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ABSTRACT
Author identification based on heterogeneous bibliographic net-
works, which is to identify potential authors given an anonymous
paper, has been studied in recent years. However, most of the ex-
isting works merely consider the relationship between authors
and anonymous papers, while ignore the relationships between
authors. In this paper, we take the relationships among authors
into consideration to study the problem of author set identifica-
tion, which is to identify an author set rather than an individual
author related to an anonymous paper. The proposed problem has
important applications to new collaborator discovery and group
building. We propose a novel Author Set Identification approach,
namely ASI. ASI first extracts a task-guided embedding to learn
the low-dimensional representations of nodes in bibliographic net-
work. And then ASI leverages the learned embedding to construct
a weighted paper-ego-network, which contains anonymous paper
and candidate authors. Finally, converting the optimal author set
identification to the quasi-clique discovery in the constructed net-
work, ASI utilizes a local-search heuristic mechanism under the
guidance of the devised density function to find the optimal quasi-
clique. Extensive experiments on bibliographic networks demon-
strate that ASI outperforms the state-of-art baselines in author set
identification.

CCS CONCEPTS
• Information systems → Data mining; • Networks → Net-
work structure; • Theory of computation→ Social networks.
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1 INTRODUCTION
Heterogeneous information network (HIN) has received increasing
attention in the past decade. As a powerful and effective modeling
method to fuse complex information, HIN is successfully applied to
many data mining tasks [28]. Heterogeneous bibliographic network
[30] is a typical example of HIN and it has also received more and
more attention in recent years. Various kinds of mining tasks have
been studied in bibliographic networks, including relevance search
[16, 27], personalized recommendation [19, 25] and so on.

As an important task, the problem of author identification has
been extensively studied, which aims to learn a model to rank poten-
tial authors for an anonymous paper based on public information.
This problemwas first exploited in [13] and has been further studied
in recent works [6, 22, 40]. These studies can be roughly categorized
into two types including supervised learning methods and network
embedding methods. The former employs the feature-engineering
to predict the correlation between the paper and author, while the
latter mainly leverages network structure or semantic content of
the paper to learn node representations that can be further used to
infer authors.

Although conventional methods for author identification are
effective and useful in some real applications, they usually ignore
relationship among authors. However, in many scenarios such as
finding a potential author group for a given paper, the relationship
among authors are very significant. Therefore, we propose to study
a new problem called author set identification. We illustrate the
problem setting in Fig. 1, in which the heterogeneous bibliographic
network and network schema are given as the input, the goal is to
learn a model that can identify the optimal author set for a new
anonymous paper. Furthermore, Fig. 2 illustrates the difference
between the author set identification problem and traditional author
identification problem. The problem of author set identification is
to acquire an author set related to the anonymous paper, as well as
having strong relationship between authors, while the traditional
problem only get an author ranking for the anonymous paper.

A basic idea for the problem is to find a set of closely connected
authors that are related to an anonymous paper. Therefore, we need
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Figure 1: The problem of author set identification in heterogeneous bibliographic networks.

consider the relationship between anonymous paper and authors,
as well as relationship between authors. However, it is not a trivial
task to take both relationships into account at the same time, which
faces two challenges. (1) How can we focus on interactions between
anonymous paper and authors, meanwhile preserving rich inherent
structural information in heterogeneous bibliographic network. In
order to reduce the complexity, we only need to focus on inter-
actions between anonymous paper and authors for our problem
settings, while it will lose rich interactions in original network and
indirect connections of papers and authors. An effective strategy is
desired to solve the dilemma. (2) How can we find an optimal set of
closely connected authors that are related to the anonymous paper.
It is a NP-hard problem to find an optimal author subset that is
related to the anonymous paper. An effective approximate method
is needed to solve the NP-hard problem.

In this paper, we propose a novel author set identification ap-
proach called ASI. Specifically, in order to focus on interactions
between papers and authors and preserve rich structural infor-
mation in original heterogeneous bibliographic network, ASI first
constructs a weighted paper-ego-network, which only contains
the anonymous paper and authors and corresponding relations
(paper-author and author-author). When construct the network,
ASI proposes a task-guided embedding method called TaskGE to
learn the low-dimensional representations of nodes, and then ap-
plies these embeddings to determine the weights of edges in the
constructed network. Thus, the constructed network only contains
the anonymous paper and authors, and preserves rich structure
information through embeddings learned from the original net-
work. Furthermore, we introduce the concept of quasi-clique in
dense subgraph and convert the optimal author set identification
to the quasi-clique discovery in the weighted paper-ego-network.
We design the local-search heuristic method under the guidance of
a novel density function to find the optimal quasi-clique (author
set). We summarize our contributions as follows.

• We propose to study a problem of author set identification, which
could bring crucial implications to many applications, such as
reviewer recommendation or new collaborators discovery.
• We propose a novel method ASI for this problem. ASI first con-
structs a weighted paper-ego-network, in which the weights
of edges are determined by the proposed embedding method
TaskGE. Then we introduce the quasi-clique and propose an
approach of local-search heuristic under the guidance of the de-
signed novel density function to find the optimal author set in
constructed network.
• We conduct extensive experiments on bibliography network to
evaluate the performance of ASI. The results demonstrate the
superiority of ASI by comparing with the state-of-art baselines.
What’s more, ASI can also automatically determine the number
of authors for a given paper.

2 RELATEDWORK
Heterogeneous bibliographic network mining has attracted large
amounts of attention in recent years. Many of these works are
devoted to the research of mining problem, such as collaborator
recommendation [18, 34] and author identification [6, 40]. Although
the problem of author identification has been studied in [6, 22], they
only focus on the identification of individual author and neglect
the relationship between authors. We consider these two aspects
and propose to study the problem of author set identification in
bibliographic network. We not only discover the possible author
of a new paper but also find a set of collaborator so as to better
accomplish a paper. Meanwhile these researchers also may be the
potential future collaborator.

The proposed method ASI for the problem includes the following
two phases of paper-ego-network construction and optimal quasi-
clique discovery. In the first phase, we employ the embedding to
construct the network. As we have known, network embedding is
an effective method to learn the low-dimensional representation of
network and has recently been a hot research topic. Motivated by
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Figure 2: The illustration of the comparison between our
problem and author identification problem.

language modelling [21], some random walk-based methods, like
DeepWalk [24] and node2vec [12], have been proposed to learn the
representation of nodes in network. Besides, LINE [33] is presented
as an efficient network embedding method. There are also some
deep neural network based models for network embedding [37]. Af-
ter that, in order to tackle network heterogeneity, many researchers
make many attempts. metapath2vec [9] leverages meta paths to
guide the random walk process to learn network representations.
PTE [32] partitions an HIN into multiple bipartite graphs and per-
forms network embedding individually. HERec [26] designs a meta-
path based random walk strategy to generate meaningful node
sequences for HIN embedding. RHINE [20] considers the structural
characteristics of heterogeneous relations and proposes a novel
relation structure-aware HIN embedding model. Wang et al. [38]
make the first effort toward HIN embedding in hyperbolic spaces.
However, most of these methods are general-purpose embedding
that are independent of tasks. We design an embedding method
relying on specific-task to learn the low-dimensional vectors, which
can be further used to construct the weighted paper-ego-network.

In constructed network, we introduce the quasi-clique to find
the optimal author set, which is a significant concept in dense
subgraph discovery. As is known to all, a great deal of subgraph
mining approaches have been investigated, such as dense subgraph
mining [5, 10], quasi-cliques mining [23, 36], k-plexes mining [2, 8].
Dense subgraph discovery has also been studied from a wide vari-
ety of perspectives. By solving a parametric maximum-flow prob-
lem, the problem of densest subgraph can be solved in polynomial
time [11]. Asashiro et al. [1] propose a greedy algorithm with 1/2-
approximation in linear time. After that, there emerge many re-
searches about variants of the densest subgraph like DkS , which
discover a densest subgraph of k vertices [3]. Also, there are many
works focusing on alternative density functions of dense subgraph.
For instance, Tsourakakis et al. [36] present a general framework
of density function based on the concept of quasi-clique. Sozio et
al. [29] are concentrated in the monotone constraints of minimum
degree density. In addition, dense subgraph has also shown its good
performance in various applications such as fraud detection [14]
and community detection [5]. To the best of our knowledge, how-
ever, it is the first attempt to employ dense subgraph to address the
problem of author set identification.

The prototypical dense graph is the clique (nodes in clique all
connected to each other), but, discovering the largest clique is inap-
proximable and clique is in practice too strict to miss a single edge
in an otherwise dense subgraph. Extracting the densest subgraph
tends to favor large subgraphs with small edge density and large
diameter. Hence, we select the method of extracting quasi-clique
to find optimal author set, which can discover subgraph of much
higher quality than densest subgraph. Also, this method is very
suitable for our scenario, just as it can find compact, dense and
smaller diameter’s subgraph, which is a desirable property in our
task.

3 PRELIMINARY
In this section, we introduce some basic concepts and formalize the
problem of author set identification in the bibliographic network.

Definition 3.1. Heterogeneous Information Network (HIN)
[31]. An HIN is defined as a directed graph G = (V ,E), where V
and E denote node set and edge set, respectively. There exists a
node type mapping function φ : V → A and an edge type mapping
function ψ : E → R, where A and R are node type set and edge
type set, respectively, and |A| + |R | > 2.

The bibliographic network can be seen as an HIN. Fig. 1 illus-
trates an example of bibliographic network and its corresponding
network schema, which is a meta template for an HIN and illus-
trates the node types and their interaction relations. We can see
that the bibliographic network contains five types of nodes, that is,
author (A), paper (P), venue (V), term (T) and year (Y), and multi-
ple semantic relations (e.g., writing relations between authors and
papers, published-by relations between papers and venues, and
citation relations between papers).

In HIN, two nodes can be connected via different semantic paths
and the physical meaning of different paths is distinct from one
another. These paths can be defined as meta-paths.



Definition 3.2. Meta Path [31]. Meta path is a path in the form

ofA1
R1
−−→ A2

R2
−−→ . . .

Rl
−−→ Al+1 (abbreviated asA1A2 . . .Al+1),

where Ai denotes node type and Ri means edge type. It is a se-
quence of node types and edge types between nodes, which de-
scribes a compositional relation between two given node types.

In this paper, we study the novel problem of author set identifi-
cation in bibliographic network, which can be defined as follows.

Definition 3.3. Author Set Identification Problem. Given a
bibliographic network G = (V ,E), which includes a set of papers
and papers’ relevant information (i.e., authors, venues, terms and
year), the goal is to design a method to acquire an author set S ′A
fromCA for a new anonymous paper p, such that S ′A is the optimal
set to collaborate on the paper p among all subsets of CA, where
CA = {a1,a2, · · · ,am } denotes the set of all candidate authors.

In order to find the optimal author set, we introduce the concept
of quasi-clique, which can be defined as follows.

Definition 3.4. Quasi-Clique [36]. A set of nodes S is an α-quasi-
clique if e[S] ≥ α

( |S |
2
)
, i.e., if the edge density of the subgraph

induced by S exceeds a threshold parameter α ∈ (0, 1). The edge
density is defined as e[S]/

( |S |
2
)
, where e[S] is the size of edges in

the subgraph induced by S .

4 THE PROPOSED METHOD
In this section, we present the proposed method that leverages
quasi-clique for Author Set Identification, called ASI. The overall
architecture of ASI is shown in Fig. 3. Given a heterogeneous bib-
liographic network and an anonymous paper (Fig. 3(a)), we first
construct a weighted paper-ego-network for each anonymous paper
(Fig. 3(b)), and then find the optimal quasi-clique with constraint
(OQCC) in the weighted paper-ego-network (Fig. 3(c)). In the fol-
lowing, we will clarify the basic idea and specific details about these
two phases.

We aim to find a set of closely connected authors that are related
to the anonymous paper. However, how can we pay attention to
interactions between anonymous paper and authors, meanwhile
preserving rich inherent structural information in heterogeneous
bibliographic network. We consider to construct a weighted paper-
ego-network only containing the anonymous paper and authors.
In order to preserve rich structural information in bibliographic
network, we propose the task-guided embedding method to learn
vector representations of nodes, which can be further used to deter-
mine the weights of edges through proper distance function for con-
structing the weighted paper-ego-network. Then we transform the
author set identification into the problem of quasi-clique extraction
with constraint. Finally, We propose an approach of local-search
heuristic under the guidance of designed novel density function, so
as to discover the optimal quasi-clique in the constructed network.

4.1 Weighted Paper-Ego-Network Construction
In order to reduce the complexity and merely focus on interactions
between anonymous paper and authors, meanwhile preserve rich
inherent structural information in heterogeneous bibliographic net-
work. We just need to focus on two kinds of relationships, including
relationship between the anonymous paper and author, as well as

relationship between authors. Therefore, we consider to construct
a weighted paper-ego-network, which only contains anonymous
paper p and candidate authors. The key of constructing the net-
work is to determine the weights of edges between anonymous
paper and authors, and edges between authors. For edges between
authors, we propose the task-guided embedding (TaskGE) to learn
the low-dimensional representations of nodes, which preserves rich
structure information in original network and can be further used
to determine the weight of edges between authors. Since the fea-
ture representation for the anonymous paper is unknown, we first
employ the weighted combination of feature vectors of its observed
neighbors in the network to calculate its vector. Then we can easily
determine the edges between anonymous paper and authors based
on the computed representation of the anonymous paper and the
vectors of authors obtained in TaskGE.

Specifically, for each anonymous paper p, we denote the con-
structed weighted paper-ego-network by Gp = (V ,E,W ), where V
is a set of nodes , E is a set of edges andW is a set of the weight on
each edge.V includes two types of nodes, that is, anonymous paper
p and candidate authors. Correspondingly, E contains two types
of edges, namely, the edge between paper p and any candidate au-
thor a, and the edge between any two candidate authors a1, a2. We
denote the weights of these two types of edges bywpa andwa1a2 ,
respectively. Different from existing general-purpose embedding,
our embedding method is totally dependent of specific-task. We
exploit two unique characteristics or significant aspects of author
set identification task. One is the proximity between anonymous
paper and authors, we model it as paper-author-aware embedding.
The other is the strong relationship between authors, we model it
as author-author-aware embedding.

4.1.1 Paper-Author-Aware Embedding. Intuitively, for a given pa-
per p, the relevance score of p and any one a of its true authors
should be ξ larger than that of p and other author a′ who is not the
author of p. If not, a loss penalty will incur. Here, we employ the
hinge loss [40] to define a general function to model the relationship
between paper and author as follows:

LRP∽A =
∑

r ∈PP∽A

E<p,a,a′> |r [ξ + f (p,a) − f (p,a′)]+, (1)

where [x]+ = max(x , 0) is the standard hinge loss, ξ is the safety
margin size [4]. < p,a,a′ > denotes the triples <paper, positive
author, negative author>. r and PP∽A denote any meta path and
the set of meta paths between paper and author, respectively. Gen-
erally, we can add any proper meta paths between paper and author
to PP∽A for leveraging multiple information. Actually, there exist
multiple indirect relations besides the direct relation between paper
and author. For example, PP∽A = {PA, PTPA} means we not only
consider the direct author but also take the potential authors into
account. Correspondingly, PP∽A = {PA} means we only consider
the direct author of paper. f (p,a) stands for the metric between pa-
per p and author a. As demonstrated by CML [15], distance metric
[39] satisfies better triangle inequality and transition property than
inner-product, we use the euclidean distance to define the metric:

f (p,a) = ∥Xp − Xa ∥
2
2 , (2)

whereXp andXa are the embedding vectors ofp and a, respectively.
For a new anonymous paper, we adopt similar approach to Chen et
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al. [6] to calculate its vector representation. That is, the embedding
of a paper is represented as the weighted combination of the vectors
of observed different types of neighbors in the network as follows:

Xp =

n∑
t=1

wtXt
p , (3)

where n is the number of neighbors’ types of paper p, Xt
p is the

mean of vectors of the t-th node type, Xt
p =

∑
i ∈N t

p

Xi
|N (t )p |

, N (t )p

denotes the set of nodes of the t-th type. In this paper, we do not
employ the reference type of nodes due to the lack of citation data.

4.1.2 Author-Author-Aware Embedding. LRP∽A models the rela-
tionship between paper and author, in this subsection, we will
consider how to model the relationship between authors. It is rea-
sonable that there should be strong relationship between co-authors.
In other words, the relevance score between co-authors should be
larger than that of authors who have never collaborated with each
other. Similarly, there might exist some potential co-authorship
between authors implicitly indicated by meta paths like APTPA.
Therefore, we also define a general function to formulate the triple
relation < a∗,a+,a− >.

LRA∽A =
∑

r ∈PA∽A

E(a∗,a+,a−) |r [ξ + f (a∗,a+) − f (a∗,a−)]+, (4)

where a+ means any co-author of a∗, a− denotes any author who
has never cooperated with a∗. f is the metric function which has
been introduced in subsection 4.1.1. r denotes any meta path be-
tween authors. PA∽A is the set of meta path between authors.
PA∽A = {APA} means we only consider existing co-authors.

4.1.3 Regularization. Recently, Cogswell et al. [7] propose a new
regularization technique called covariance regularization, which
is initially used to reduce the correlation between activations in
a deep neural network. Afterwards, Hsieh et al. [15] find that it
is useful in de-correlating the dimensions. As covariances can be
seen as a measure of linear redundancy between dimensions, this
loss of covariance regularization essentially tries to prevent each
dimension from being redundant. Therefore, we employ loss of
covariance regularization as follows:

Lr eд =
1
N
(∥C∥f − ∥diaд(C)∥

2
2 ), (5)

where ∥ · ∥f is the Froeninus norm,C is covariance matrix between
all pairs of dimensions i and j , Ci j = 1

N
∑N
k=1(X

(i)
k −ui )(X

(j)
k −uj ),

ui =
1
N

∑N
k=1 X

(i)
k , X(i)k denotes the i-th dimension of embedding

vector of node k .
Finally, we combine three parts above to get the unified objective

function for task-guided embedding as follows:

L = LRP∽A + γLRA∽A + λLr eд , (6)

where Lr eд is the regularization term for avoiding over-fitting, λ
controls penalty of regularization, γ is a harmonic factor to balance
two components. In this paper, we only consider the direct relation
PA in LRP∽A and APA in LRA∽A .

TominimizeL , we design a sampling basedmini-batchAdam op-
timizer [17]. To get the training triples< p,a,a′ > and< a∗,a+,a− >,
we draw positive samples according to the proportion of path in-
stances of different meta paths. This sampling strategy can avoid
the problem of under-sampling for relations with a large number of
links or over-sampling for those with a small number of links. For
each sampled positive example < p,a >, we first fix vertex p and
the corresponding relation. Then we randomly generate negative
vertex a′ which has not the same relation with p to construct train-
ing triples < p,a,a′ >. Similarly, we can fix a∗ and corresponding
relation to acquire training triples < a∗,a+,a− >.

Given the low-dimension representation learned above, we can
easily calculate wpa and wa1a2 using distance function such as
cosine.

4.2 Optimal Quasi-Clique with Constraint
Extraction in Weighted Paper-Ego-Network

For each new paper p, we construct a weighted paper-ego-network
Gp = (V ,E,W ). In order to find the optimal author set for the given
paper p in Gp , we propose a new method called OQCCE which
is an adaptation of the local-search heuristic by Tsourakakis et al.
[36]. The algorithm selects p as initial set. Then under the guidance
of designed novel density function, algorithm iterates two phases
of adding or removing the designated nodes until the quasi-clique
with maximum density function is discovered. What’s more, the
novel density function considers two kinds of heterogeneous rela-
tionships, including the close relationship between the anonymous
paper and author, as well as relationship between authors.



In specific, we regard the node p as constraint, which means
that the extracted subgraph must contain node p. In [36], there is
only one type of edge. However, there exist two types of edges
in weighted paper-ego-network. The simplest method is to assign
equal significance to two types of edges. In fact, the importance may
vary. Therefore, we introduce a variable β to adjust the importance
of two types of edges.Meanwhile, we also adapt the density function
to accommodate the weighted network. Accordingly, the proposed
novel density function can be defined as follows:

дα,β (S) = β
∑

(i, j)∈DPA

wi j +
∑

(k,l )∈DAA

wkl − α

(
|S |

2

)
, (7)

where S represents a subset of vertices of networkGp having S ⊆ V ,
|S | denotes the number of nodes in the subgraph induced by S ,wi j
is the weight of edge between nodes i and j in the subgraph induced
by S . DPA represents the set of edges between given paper p and
candidate authors in the subgraph induced by S . Likewise, DAA
represents the set of edges between authors in the subgraph induced
by S . β controls the importance of paper-author edge.α is a constant.
The first two parts in Eq. 7 favors subgraphs with abundant edges
while the third part penalizes large subgraphs.

Based on the proposed density function above, next we will
describe how to find the optimal quasi-clique with constraint inGp .
The outline of our algorithm, OQCCE, is shown as Algorithm 1.

Algorithm 1: OQCCE
Input :Weighted paper ego network Gp = (V ,E,W );

maximum number of iterations Imax ; the
constrained node p

Output :A subset of nodes S ⊆ V and p ∈ S
S ← p, b1 ←TRUE, i ← 1;
while b1 and i ≤ Imax do

b2 ←TRUE;
while b2 do

if there exists u ∈ V \ S and дα,β (S ∪ {u}) ≥ дα,β (S)
then

S ← S ∪ {u};
else

b2 ←FALSE;

if there exists u ∈ S and u , p and дα,β (S \ {u}) ≥ дα,β (S)
then

S ← S \ {u};
else

b1 ←FALSE;
i ← i + 1;

The algorithm firstly selects constrained node p as the initial set.
Then it traverses all nodes one by one and addsu to S ifдα,β (S∪{u})
improves. Afterward, the algorithm traverses every vertex v in S
and removev ifдα,β (S\{v}) enhances. Note that we cannot remove
constrained node p during the period of removal. The algorithm
repeats these two phases of addition and removal until an optimum
is reached or the number of iterations exceeds Imax .

Table 1: Statistics of the two datasets.

Dataset # papers # authors # terms # venues
AMiner-I 8821 12660 12467 5
AMiner-II 35349 36247 31446 14

Table 2: The features extracted for supervised learning
methods.

No. Feature description
1 Total number of papers
2 Number of different venues
3 Number of different years
4 Number of references the author cited before
5 Ratio of references the author cited before
6 Number of author’s citations in the references
7 Ratio of author’s citations in the references
8 Number of references written by the author
9 Ratio of references written by the author
10 Ratio of author’s papers in the references
11 Number of shared word
12 Ratio of shared words
13 Whether the author attend the venue before
14 Number of times the author attend the venue before
15 Ratio of times the author attend the venue before
16 Number of papers author published in the last 3 years
17 Ratio of papers author published in the last 3 years

5 EXPERIMENTS
5.1 Experimental Setup
5.1.1 Datasets. AMiner [35] is a classical academic network, which
contains millions of author and paper information from major
computer science venues for more than 50 years. We utilize part
of the AMiner dataset1 from 1954 to 2015. Specifically, we extract
two subsets with different scale, denoted by AMiner-I and AMiner-
II. AMiner-I is a small subset data of some important venues in
data mining area, which includes 5 venues, namely KDD, ICDM,
SDM, CIKM and PKDD. AMiner-II is a large subset of four areas,
including Artificial Intelligence (AI), Data Mining (DM), Databases
(DB), and Information System (IS). For each area, we choose some
important venues2 which have influential publications. The detailed
descriptions of the two datasets are shown in Table 1.

5.1.2 Baselines. In order to examine the effectiveness of our ap-
proach, we compare against the following three kinds of represen-
tative methods:
• Similarity measure. We design two kinds of similarity mea-
sure methods based on meta paths PTPA and PCPA, which can
indirectly connect the new paper and candidate authors with
term or venue. Then we rank candidate authors according to the
similarity scores between candidate authors and the new paper.
Here, we adopt the number of path instances as the similarity
score.
• Feature method. Following the work of Chen et al. [6] , we
extracted 17 features for each paper-author pair shown in Table
2. We choose LR, SVM and Bayesian as learning algorithms.
• HetNetE. HetNetE is a recent model proposed in [6] for author
identification problem. It first learns the low-dimensional feature
vectors of nodes using the task-specific and general network

1https://www.aminer.cn/citation
2AI: ICML, AAAI, IJCAI, NIPS. DM: KDD, WSDM, ICDM, PKDD. DB: SIGMOD, VLDB,
ICDE. IS: SIGIR, CIKM.



embedding method. Then it predicts author of the given paper
with the learned embedding vectors.

5.1.3 Parameter Settings. For our method ASI, we set the embed-
ding dimension d to 128, the size of negative samples to 2, the
margin ξ to 2, the learning rate to 0.00001, the batch size to 200, the
regularization penalty λ to 10, the trade-off factor γ to 1.0, α to 0.01,
β to 0.1. For HetNetE and Feature method, we choose the optimal
parameter. Three meta paths APC , APW , APP are jointly used in
HetNetE. In addition, for fairness comparison, we do not adopt the
reference types of nodes when computing the embedding vectors
of papers due to the lack of most citations in HetNetE and ASI.

5.1.4 Evaluation Metrics. We adopt Precision (P ), Recall (R), F1
score, Jaccard index (J ),MAP (mean average precision) and RMSE
as evaluation metrics.

• P . It reflects the accuracy of returned author set, which can be
defined as the ratio of the true authors in the returned author set.
P =

|S ′A∩SA |
|S ′A |

, where S ′A denotes the returned author set or the
returned top-k author set in P@k . SA means the true author set.
• R. It shows the ratio of returned true authors in the whole true
author set. It can be computed as follows: R = |S

′
A∩SA |
|SA |

, where
S ′A and SA have the same meanings introduced above.
• F1. It is the harmony average of P and R, which is defined as:
F1 = 2∗P∗R

P+R .
• Jaccard index. It measures similarity between two sets and is
formulated as: J = |S

′
A∩SA |
|S ′A∪SA |

, which means the ratio of the inter-
section and the union of two sets.
• MAP . It is computed as mean of AP at different k for a paper.

AP =
∑k
i=1 p@i×r eli

# of correct author , where reli equals 1 if the result at rank i
is correct author and 0 otherwise.
• RMSE. It is a measure of difference between the number of
authors returned by model and the number of true authors.

RMSE =

√∑
( |S ′A |− |SA |)

2

|m | , wherem is the number of test papers,

S ′A and SA are the number of returned author and true author,
respectively.

5.2 Comparisons and Analysis
To evaluate the performance, we regard papers published before
2014 as training set and papers published in 2014 and 2015 as test
set. Since it is time consuming to rank all candidate authors for
each anonymous paper in the evaluation procedure, following the
strategy in [6], for each paper in the test set, we randomly sample
some negative authors and obtain 100 candidate authors in all.
Then, we rank the 100 candidate authors consisting of the positive
and sampled negative authors for each paper. For our method ASI,
we also select the same 100 candidate authors to construct the
weighted paper ego network for each test paper. The final results
are averaged over all the test papers for each evaluation metric.

We report the results of performance comparison in tables 3, 4.
As we can observe, (1) Our method ASI achieves better performance
than all baselines on all measures except R andMAP . It improves
the performance by more than 15% on P , J and F1 averagely. Al-
though ASI does not achieve the best performance on R, it is also

near the best value. (2) ASI can automatically confirm the appro-
priate number of authors for a given paper, which can be clearly
demonstrated by the lowest value on metric RMSE. In a word, ASI
not only can discover a set of authors with strong relationship but
also can determine the proper number of authors for an anonymous
paper. (3) To our surprise, the similarity measure method based on
PTPA has very good performance, which indicates that the term
has a significant role in finding author set for a given paper.

5.3 Parameter Sensitivity
In this section, we conduct experiments to investigate the sensitivity
of different parameters in our method ASI, i.e., the embedding di-
mension d , training times I and control factor β in density function.
We investigate how a specific parameter influence the performance
of ASI by changing its value and fixing the others. The result is
shown in Figure 4.

From the result, we can observe that P , R, J , F1 and MAP in-
crease firstly and then slightly decrease with the increment of the
dimension d . The trend of RMSE is the opposite. When d is around
128, ASI achieves the best performance. The performance becomes
stable when the training times I is above 50. The optimal value of
β is around 0.1.

6 CASE STUDY
We present the case study to show the performance difference
between ASI and three selected baselines, i.e., PTPA (best similarity-
based method), SVM (best feature-based method) and HetNetE.
Table 5 lists the top 10 ranked authors for two papers, which are
published in KDD 2014 and CIKM 2014, respectively.

From table 5, we can see that the PTPA method returns some
authors who have similar research themes with the given paper.
Although many of them are not the correct authors, they still can
be considered as the potential authors. HetNetE achieves relatively
better performance than other baselines. ASI can automatically find
an author set for a new paper, which does not require to specify the
number of authors. This number is usually unknown a prior and is
difficult to estimate. All in all, ASI not only has better effectiveness
than other methods but also has the ability of determining number
of authors for a given paper.

7 CONCLUSION
In this paper, we propose to study the problem of author set identi-
fication in heterogeneous bibliography network. A novel approach
called ASI is presented to solve the problem. ASI includes two
phases of weighted paper-ego-network construction and OQCC
extraction. In the first phase, in order to determine the weights
of edges in constructed network, we present the task-guided em-
bedding (TaskGE) to learn the vector representations of nodes.
TaskGE not only is totally task-specific but also takes full advan-
tage of inherent structural information of bibliography network.
In the second phase, we introduce the concept of quasi-clique and
propose a local-search heuristic approach under the guidance of
designed novel density function so as to find the optimal author
set in weighted paper-ego-network. The experiments on academic
dataset demonstrate that ASI outperforms state-of-the-art baselines
and can automatically determine the number of authors. As future



Table 3: Results of effectiveness experiments on AMiner-I. We use bold to mark the best performance for each comparison. ↑
indicates higher is better, ↓ indicates lower is better. “Avg." means the average rank of different methods.

Methods
Evaluation Avg.P (↑) R (↑) J (↑) F1 (↑) MAP (↑) RMSE (↓)

Top-5

Similarity
measure

PTPA 0.2716 (2) 0.5007 (7) 0.2310 (2) 0.3356 (2) 0.6109 (1) 0.1714 (2) 2.67
PCPA 0.2098 (7) 0.3937 (11) 0.1680 (7) 0.2614 (7) 0.4718 (9) 0.1714 (2) 7.16

Feature
method

LR 0.2160 (5) 0.3915 (12) 0.1827 (6) 0.2657 (4) 0.4834 (7) 0.1714 (2) 6.00
SVM 0.2493 (3) 0.4562 (9) 0.2154 (4) 0.3081 (3) 0.5451 (3) 0.1714 (2) 4.00

Bayesian 0.2209 (4) 0.4075 (10) 0.1888 (5) 0.2733 (5) 0.4951 (6) 0.1714 (2) 5.33
HetNetE 0.2123 (6) 0.3870 (13) 0.1669 (8) 0.2616 (6) 0.4571 (11) 0.1714 (2) 7.66

Top-10

Similarity
measure

PTPA 0.1555 (9) 0.5779 (2) 0.1454 (10) 0.2365 (9) 0.5897 (2) 0.5023 (3) 5.83
PCPA 0.1388 (11) 0.5066 (5) 0.1257 (13) 0.2110 (11) 0.4517 (12) 0.5023 (3) 9.10

Feature
method

LR 0.1358 (13) 0.5005 (8) 0.1270 (12) 0.2059 (13) 0.4664 (10) 0.5023 (3) 9.83
SVM 0.1629 (8) 0.5988 (1) 0.1538 (9) 0.2477 (8) 0.5296 (4) 0.5023 (3) 5.50

Bayesian 0.1364 (12) 0.5010 (6) 0.1277 (11) 0.2069 (12) 0.4767 (8) 0.5023 (3) 8.67
HetNetE 0.1506 (10) 0.5347 (3) 0.2269 (3) 0.2275 (10) 0.4435 (13) 0.5023 (3) 7.00

ASI 0.4589 (1) 0.5284 (4) 0.4009 (1) 0.4712 (1) 0.5295 (5) 0.1123 (1) 2.00

Table 4: Results of effectiveness experiments on AMiner-II. We use bold to mark the best performance for each comparison. ↑
indicates higher is better, ↓ indicates lower is better. “Avg." means the average rank of different methods.

Methods
Evaluation Avg.P (↑) R (↑) J (↑) F1 (↑) MAP (↑) RMSE (↓)

Top-5

Similarity
measure

PTPA 0.3391 (2) 0.5899 (6) 0.2886 (2) 0.4108 (2) 0.7165 (3) 0.2880 (2) 2.83
PCPA 0.3287 (3) 0.5743 (8) 0.2776 (4) 0.3986 (3) 0.6595 (6) 0.2880 (2) 4.33

Feature
method

LR 0.3113 (4) 0.5400 (9) 0.2645 (5) 0.3769 (4) 0.6605 (5) 0.2880 (2) 4.83
SVM 0.2202 (7) 0.4553 (12) 0.1674 (11) 0.2803 (9) 0.9948 (1) 0.2880 (2) 7.00

Bayesian 0.2964 (5) 0.5144 (10) 0.2491 (6) 0.3587 (5) 0.6458 (8) 0.2880 (2) 6.00
HetNetE 0.2645 (6) 0.4561 (11) 0.2078 (7) 0.3191 (6) 0.6021 (12) 0.2880 (2) 7.33

Top-10

Similarity
measure

PTPA 0.1927 (8) 0.6624 (1) 0.1795 (8) 0.2884 (7) 0.6913 (4) 0.8536 (3) 5.16
PCPA 0.1913 (9) 0.6531 (2) 0.1778 (9) 0.2860 (8) 0.6363 (10) 0.8536 (3) 6.83

Feature
method

LR 0.1857 (10) 0.5779 (7) 0.1729 (10) 0.2775 (10) 0.6382 (9) 0.8536 (3) 8.16
SVM 0.1101 (13) 0.4553 (12) 0.0943 (13) 0.1702 (13) 0.9948 (1) 0.8536 (3) 5.00

Bayesian 0.1786 (11) 0.6157 (4) 0.1661 (12) 0.2673 (11) 0.6227 (11) 0.8536 (3) 8.66
HetNetE 0.1720 (12) 0.6350 (3) 0.2858 (3) 0.2564 (12) 0.5602 (13) 0.8536 (3) 7.66

ASI 0.5981 (1) 0.6019 (5) 0.4943 (1) 0.5720 (1) 0.6566 (7) 0.2058 (1) 2.66
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Figure 4: The performance of ASI with different parameter settings.



Table 5: Top ranked authors for two query papers. We list top-10 authors for three baselines–PTPA, SVM and HetNetE, while
we list the extracted optimal author set with the automatically determined number of authors for ASI, which is unordered.

(a) Paper title: who are experts specializing in landscape photography?:
analyzing topic-specific authority on content sharing services. (KDD 2014)

Ground-truth PTPA SVM HetNetE ASI
B. Bi J. Cho L. Denoyer T. Calders J. Cho
B. Kao S. Geva P. Mirajkar G. Das S. Geva
C. Wan L. Denoyer S. Geva B. Kao B. Bi
J. Cho P. Mirajkar J. Cho C. J. Hsieh B. Kao

A. Seetharaman C. J. Hsieh J. Vaidya P. Mirajkar
R. Zhang J. Vaidya K. M. Borgwardt L. Denoyer
O. Maimon K. M. Borgwardt C. H. Park
J. L. Huang B. Wang M. Gori
G. Giannakopoulos C. H. Park A. Laurent
P. Fournier-Viger B. Li A. S. Varde

(b) Paper title: similarity search using concept graphs. (CIKM 2014)
Ground-truth PTPA SVM HetNetE ASI
R. Agrawal S. Gollapudi C. S. Perng R. Agrawal S. Gollapudi
S. Gollapudi D. McLeod D. McLeod N. Pissinou K. Kenthapadi
A. Kannan A. Kannan S. Gollapudi S. Gollapudi C. S. Perng
K. Kenthapadi C. S. Perng K. Lee C. S. Perng D. Yang

S. Ofek-Koifman S. Ofek-Koifman S. Bressan A. Kannan
T. Raeder F. Coetzee A. Kannan R. Agrawal
Conrad Murphy Deepa Paranjpe Toon Calders
S. H. Wu M. A. Hasan M. A. Hasan
K. Satou A. Kannan J. Chen
C. Siefkes T. Raeder K. Kenthapadi

work, we will consider how to combine multiple information such
as unstructured semantic content to improve the performance. We
will also consider leveraging more information such as text to ac-
quire the representation of papers. In addition, we will extend our
approach to other applications like actor set identification for a
given movie.
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