.3(b) and (c) at γ = 0.5
and γ = 1, respectively. However, in order to discover
the correct partition, many runs should be done to find
the proper γ. Compared with their method, MOCD
obtains many partitions including the correct partitions
in one run and the aggregation of all the solutions is
able to statistically reveal the hidden but informative
structure.

C. Real Network

We now turn to a real world example to see whether
these structural properties can indeed be found in real
networks.

The famous Karate club network analyzed by
Zachary is widely used as a benchmark to test the com-
munity detection methods [1], [14], [18]. The network
consists of 34 members of a karate club as nodes and 78
edges representing friendship between members of the
club which was observed over a period of two years.
Due to a disagreement between the clubs administrator
and its instructor, the club split into two groups. The
question we concern is that if we can detect the real
groups.

The following parameters are used in MOCD: the
population size is 50, the running generation is 100,
the crossover ratio is 0.6, and the mutation ratio is 0.4,
λstr is 0.5 and λweak is 0.7. GN and GACD also run
on this network. GN finds five communities which are
distinguished with the color of the interior of nodes in
Fig.4(b). GACD divides the network into 4 groups with
the maximal Q value 0.419, which are distinguished
with the shape of nodes. They both fail to find the
right partition. Fig.4(a) illustrates the 50 non-dominated
solutions returned by MOCD. The number of commu-
nities of those solutions ranges from 1 to 6. Note that
the 50 solutions returned by MOCD actually include
the partition results returned by GN and GACD. We
label these two solutions with III and I, respectively.

Moreover, MOCD successfully reveals the real partition
which is denoted by label II in Fig.4(a). In all, MOCD
not only finds the community structures discovered by
GN and GACD, but also reveals the true structure.

D. Discussion

In the experiments, four networks including the syn-
thetic and social networks are used to validate the
effectiveness of MOCD. The optimal solutions returned
by MOCD succeed to discover the underlying hier-
archical and overlapping structures that hardly can
be discovered by one single partition returned by the
single-objective approaches. The experiments also show
that MOCD can avoid the resolution limit existing in
the single-objective approaches (e.g., GN and GACD),
because it is able to find small and independent com-
munities. We think the advantages of MOCD are due to
the following reason. The real social networks usually
are complex and uncertain, because the data of the
network are not clean and full of noise. And thus it is
nearly impractical to describe the community structure
with a fixed partition. MOCD solves the difficulty by
providing many solutions in one run. These tradeoff
solutions describe the community structure from differ-
ent angles. A single solution of them may ignore some
real structures, but their aggregation (i.e., the Possibility
Matrix) can statistically offset the noise and uncertainty
and reveal the true and comprehensive information.

V. CONCLUSION

This paper proposes an multi-objective community
detection algorithm consisting of two phases. In the
first phase, an multi-objective community detection al-
gorithm is adapted to detect the community structures
and return a set of optimal solutions. The second phase,
namely model selection phase, we propose three model
selection criteria and the Possibility Matrix method
that divide the optimal solutions into four parts and
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Fig. 4. Multiple solutions of modular structure in Karate network. (a) shows the curve of non-dominated solutions. (b) shows three different
partitions. The difference of partitions are made by the color of the boundary of nodes, the color of the interior of nodes, and the shape of
nodes, which correspond to the results of real partition & the solution labeled II, GN & the solution labeled III, and GACD & the solution
labeled with I, respectively.

assist the DMers to select the preferable ones. Three
synthetic and social networks validate the effectiveness
of the proposed method (i.e., MOCD). The results show
that the MOCD can always find correct partitions by
returning a set of optimal solutions. Moreover, with
the help of three criteria and the Possibility Matrix, the
hierarchical and overlapping nature of the communities
can be detected, and DMers can selected a correct
solution from different angles.
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