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5 Abstract—Recently, recommender systems play a pivotal role in alleviating the problem of information overload. Latent factor models

6 have been widely used for recommendation. Most existing latent factor models mainly utilize the interaction information between users

7 and items, although some recently extended models utilize some auxiliary information to learn a unified latent factor for users and

8 items. The unified latent factor only represents the characteristics of users and the properties of items from the aspect of purchase

9 history. However, the characteristics of users and the properties of items may stem from different aspects, e.g., the brand-aspect and

10 category-aspect of items. Moreover, the latent factor models usually use the shallow projection, which cannot capture the

11 characteristics of users and items well. Deep neural network has shown tremendous potential to model the non-linearity relationship

12 between users and items. It can be used to replace shallow projection to model the complex correlation between users and items. In

13 this paper, we propose a Neural network based Aspect-level Collaborative Filtering model (NeuACF) to exploit different aspect latent

14 factors. Through modelling the rich object properties and relations in recommender system as a heterogeneous information network,

15 NeuACF first extracts different aspect-level similarity matrices of users and items, respectively, through different meta-paths, and then

16 feeds an elaborately designed deep neural network with these matrices to learn aspect-level latent factors. Finally, the aspect-level

17 latent factors are fused for the top-N recommendation. Moreover, to fuse information from different aspects more effectively, we further

18 propose NeuACF++ to fuse aspect-level latent factors with self-attention mechanism. Extensive experiments on three real world

19 datasets show that NeuACF and NeuACF++ significantly outperform both existing latent factor models and recent neural network

20 models.

21 Index Terms—Recommender systems, heterogeneous information network, aspect-level latent factor

Ç

22 1 INTRODUCTION

23 CURRENTLY the overloaded online information over-
24 whelms users. In order to tackle the problem,
25 Recommender Systems (RS) are widely employed to
26 guide users in a personalized way of discovering
27 products or services they might be interested from a
28 large number of possible alternatives. Recommender
29 systems are essential for e-commerce companies to
30 provide users a personalized recommendation of
31 products, and thus most e-commerce companies like
32 Amazon and Alibaba are in an urgent need to build
33 more effective recommender systems to improve user
34 experience. Due to its importance in practice, recom-
35 mender systems have been attracting remarkable

36attention to both industry and academic research
37community.
38Collaborative Filtering (CF) [1] is one of the most popular
39methods for recommendation, whose basic assumption is
40that people who share similar purchase in the past tend to
41have similar choices in the future. In order to exploit users’
42similar purchase preference, latent factor models (e.g.,
43matrix factorization) [2], [3] have been proposed, which usu-
44ally factorize the user-item interaction matrix (e.g., rating
45matrix) into two low-rank user-specific and item-specific fac-
46tors, and then use the low-rank factors to make predictions.
47Since latent factor models may suffer from data sparsity,
48many extended latent factormodels integrate auxiliary infor-
49mation into the matrix factorization framework, such as
50social recommendation [4] and heterogeneous network
51based recommendation [5]. Recently, with the surge of deep
52learning, deep neural networks are also employed to deeply
53capture the latent features of users and items for recommen-
54dation. NeuMF [6] replaces the inner product operations in
55matrix factorization with a multi-layer feed-forward neural
56network to capture the non-linear relationship between users
57and items. DMF [7] uses the rating matrix directly as the
58input and maps user and items into a common low-dimen-
59sional space via a deep neural network.
60Although these latent factor models achieve good perfor-
61mance, they usually only capture the information of users’
62purchase history. Existing models usually focus on ext-
63racting latent factors of users and items through their
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of64 interaction information from ratings, which only reflects

65 user preferences and item characteristics from one aspect,
66 i.e., purchase history. However, the latent factors of users
67 and items usually stem from different aspects in real appli-
68 cations. Particularly, in social media with rich information,
69 user preferences and item characteristics may reflect in
70 many aspects besides rating interactions, e.g., item features,
71 and other interactions between users. These aspect-level
72 features can more comprehensively reflect user preferences
73 and item characteristics. Thus it is very valuable for the
74 latent factor models to exploit latent features of users and
75 items from different aspects. Fig. 1 shows a toy example of
76 our idea. A green check mark indicates that the user pur-
77 chased the corresponding item in the past. A question mark
78 means that the interaction information is unknown. If we
79 only exploit the interaction matrix (illustrating purchase
80 history) in Fig. 1a, we may infer that user U4 will purchase
81 item I2 and I3. However, when considering the item brand
82 information shown in Fig. 1b, we may find item I3 is a better
83 recommendation to U4 because items I1 and I3 belong to the
84 same brand B1.
85 Although it is promising to comprehensively utilize mul-
86 tiple aspect-level latent features of users and items, it still
87 faces the following two challenges. (1) How to extract differ-
88 ent aspect-level features: A systematic method is needed to
89 effectively organize the different types of objects and interac-
90 tions in recommender systems, and extract different aspect-
91 level features. The extracted aspect-level features should
92 reflect different aspects of users preferences and embody
93 rich semantics. (2) How to learn latent factors from different
94 aspects. Even if we can extract different aspect-level features,
95 it is still not easy to learn their latent factors. Matrix factoriza-
96 tion may not be a good option as it only learns the shallow
97 factors. Deep neural network (DNN), which is able to learn
98 the highly nonlinear representations of users and items, is a
99 promising method. However, the current DNN structure

100 lacks of feature fusing mechanism, which cannot be directly
101 applied to our problem. (3) How to fuse latent factors from
102 different aspects effectively. Since the different aspect-level
103 factors only represent aspect-level characteristics of user/
104 item, we need to fuse them effectively. Although deep neural
105 network is a promising method, we still need to design a
106 proper neural network structure and a feature fusingmecha-
107 nism for our problem settings.
108 In this paper, to address the challenges above, we propose
109 a novelNeural network basedAspect-level Collaborative Fil-
110 tering model (NeuACF). NeuACF can effectively model and
111 fuse different aspect-level latent factors which represent the
112 user preferences and item characteristics from different

113aspects. Particularly, the objects and interactions of different
114types in recommender systems are first organized as a Het-
115erogeneous Information Network (HIN) [8]. Meta-paths [9],
116relation sequences connecting objects, are then employed
117to extract aspect-level features of users and items. As an
118example shown in Fig. 1c, we can extract the latent factors
119of users from the aspect of purchase history with the
120User-Item-User path, which is usually analyzed by existing
121latent factor models. Meanwhile, we can also extract the
122latent factors from the aspect of brand preference with the
123User-Item-Brand-Item-User path. Furthermore, we design a
124delicate deep neural network to learn different aspect-level
125latent factors for users and items and utilize an attention
126mechanism to effectively fuse them for the top-N recommen-
127dation. Note that, different from those hybrid recommenda-
128tionmodels [10] that focus on the rating informationwith the
129auxiliary information, NeuACF treats different aspect-level
130latent factors extracted from meta-paths equally, and auto-
131matically determines the importance of these aspects. Neu-
132ACF is also different from those HIN based methods [11] in
133its deep model and fusing mechanism. Concretely, a del-
134icately designed attention network is used to fuse aspect-
135level latent factors. Comparing to the above attention
136method, we further propose NeuACF++ to fuse aspect infor-
137mation with self-attention mechanism which considers dif-
138ferent aspect-level latent factors and learns the attention
139values simultaneously. Extensive experiments illustrate the
140effectiveness of NeuACF and NeuACF++, as well as the
141traits of aspect-level latent factors.
142Our main contributions of this paper are summarized as
143follows.

144� To leverage the different aspect-level information of
145HIN, we design a meta-path based method to cap-
146ture the aspect-level latent factors of users and items
147from the similarity matrix obtained from the HIN.
148� Wepropose theNeuACFwith deep neural network to
149learn different aspect-level latent factors and integrate
150these latent factors with attention mechanism for top-
151N recommendation, since aspect-level information
152reflects the characteristics of users and the properties
153of items more precisely. Moreover, the self-attention
154mechanism is employed to fuse aspect-level latent fac-
155tors in our proposedmethodNeuACF++.
156� We preform extensive experiments and provide tre-
157mendous analysis to illustrate the effectiveness of
158NeuACF and NeuACF++.
159The rest of this paper is organized as follows. Section 2 rev-
160iews the related work. Section 3 summarizes the related work.
161Section 4 introduces the NeuACF model and NeuACF++
162model in details. Section 5 presents and analyzes the experi-
163mental results. And Section 6 concludes this paper.

1642 RELATED WORK

165In this section, we provide a background to our work, and
166review the relevant works.

1672.1 Collaborative Filtering

168Traditional recommendation works mainly adopt collabora-
169tive filtering (CF) methods to utilize historical interactions for

Fig. 1. A toy example of aspect-level interactions between users and
items.
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170 recommendation [3], [12], [13], [14]. As the most popular
171 approach among various CF techniques, matrix factorization
172 (MF) has shown its effectiveness and efficiency in many
173 applications [2], [15]. MF factorizes the user-item interaction
174 matrix into two low-dimension user-specific and item-spe-
175 cific matrices, and then utilizes the factorized matrices for
176 predictions [16]. In recent years, many variants ofMF, such as
177 SVD [3], weighted regularized matrix factorization [1], and
178 probabilistic matrix factorization [17] have been proposed.
179 SVD reconstructs the ratingmatrix only through the observed
180 user-item interactions. Weighted regularized matrix factori-
181 zation (WR-MF) extends MF by using regularization to pre-
182 vent over-fitting and to increase the impact of positive
183 feedback. Probabilistic matrix factorization (PMF)models the
184 user preference matrix as a product of two lower-rank user
185 and itemmatrices. The user and item feature vectors are com-
186 puted by a probabilistic linear model with Gaussian observa-
187 tion distribution. Bayesian personalized ranking (BPR) [18] is
188 a generic optimization criterion and learning algorithm for
189 implicit CF and has been widespreadly adopted in many
190 related domains [19], [20], [21], [22].

191 2.2 Neural Networks for Recommendation

192 Recently, neural network has shown its potential in non-
193 linear transformations and been successfully applied in
194 many data mining tasks [23], [24]. The neural network has
195 been proven to be capable of approximating any continuous
196 function [25]. The pioneer work proposes a two-layers
197 Restricted Boltzmann Machines (RBMs) to model user-item
198 interactions [26]. In addition, autoencoders have been
199 applied to learn user and item vectors for recommendation
200 systems [27], [28], [29]. To overcome the limitation of autoen-
201 coders and increase the generalization ability, denoising
202 autoencoders (DAE) have been applied to learn user and
203 item vectors from intentionally corrupted inputs [27], [29].
204 Cheng et al. [30] combine the benefits of memorization and
205 generalization for recommender systems by jointly training
206 wide linear models and deep neural networks. Compared to
207 Wide & Deep model, Guo et al. [31] propose the DeepFM
208 model that integrates the architectures of factorization
209 machine (FM) and deep neural networks (DNN). This archi-
210 tecture models low-order feature interactions and high-
211 order feature interactions simultaneously. He et al. [6] pres-
212 ent a neural network architecture to model latent features of
213 users and items and devise a general neural collaborative fil-
214 tering (NCF) framework based on neural networks. In addi-
215 tion, NCF leverages a multi-layer perceptron to learn the
216 user-item interaction function instead of the traditional inner
217 product. He et al. [32] propose the neural factorization
218 machine (NFM) model for recommendation. This model
219 combines the linearity of FM in modeling second-order
220 feature interactions and the non-linearity of neural network
221 to model higher-order feature interactions. Xue et al. [7]
222 propose a deep matrix factorization model (DMF) with a
223 neural network thatmaps the users and items into a common
224 low-dimensional space with non-linear projections. The
225 trainingmatrix includes both explicit ratings and non-prefer-
226 ence implicit feedback. The recently proposed convolutional
227 NCF [33] utilizes outer product above the embedding layer
228 results and 2D convolution layers for learning joint represen-
229 tation of user-item pairs.

2302.3 Exploiting Heterogeneous Information
231for Recommendation

232To overcome the sparsity of the ratings, additional data are
233integrated into recommendation systems, such as social
234matrix factorization with social relations [4] and topicMF
235with item contents or reviews text [34]. Recently, graph
236data[35] shows its strong potential for many data mining
237tasks. There are also many works exploring the graph data
238for recommendation [36], [37] or web search [38]. As one of
239the most important methods to model the graph data, het-
240erogeneous information network [8] can naturally charac-
241terize the different relations between different types and
242objects. Then several path based similarity measures are
243proposed to evaluate the similarity of objects in heteroge-
244neous information network [9], [39], [40]. After that, many
245HIN based recommendation methods have been proposed
246to integrate auxiliary information. Feng et al. [41] propose a
247method to learn the weights of different types of nodes and
248edges, which can alleviate the cold start problem by utiliz-
249ing heterogeneous information contained in social tagging
250system. Furthermore, meta-path is applied to recommender
251systems to integrate different semantic information [42]. In
252order to take advantage of the heterogeneity of relationship
253in information networks, Yu et al. [43] propose to diffuse
254user preferences along different meta-paths in information
255networks. Luo et al. [44] demonstrate that multiple types of
256relations in heterogeneous social network can mitigate the
257data sparsity and cold start problems. Shi et al. [36] design a
258novel SemRec method to integrate all kinds of information
259contained in recommender system using weighted HIN and
260meta-paths. Zhang et al. [37] propose a joint representation
261learning (JRL) framework for top-N recommendation by
262integrating different latent representations.
263Most existing latent factor models mainly utilize the rat-
264ing information between users and items, but ignore the
265aspect information of users and items. In this paper, we
266extract different aspect similarity matrices through different
267meta-paths which characterize the specific aspect informa-
268tion. Then, we delicately design a deep neural network to
269learn the latent factors of users and items. After that, we uti-
270lize attention mechanism to fuse those aspect-level latent
271factors for top-N recommendation.

2723 PRELIMINARIES

2733.1 Latent Factor Model

274The latent factor model has been widely studied in recom-
275mender systems. Its basic idea is to map users and items to
276latent factors and use these factors for recommendation.
277The representative works are Matrix Factorization (MF) [2],
278PMF [17] and SVD++ [3]. Taking MF for example, the objec-
279tive function of MF in Equation (1) aims to minimize the fol-
280lowing regularized squared loss on the observed ratings:

argmin
uu;vv

X
i

X
j

ðRRi;j � uuT
i vvjÞ2 þ �

X
i

jjuuijj22 þ
X
j

jjvvjjj22
 !

;

(1)
282282

283where uui and vvj denote the latent factors of user Ui and item
284Ij, RRi;j denote the user Ui rating score to item Ij and the �
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286 L-2 norm aiming to prevent overfitting.
287 Based on this basic MF framework, many extended latent
288 factor models have been proposed through adding some
289 auxiliary information, such as social recommendation [4]
290 and heterogeneous network based recommendation [36].
291 The limitation of existing latent factor models is that the
292 latent factors are mainly extracted from one aspect, i.e., the
293 rating matrix. However, some other more fine-grained
294 aspect-level user-item interaction information is largely
295 ignored, although such information is also useful.

296 3.2 Heterogeneous Information Network

297 The recently emerging HIN [8] is a good way to model com-
298 plex relations among different types and objects in recom-
299 mender systems. Particularly, HIN is a special kind of
300 information network, which either contains multiple types
301 of objects or multiple types of links. The network schema of
302 a HIN specifies the type constraints on the sets of objects
303 and relations among the objects. Two examples used in our
304 experiments are shown in Fig. 2. In addition, meta-path [9],
305 a relation sequence connecting objects, can effectively
306 extract features of objects and embody rich semantics. In
307 Fig. 2b, the meta-path User-Item-User (UIU) extracts the
308 features of users in the purchase history aspect, which
309 means users having the same purchase records. While the
310 User-Item-Brand-Item-User (UIBIU) extracts the features
311 of users in the brand aspect, which means users purchase
312 the items with the same brand. In the following section, we
313 use the abbreviation to represent the meta-paths. HIN has
314 been widely used in many data mining tasks [8]. HIN based
315 recommendations also have been proposed to utilize rich
316 heterogeneous information in recommender systems, while
317 they usually focus on rating prediction with the “shallow”
318 model [5], [11].

319 4 THE PROPOSED MODEL

320 4.1 Model Framework

321 The basic idea of NeuACF is to extract different aspect-level
322 latent features for users and items, and then learn and fuse
323 these latent factors with deep neural network. The model
324 contains three major steps. First, we construct an HIN based
325 on the rich user-item interaction information in recom-
326 mender systems, and compute the aspect-level similarity
327 matrices under different meta-paths of HIN which reflect
328 different aspect-level features of users and items. Next, a
329 deep neural network is designed to learn the aspect-level
330 latent factors separately by taking these similarity matrices
331 as inputs. Finally, the aspect-level latent factors are

332combined with an attention component to obtain the overall
333latent factors for users and items. Moreover, we also employ
334self-attention mechanism to fuse aspect-level latent factors
335more effectively. Next we will elaborate the three steps in
336the following subsections.

3374.2 Aspect-Level Similarity Matrix Extraction

338We employ HIN to organize objects and relations in recom-
339mender systems, due to its power of information fusion and
340semantics representation [36]. Furthermore, we utilize meta-
341path to extract different-aspect features of users and items.
342Taking Fig. 2b as an example, we can use UIU and IUI paths
343to extract features of users and items on the aspect of pur-
344chase history, which is extensively exploited by existing
345latent factor models. In addition, we can also extract features
346from other aspects. For example, the features of the brand
347aspect can be extracted from UIBIU and IBI paths . Table 1
348showsmore aspect examples in our experimental datasets.
349Given a specific meta-path, there are several alternatives
350to extract the aspect-level features: commuting matrix or
351similarity matrix. In this paper, we employ the similarity
352matrix based on the following reasons. (1) Similarity mea-
353sure can alleviate noisy information; (2) Similar values
354within the [0,1] range are more suitable for learning latent
355factors; (3) Many path based similarity measures are avail-
356able. We employ the popular PathSim [9] to calculate
357aspect-level similarity matrices under different meta-paths
358in experiments. For example, we compute the similarity
359matrices of user-user and item-item based on the meta-path
360UIBIU and IBI for the brand-aspect features.
361The computation of similarity matrix based on meta path
362is of great importance in our propose model, so how to com-
363pute similarity matrix quickly is an important problem in
364our method. In real-word application, the complexity of sim-
365ilarity matrix computation is not high because the similarity
366matrix is usually very sparse for most meta paths. Based on
367this fact, there are several acceleration computation methods
368proposed by previous works [9], [40] for similarity matrix
369computation, for example, PathSim-pruning [9], dynamic
370programming strategy and Monte Carlo (MC) strategy [40].
371Moreover there alsomany newmethods for similaritymatrix
372computation, for example, BLPMC [45], PRSim [46]. In addi-
373tion, the similarity matrix can be computed offline in
374advance in our model. The similarity matrix is computed
375with training data, so we can prepare the similarity matrix
376before the training processing.

Fig. 2. Network schema of HINs for the experimental datasets.

TABLE 1
Meta-Paths used in Experiments and the

Corresponding Aspects

Datasets Aspect Meta-Paths

User Movie/Item

MovieLens
History UMU MUM
Director UMDMU MDM
Actor UMAMU MAM

Amazon

History UIU IUI
Brand UIBIU IBI

Category UICIU ICI
Co_view UIVIU IVI

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. X, XXXXX 2019
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377 4.3 Learning Aspect-Level Latent Factors

378 With the computed user-user and item-item similarity
379 matrices of different aspects, we next learn their latent fac-
380 tors. Different from previous HIN based recommendation
381 models, we design a deep neural network to learn their cor-
382 responding aspect-level latent factors separately, and the
383 model architecture is shown in Fig. 3. Concretely, for each
384 user in each aspect, we extract the user’s similarity vector
385 from the aspect-specific similarity matrix. Then we take the
386 similarity matrix as the input of the Multi-Layer Perceptron
387 (MLP) and MLP learns the aspect-level latent factor as the
388 output. The item latent factors of each aspect can be learned
389 in a similar way. Taking the similarity matrix SSB 2 RN�N of
390 users under the meta-path UIBIU as an example, User Ui is
391 represented as an N-dimensional vector SSB

i�, which means
392 the similarities between Ui and all the other users. Here N
393 means the total number of users in the dataset. The MLP
394 projects the initial similarity vector SSB

i� of user Ui to a low-
395 dimensional aspect-level latent factor. In each layer of MLP,
396 the input vector is mapped into another vector in a new
397 space. Formally, given the initial input vector SSB

i�, and the
398 lth hidden layer HHl , the final aspect-level latent factor uuB

i

399 can be learned through the following multi-layer mapping
400 functions,

H0H0 ¼ SSB
i�;

H1H1 ¼ fðWWT
1 �HH0 þ bb1Þ;

. . .

HlHl ¼ fðWWT
l �HHl�1 þ bblÞ;

. . .

uuB
i ¼ fðWWT

n �HHn�1 þ bbnÞ;

(2)

402402

403 where WWi and bbi are the weight matrix and bias for the ith
404 layer, respectively, and we use the ReLU , i.e., fðxÞ ¼
405 maxð0; xÞ as the activation function in the hidden layers.
406 From the learning framework in Fig. 3, one can see that
407 for each aspect-level similarity matrix of both users and
408 items there is a corresponding MLP learning component
409 described above to learn the aspect-level latent factors. As
410 illustrated in Table 1, for each aspect-level meta-path we
411 can get a corresponding user-user similarity matrix and an
412 item-item similarity matrix. Taking the datasets Amazon as
413 example, we can learn the brand latent factors of users as
414 uuB

i and the the brand latent factors of items as vvBj from the

415meta-path UIBIU-IBI. Similarly, we can get uuIi and vvIj from

416the meta-path UIU-IUI, uuC
i and vvCj from the meta-path

417UICIU-ICI, as well as uuV
i and vvVj from the meta-path

418UIVIU-IVI. Since there are variety meta-paths connecting
419users and items, we can learning different aspect-level
420latent factors.

4214.4 Attention Based Aspect-Level Latent Factors
422Fusion

423After the aspect-level latent factors are learned separately
424for users and items, next we need to integrate them together
425to obtain aggregated latent factors. A straightforward way
426is to concatenate all the aspect-level latent factors to form a
427higher-dimensional vector. Another intuitive way is to aver-
428age all the latent factors. The issue is that both methods do
429not distinguish their different importance because not all
430the aspects contribute to the recommendation equally (we
431will show that in the experiment part). Therefore, we choose
432the attention mechanism to fuse these aspect-level latent
433factors. Attention mechanism has shown the effectiveness
434in various machine learning tasks such as image captioning
435and machine translation [47], [48], [49]. The advantage of
436attention mechanism is that it can learn to assign attentive
437values (normalized by sum to 1) for all the aspect-level
438latent factors: higher (lower) values indicate that the corre-
439sponding features are more informative (less informative)
440for recommendation. Specifically, given the user’s brand-
441aspect latent factor uuB

i , we use a two-layers network to com-
442pute the attention score ssBi by the following

ssBi ¼ WWT
2 f WWT

1 � uuB
i þ b1b1

� �þ b2b2; (3)
444444

445whereW�W� is the weight matrices and b�b� is the biases.
446The final attention values for the aspect-level latent fac-
447tors are obtained by normalizing the above attentive scores
448with the Softmax function given in Equation (4), which can
449be interpreted as the contributions of different aspects B to
450the aggregated latent factor of user Ui,

wwB
i ¼ expðssBi ÞPL

A¼1 expðssAi Þ
; (4)

452452

453where L is the total number of all the aspects.
454After obtaining all the attention weights wwB

i of all the
455aspect-level latent factors for user Ui, the aggregated latent
456factor uui can be calculated by

uui ¼
XL
B¼1

wwB
i �uuB

i : (5)
458458

459

460We implement this attention method as NeuACF in our
461experiments.

4624.5 Self-Attention Based Aspect-Level Latent
463Factors Fusion

464Recently, self-attention mechanism has received consider-
465able research interests. For example, Vaswani et al. [50] and
466Devlin et al. [51] utilize self-attention to learn the relation-
467ship between two sequences. Learning dependencies and
468relationships between aspect-level latent factors is the most
469important part in our model, and self-attention has ability

Fig. 3. Deep neural network in the NeuACF model.
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470 to model the relationships between the different aspect-
471 level latent factors.
472 Different from standard attention mechanism, self-
473 attention mainly focuses on the co-learning attentions of
474 two sequences. The vanilla attention mechanism mainly
475 considers computing the attention values based on the user
476 or item representations of one aspect, while self-attention
477 mechanism is able to learn the attention values from differ-
478 ent aspects simultaneously. For example, the Brand-level
479 latent factor of users have strong relationship to the Brand-
480 level latent factor of items, and the self-attention mechanism
481 can learn this relationship and promote the performance of
482 recommendation. So the learned values are able to capture
483 more information on the multi-aspects. In details, we first
484 compute the affinity scores between all aspect-level latent
485 factors. For a user Ui, the affinity score of two different
486 aspect-level latent factors uuB

i and uuC
i can be calculated by

487 their inner product:

MB;C
i ¼ ðuuB

i Þ
T � uuC

i : (6)489489

490

491 The matrix MMi ¼ ½MB;C
i � 2 RL�L is also called the self-

492 attention matrix, where L is the total number of aspects. In
493 fact, there is an affinity matrix MMi for each user. Basically,
494 the matrix MiMi characterizes the similarity of aspect-level
495 latent factors for the specific user Ui, which reflects the cor-
496 relation between two aspects when recommending for this

497 user. When the aspect B is equal to aspect C, MB;C
i will get

498 a high value due to the inner product operator, so we add a
499 zero mask to avoid a high matching score between identical
500 vectors.
501 The aspect-level latent factors learned from self-attention
502 mechanism are not independent. Users will make a trade-
503 off between those aspects. The affinity matrix measures the
504 importance of different aspect-level latent factors, so we
505 compute the representation of aspect B for the specific user
506 i based on the self-attention matrix as:

ggBi ¼
XL
C¼1

expðMMB;C
i ÞPL

A¼1 expðMMB;A
i Þuu

C
i : (7)

508508

509

510 Then for all the aspects, we can obtain the final represen-
511 tation of users or items as:

uui ¼
XL
B¼1

ggBi : (8)
513513

514

515 The self-attention mechanism can learn self-attentive rep-
516 resentations from different aspect-level information effec-
517 tively. In order to distinguish with the above attention
518 method NeuACF, we implement the self-attention mecha-
519 nism as NeuACF++ in our experiments.

520 4.6 Objective Function

521 We model the top-N recommendation as a classification
522 problem which predicts the probability of interaction
523 between users and items in the future. In order to ensure
524 that the output value is a probability, we need to constrain
525 the output ŷij in the range of [0,1], where we use a Logistic
526 function as the activation function for the output layer. The

527probability of the interaction between the user Ui and item
528Ij is calculated according to

ŷij ¼ sigmodðuui � vvjÞ ¼ 1

1þ e�uui�vvj ; (9)

530530

531where uui and vvj are the aggregated latent factors of user Ui

532and item Ij respectively.
533Over all the training set, according to the above settings,
534the likelihood function is:

pðY;Y�jQÞ ¼
Y
i;j2Y

ŷij
Y

i;k2Y�
ð1� ŷikÞ; (10)

536536

537where Y and Y� are the positive and negative instances sets,
538respectively. The negative instance set Y� is sampled from
539unobserved data for training. Q is the parameters set.
540Since the ground truth yij is in the set f0; 1g, Equation (10)
541can be rewritten as:

pðY;Y�jQÞ ¼
Y

i;j2Y[Y�
ðŷijÞyij � ð1� ŷijÞð1�yijÞ: (11)

543543

544

545Then we take the negative logarithm of the likelihood
546function to get the point-wise loss function in

Loss ¼ �
X

i;j2Y[Y�
yijlogŷij þ ð1� yijÞlogð1� ŷijÞ
� �

; (12)

548548

549where yij is the ground truth of the instance and ŷij is pre-
550dicted score. This is the overall objective function of our
551model, and we can optimize it by stochastic gradient
552descent or its variants [52].

5534.7 Discussion

554Here, we give the analysis of our proposed models NeuACF
555and NeuACF++.

556� NeuACF and NeuACF++ are general frameworks
557for recommendation. We can learn aspect-level
558latent factors from aspect-level features computed
559via different methods. For example, the similarity
560matrix SSB can also be computed with HeteSim [40]
561or PCRW [39].
562� As a deep neural network model, DMF [53] can be
563considered as one special case of our model. DMF
564does not take the heterogeneous information into
565consideration, so if we only consider the user-item
566purchase history aspect, our model is equivalent to
567the DMF model. We argue that the aspect informa-
568tion learned from meta-paths has potential to
569increase the performance of recommendation.
570� We present the time complexity analysis of our pro-
571posed models NeuACF and NeuACF++ here. Gener-
572ally, the time complexity is affected by the epochs of
573iterator T , the size of training sample S, the number
574of aspects L and the size of hidden numbers H.
575When we utilize three-layer MLP to learn user and
576item latent factors in our models, the time complex-
577ity of forward and backward process is bounded by
578matrix multiplication. Let hn1 be the number of input
579neurons and hn2 be the number of output neurons,
580the time complexity of forward process can be
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581 calculated as Oðhn1 �H þH � hn2Þ. The attention
582 layer is a two-layer neural network with the number
583 of input size equal to hn2 and the number of output
584 size is 1. The time consumption is negligible com-
585 paring to the embedding layers. Therefore, the
586 overall time complexity for training process is
587 OðSTLðhn1 �H þH � hn2ÞÞ. For the prediction pro-
588 cess, supposing the number of negative sampling for
589 one user is Ns, the time complexity of prediction is
590 OðNsLðhn1 �H þH � hn2ÞÞ.

591 5 EXPERIMENTS

592 5.1 Experimental Settings

593 5.1.1 Datasets

594 We evaluate the proposed model over the publicly available
595 MovieLens dataset [54] and Amazon dataset [55], [56]. We
596 use the origin Movielens dataset for our experiment. For
597 Amazon dataset, we remove the users who buy less than 10
598 items. The network schema is shown in Fig. 2, and the statis-
599 tics of the datasets are summarized in Table 2.

600 � MovieLens-100K(ML100k)/MovieLens-1M(ML1M) 1:
601 MovieLens datasets have been widely used for movie
602 recommendation. We use the versions ML100K and
603 ML1M. For each movie, we crawl the directors, actors
604 of themovie from IMDb.
605 � Amazon2: This dataset contains users’ rating data in
606 Amazon. In our experiment, we select the items of
607 Electronics categories for evaluation.

608 5.1.2 Evaluation Metric

609 We adopt the leave-one-out method [6], [7] for evaluation.
610 The latest rated item of each user is held out for testing, and
611 the remaining data for training. Following previous
612 works [6], [7], we randomly select 99 items that are not rated
613 by the users as negative samples and rank the 100 sampled
614 items for the users. For a fair comparison with the baseline
615 methods, we use the same negative sample set for each (user,
616 item) pair in the test set for all the methods. We evaluate the
617 model performance through the Hit Ratio (HR) and the Nor-
618 malized Discounted Cumulative Gain (NDCG) defined in

HR ¼ #hits

#users
;NDCG ¼ 1

#users

X#users

i¼1

1

log2ðpi þ 1Þ ;

(13)
620620

621 where #hits is the number of users whose test item
622 appears in the recommended list and pi is the position of
623 the test item in the list for the ith hit. In our experiments,

624we truncate the ranked list at K 2 ½5; 10; 15; 20� for both
625metrics.

6265.1.3 Baselines

627Besides two basic methods (i.e., ItemPop and Item-
628KNNN [57]), the baselines include two MF methods (MF [2]
629and eALS [13]), one pairwise ranking method (BPR [18]), and
630two neural network basedmethods (DMF [7] andNeuMF [6]).
631In addition, we use SVDhin to leverage the heterogeneous
632information for recomendation, and we also adopt two recent
633HINbasedmethods (FMG
634[11] and HeteRs [58]) as baselines.

635� ItemPop. Items are simply ranked by their popular-
636ity judged by the number of interactions. This is a
637widely-used non-personalized method to bench-
638mark the recommendation performance.
639� ItemKNN [57]. It is a standard item-based collabora-
640tive filtering method.
641� MF [2]. Matrix factorization is a representative latent
642factor model.
643� eALS [13]. It is a state-of-the-art MF method for rec-
644ommendation with the square loss.
645� BPR [18]. The Bayesian Personalized Ranking
646approach optimizes the MF model with a pairwise
647ranking loss, which is tailored to learn from implicit
648feedback.
649� DMF [7]. DMF uses the interaction matrix as the
650input and maps users and items into a common low-
651dimensional space using a deep neural network.
652� NeuMF [6]. It combines the linearity of MF and non-
653linearity of DNNs for modelling user–item latent
654structures. In our experiments, we use the NeuMF
655with pre-trained, We used hyper-parameters fol-
656lowed the instructions in the paper.
657� SVDhin. SVDFeature [59] is designed to efficiently
658solve the feature-based matrix factorization. SVDhin

659uses SVDFeature to leverage the heterogeneous
660information for recommendation. Specifically, we
661extract the heterogeneous information (e.g., attrib-
662utes of movies/items and profiles of users) as the
663input of SVDFeature.
664� HeteRS [58]. HeteRS is a graph-based model which
665can solve general recommendation problem on het-
666erogeneous networks. It models the rich information
667with a heterogeneous graph and considers the rec-
668ommendation problem as a query-dependent node
669proximity problem.
670� FMG [11]. It proposes “MF+FM” framework for the
671HIN-based rating prediction. We modify its optimi-
672zation object as point-wise ranking loss for the top-N
673recommendation.

6745.1.4 Implementation

675We implement the proposed NeuACF and NeuACF++
676based on Tensorflow [60]. We use the same hyper-parame-
677ters for all the datasets. For the neural network, we use a
678three-layer MLP with each hidden layer having 600 hidden
679units. The dimension of latent factors is 64. We randomly
680initialize the model parameters with a xavier initializer [61],

TABLE 2
The Statistics of the Datasets

Dataset #users #items #ratings #density

ML100K 943 1682 100,000 6.304%
ML1M 6040 3706 1,000,209 4.468%
Amazon 3532 3105 57,104 0.521%

1. https://grouplens.org/datasets/movielens/
2. http://jmcauley.ucsd.edu/data/amazon/
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681 and use the Adam [52] as the optimizer. We set the batch
682 size to 1024 and set the learning rate to 0.0005. When train-
683 ing our model, 10 negative instances are sampled for each
684 positive instance. Table 1 illustrates the extracted aspects
685 and corresponding meta-paths. Some meta-paths are also
686 used for FMG. The optimal parameters for baselines are set
687 according to literatures. All the experiments are conducted
688 on a machine with two GPUs (NVIDIA GTX-1080 *2) and
689 two CPUs (Intel Xeon E5-2690 * 2).

690 5.2 Experiment Results

691 5.2.1 Performance Analysis

692 Table 3 shows the experiment results of different methods.
693 Our proposed methods are marked as NeuACF which
694 implements the attention method in Section 4.4 and Neu-
695 ACF++ which implements the self-attention mechanism in
696 Section 4.5, respectively. One can draw the following
697 conclusions.
698 First, one can observe that, NeuACF and NeuACF++
699 achieve all the best performance over all the datasets and
700 criteria. The improvement of the two models comparing to
701 these baselines is significant. This indicates that the aspect
702 level information is useful for recommendations. Besides,
703 NeuACF++ outperforms the NeuACF method in most cir-
704 cumstances. Particularly, the performance of NeuACF++ is
705 significantly improved in Amazon dataset about (þ2% at
706 HR and þ1% at NDCG). This demonstrates the effectiveness
707 of the self-attention mechanism. Since the affinity matrix
708 evaluates the similarity score of different aspects, we can
709 extract the valuable information from the aspect latent
710 factors.

711Second, NeuMF, as one neural network based method,
712also performs well on most conditions, while both NeuACF
713and NeuACF++ outperform NeuMF in almost all the cases.
714The reason is probably that multiple aspects of latent factors
715learned by NeuACF and NeuACF++ provide more features
716of users and items. Although FMG also utilizes the same
717features with NeuACF and NeuACF++, the better perfor-
718mance of NeuACF and NeuACF++ implies that the deep
719neural network and the attention mechanisms in NeuACF
720and NeuACF++ may have the better ability to learn latent
721factors of users and items than the “shadow” model in
722FMG.
723We can also observe that MF based methods outperform
724the ItemPop and ItemKNN methods. This indicates that the
725latent factors models can depict the user and item character-
726istics. Moreover, the performance of NeuMF is better than
727MF, which indicates that the non-linear projection can cap-
728ture more information. The performance of BPR is compara-
729ble to NeuMF though it does not utilize the non-linear
730projection. The reason may be that the objective function is
731prone to tackle those ranking problems.

7325.2.2 Impact of Different Aspect-Level Latent Factors

733To analyze the impact of different aspect-level latent factors
734on the algorithm performance, we run NeuACF and Neu-
735ACF++ with individual aspect-level latent factor through
736setting meta-paths. In Fig. 4, for example, UIBIU-IBI means
737that we only learn the brand-aspect latent factor for users
738and items. In addition, we also run NeuACF with the
739“Average”, “Attention” and “Self-Attention” fusion mecha-
740nisms, where “Average” means averaging all the aspect-

TABLE 3
HR@K and NDCG@K Comparisons of Different Methods

Datasets Metrics ItemPop ItemKNN MF eALS BPR DMF NeuMF SVDhin HeteRS FMG NeuACF NeuACF++

ML100K

HR@5 0.2831 0.4072 0.4634 0.4698 0.4984 0.3483 0.4942 0.4655 0.3747 0.4602 0.5097 0.5111
NDCG@5 0.1892 0.2667 0.3021 0.3201 0.3315 0.2287 0.3357 0.3012 0.2831 0.3014 0.3505 0.3519
HR@10 0.3998 0.5891 0.6437 0.6638 0.6914 0.4994 0.6766 0.6554 0.5337 0.6373 0.6846 0.6915

NDCG@10 0.2264 0.3283 0.3605 0.3819 0.3933 0.2769 0.3945 0.3988 0.3338 0.3588 0.4068 0.4092
HR@15 0.5366 0.7094 0.7338 0.7529 0.7741 0.5873 0.7635 0.7432 0.6524 0.7338 0.7813 0.7832

NDCG@15 0.2624 0.3576 0.3843 0.4056 0.4149 0.3002 0.4175 0.4043 0.3652 0.3844 0.4318 0.4324
HR@20 0.6225 0.7656 0.8144 0.8155 0.8388 0.6519 0.8324 0.8043 0.7224 0.8006 0.8464 0.8441

NDCG@20 0.2826 0.3708 0.4034 0.4204 0.4302 0.3151 0.4338 0.3944 0.3818 0.4002 0.4469 0.4469

ML1M

HR@5 0.3088 0.4437 0.5111 0.5353 0.5414 0.4892 0.5485 0.4765 0.3997 0.4732 0.5630 0.5584
NDCG@5 0.2033 0.3012 0.3463 0.3670 0.3756 0.3314 0.3865 0.3098 0.2895 0.3183 0.3944 0.3923
HR@10 0.4553 0.6171 0.6896 0.7055 0.7161 0.6652 0.7177 0.6456 0.5758 0.6528 0.7202 0.7222

NDCG@10 0.2505 0.3572 0.4040 0.4220 0.4321 0.3877 0.4415 0.3665 0.3461 0.3767 0.4453 0.4454
HR@15 0.5568 0.7118 0.7783 0.7914 0.7988 0.7649 0.7982 0.7689 0.6846 0.7536 0.8018 0.8030

NDCG@15 0.2773 0.3822 0.4275 0.4448 0.4541 0.4143 0.4628 0.4003 0.3749 0.4034 0.4667 0.4658
HR@20 0.6409 0.7773 0.8425 0.8409 0.8545 0.8305 0.8586 0.8234 0.7682 0.8169 0.8540 0.8601

NDCG@20 0.2971 0.3977 0.4427 0.4565 0.4673 0.4296 0.4771 0.4456 0.3947 0.4184 0.4789 0.4790

Amazon

HR@5 0.2412 0.1897 0.3027 0.3063 0.3296 0.2693 0.3117 0.3055 0.2766 0.3216 0.3268 0.3429
NDCG@5 0.1642 0.1279 0.2068 0.2049 0.2254 0.1848 0.2141 0.1922 0.1800 0.2168 0.2232 0.2308
HR@10 0.3576 0.3126 0.4278 0.4287 0.4657 0.3715 0.4309 0.4123 0.4207 0.4539 0.4686 0.4933

NDCG@10 0.2016 0.1672 0.2471 0.2441 0.2693 0.2179 0.2524 0.2346 0.2267 0.2595 0.2683 0.2792
HR@15 0.4408 0.3901 0.5054 0.5065 0.5467 0.4328 0.5258 0.5056 0.5136 0.5430 0.5591 0.5948

NDCG@15 0.2236 0.1877 0.2676 0.2647 0.2908 0.2332 0.2774 0.2768 0.2513 0.2831 0.2924 0.3060
HR@20 0.4997 0.4431 0.5680 0.5702 0.6141 0.4850 0.5897 0.5607 0.5852 0.6076 0.6257 0.6702

NDCG@20 0.2375 0.2002 0.2824 0.2797 0.3067 0.2458 0.2925 0.2876 0.2683 0.2983 0.3080 0.3236
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741 level latent factors, “Attention” means fusing latent factors
742 with the proposed attention mechanism in Section 4.4, and
743 “Self-Attention” means fusing latent factors with the self-
744 attention mechanism mentioned in Section 4.5. From the
745 results shown in Figs. 4a and 4b, one can observe that the
746 purchase-history aspect factors (e.g., UMU-MUM and
747 UIU-IUI) usually get the best performance in all the indi-
748 vidual aspects which indicates that the purchase history of
749 users and items usually contains the most important infor-
750 mation. One can also see that “Average”, “Attention” and
751 “Self-Attention” always perform better than individual
752 meta-path, demonstrating fusing all the aspect-level latent
753 factors can improve the performance. In addition, the better
754 performance of “Attention” than “Average” also shows the
755 benefit of the attention mechanism in NeuACF. One can
756 also observe that the “Self-Attention” mechanism always
757 perform better than other methods, which indicates that the
758 self-attention mechanism can fuse different aspect informa-
759 tion more efficiently.
760 Further, in order to validate that the additional informa-
761 tion from different meta-paths has potential to increase the
762 recommendation performance. We conduct experiments
763 with the increase of meta-paths to fuse more information
764 into our proposed models. The results are shown in Figs. 4c
765 and 4d. It demonstrates that the combination of different
766 meta-paths can increase the performance of recommenda-
767 tion. In particular, ML-M2 means the result of fusing
768 aspect-level latent factors extracted from the meta-paths of
769 UMU-MUM and UMAMU-MAM. The performance of ML-
770 M2 outperforms the single meta-path UMU-MUM, which

771is the best result among all the single aspects. ML-M3
772means the result of fusing the meta-paths of UMU-MUM,
773UMAMU-MAM and UMDMU-MDM . Similarly, the result
774is better than ML-M2. Moreover, the performance does not
775improve linearly. Taking the Amazon dataset in Fig. 4d as
776an example, the meta-path UIVIU-IVI in AM-M1, compar-
777ing to the single meta-path UIU-IUI, provides a large
778improvement. However, the meta-path UIBIU-IBI in AM-
779M2 helps little on the performance. This demonstrates that
780different aspect-level meta-paths contain unequal informa-
781tion, so it is essential to automatically fuse aspect-level
782latent factors with attention mechanisms.

7835.2.3 Analysis on Attention

784In order to investigate that whether the attention values
785learned from our proposedmodels NeuACF andNeuACF++
786are meaningful, we explore the correlation between the atten-
787tion values and the recommendation performance of the cor-
788responding meta-path. Generally, we aim to check whether
789the recommendation performance with one meta-path will is
790better when the attention value of thismeta-path is larger.
791To this end, we conduct experiments to analyze the distri-
792butionwith attention values and the recommendation perfor-
793mance of single meta-path. Specifically, we can obtain the
794attention value in each aspect for a user based on NeuACF
795andNeuACF++, and thenwe are able to average all the atten-
796tion values for all the users to obtain the final attention value
797of the aspect. Also, we can get the recommendation results
798only based on this aspect. So for one aspect, we are able to
799check the correlation between its recommendation perfor-
800mance and its attention value. Bascially, the better results
801usually imply that this aspect ismore important to the recom-
802mendation task, and therefore, this aspect should have larger
803attention value. We perform experiments with NeuACF and
804NeuACF++ models respectively. For example, in ML100k
805dataset, we can obtain three attention values from three

Fig. 4. The impact of different aspect-level latent factors. (a) The perfor-
mance of single aspect on MovieLens. “Attention” means the NeuACF
method, and “Self-Attention” means the NeuACF++ method. (b) The
performance of single aspect on Amazon dataset. (c) The performance
of combination of different meta-paths on ML100k dataset. ML-M2 adds
UMDMU-MDM, and ML-M3 adds UMAMU-MAM to ML-M2. (d) The
performance of combination of different meta-paths on Amazon dataset.
AM-M1 adds UIVIU-IVI. AM-M2 and AM-M3 add UIBIU-IBI,
UICIU-ICI, respectively.

Fig. 5. Attention value analysis.
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806 different aspect latent factors UMU-MUM, UMAMU-MAM,
807 andUMDMU-MDM byNeuACF++.We present the result of
808 “Attention Value” and the corresponding single meta-path
809 recommendation results “HR@10” in Fig. 5.
810 One can observe that the attention values of different
811 aspects vary significantly. If the recommendation perfor-
812 mance of one meta-path is higher, the corresponding atten-
813 tion value trends to be larger. Intuitively, this indicates that
814 the aspect information plays a vital role in recomm-
815 endation, and “Average” is insufficient to fuse different
816 aspect-level latent factors. Another interesting observation
817 is that though the distributions of attention values in differ-
818 ent datasets are extremely different, the purchase history
819 (e.g., UMU-MUM and UIU-IUI) always takes a large pro-
820 portion. This is consistent with the results in Section 5.2.2,
821 suggesting that purchase history usually contains the most
822 valuable information.
823 We also present the distribution of attention weights of
824 NeuACF and NeuACF++ on the Movielens dataset in Fig. 6.
825 Fig. 6 indicates that the attention values of different aspects
826 are very different and we can find that attention values of
827 NeuACF++ which adopts self-attention are more stable than
828 NeuACF. The reason of this observation is that the self-atten-
829 tion mechanism is more powerful than vanilla attention net-
830 work to capture the aspect information and assign more
831 reasonable attentionweights to different aspects.

832 5.2.4 Visualization of Different Aspect-Level

833 Latent Factors

834 In our model, we aim to learn the aspect-level latent factors
835 from different meta-paths. For example, we expect that the

836brand-aspect latent factor vvBj for item Ij can be learned from
837the meta-path IBI, and the category-aspect latent factor vvCj
838from the meta-path ICI. To intuitively show whether Neu-
839ACF performs well on this task, we visualize the learned
840aspect-level latent factors on the Amazon dataset. We apply
841t-SNE [62] to embed the high-dimensional aspect-level
842latent factors into a 2-dimensional space, and then visualize
843each item as a point in a two-dimensional space.
844Fig. 7a shows the embedding results for four famous
845electronics Brand: Logitech, Canon, Sony, and Nikon. One can
846observe that the brand-aspect latent factors can clearly sepa-
847rate the four brands, while the history-aspect and category-
848aspect latent factors are mixed with each other. It demon-
849strates the meta-path IBI can learn a good brand-aspect
850latent factors. Similarly, in Fig. 7b, only the category-aspect
851latent factors learned from the meta-path ICI clearly sepa-
852rate the items of different categories including Television,
853Headphones, Laptop and Cameras. The results demonstrate
854that the aspect-level latent factors of items learned by Neu-
855ACF can indeed capture the aspect characteristics of items.

8565.2.5 Parameter Study

857Effect of the Latent Factor Dimensions. In the latent factor mod-
858els, the dimension of the latent factors may have a vital
859impact on the performance of recommendation. Thus we
860study the effect of the latent factor dimension learned from
861the last MLP layer in our proposed model NeuACF and
862NeuACF++. We conduct the experiment on a three-layer
863model, and set the dimensions of the latent factors increas-
864ing from 8 to 256. The results on the ML100k and Amazon
865datasets are shown in Fig. 8. Figs. 8a and 8b illustrate the
866performance curve with different numbers of dimensions of
867NeuACF. One can see that on both datasets the performance
868first increases with the increase of the dimension, and the
869best performance is achieved at round 16-32. Then the
870performance drops if the dimension further increases. Simi-
871larly, Figs. 8c and 8d show the results of NeuACF++. We
872can observe that the best performance of NeuACF++ is
873achieved at round 64 of ML100K and 128 of Amazon.
874Generally speaking, a small dimension of latent factors is
875insufficient to capture the complex relationship of users
876and items.

Fig. 6. The distribution of attention weights of NeuACF and NeuACF++
on the datasets.

Fig. 7. t-SNE embedding with different labels of the learned latent factors
of items for Amazon.

Fig. 8. Performance with different dimensions of latent factors.
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878 layers can usually affect the performance of deep models,
879 we investigate the effect of the number of network hidden
880 layers on our model NeuACF++. We set the number of hid-
881 den layers of NeuACF++ from 3 to 7, and the number of
882 hidden neurons of each layer is set up to 64. The results are
883 illustrated in Fig. 9. As can be seen from Fig. 9a, the perfor-
884 mance of ML100k dataset first increases with the increase of
885 hidden layers. The best performance is achieved when hid-
886 den layers is 5, and then the performance decreases. The
887 performance of NeuACF++ decreases slightly when hidden
888 layers increase in Amazon dataset. The best performance is
889 achieved when hidden layers is 3. The reason may be that a
890 three-layer neural network model is capable to characterize
891 the aspect latent factors in Amazon dataset. When the num-
892 ber of hidden layers increase, the model may be over-fitting.
893 From both cases, we can find that the best depth of our
894 model is about 3 layers. Moreover, the slightly degradation
895 may also demonstrate that it is hard for the deep model to
896 learn the identity mapping [63].
897 Effect of Negative Sampling Ratio. As mentioned above,
898 negative sampling is an effective way to train the neural net-
899 work model instead of using the whole user-item interac-
900 tions. To illustrate the impact of different negative sampling
901 ratios for NeuACF++ model, we conduct experiments with
902 different negative sampling ratios. The results are shown in
903 Fig. 10. The experiments are preformed with the number of
904 negative sampling from 2 to 20 and the increase step is 2.
905 First, Fig. 10 shows that the number of negative sampling
906 has a significant impact on the model performance. In the
907 ML100k dataset, it demonstrates that less (� 4) negative
908 samples per positive instance is insufficient to achieve opti-
909 mal performance. It also reveals that setting the sampling
910 ratio too huge (	 10) may hurt the performance. In Amazon
911 dataset, generally, the performance increases when the
912 number of negative sampling increases. This is probably
913 because of the data sparsity. Table 2 shows that the sparsity
914 of Amazon dataset is about 10 times than ML100k datasets.
915 That means that when the number of negative sampling is 6
916 in ML100k, there are about 30 percent user-item interactions
917 are utilized for the training process. However, even the
918 number of negative sampling is 20 in Amazon dataset, there
919 are only 10 percent user-item interactions.

920 6 CONCLUSION

921 In this paper, we explore aspect-level information for collab-
922 orative filtering. We first propose a novel neural network
923 based aspect-level collaborative filtering model (NeuACF)

924based on different-aspect features extracted from heteroge-
925neous network with meta-paths. NeuACF is able to learn the
926aspect-level latent factors and then fuses themwith the atten-
927tion mechanism. Furthermore, in order to better fuse aspect-
928level information effectively, we propose NeuACF++ which
929employs the self-attention mechanism to learn the impor-
930tance of different aspects. Extensive evaluations demonstrate
931the superior performance of NeuACF andNeuACF++.
932In this paper, we mainly focus on fusing the latent factors
933learned in the last layer of the neural network. In the future,
934we aim to explore new attention mechanism which is able to
935consider all the latent factor information in all the network
936layers, so that we can capture more complete information.
937Moreover, since retraining the model is time-consuming
938and expensive for new meta-paths, another future work is
939to design a effective mechanisms to share the neural net-
940work which has been learned by before the aspect-level
941latent factors.
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