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Abstract

The interactions of users and items in recommender system
could be naturally modeled as a user-item bipartite graph. In
recent years, we have witnessed an emerging research effort
in exploring user-item graph for collaborative filtering meth-
ods. Nevertheless, the formation of user-item interactions typ-
ically arises from highly complex latent purchasing motiva-
tions, such as high cost performance or eye-catching appear-
ance, which are indistinguishably represented by the edges.
The existing approaches still remain the differences between
various purchasing motivations unexplored, rendering the in-
ability to capture fine-grained user preference. Therefore, in
this paper we propose a novel Multi-Component graph con-
volutional Collaborative Filtering (MCCF) approach to dis-
tinguish the latent purchasing motivations underneath the ob-
served explicit user-item interactions. Specifically, there are
two elaborately designed modules, decomposer and com-
biner, inside MCCF. The former first decomposes the edges
in user-item graph to identify the latent components that may
cause the purchasing relationship; the latter then recombines
these latent components automatically to obtain unified em-
beddings for prediction. Furthermore, the sparse regularizer
and weighted random sample strategy are utilized to alleviate
the overfitting problem and accelerate the optimization. Em-
pirical results on three real datasets and a synthetic dataset
not only show the significant performance gains of MCCF,
but also well demonstrate the necessity of considering multi-
ple components.

1 Introduction
Currently the overloaded online information overwhelms
users. In order to tackle the information overload problem,
Recommender Systems (RS) are widely employed to guide
users in a personalized way of discovering products or ser-
vices they might be interested in from a large number of pos-
sible alternatives. Due to its importance in practice, recom-
mender systems have been attracting remarkable attention
in both industry and academic research community (Berg,
Kipf, and Welling 2017).
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Figure 1: A toy example of purchasing relationships records
with different purchasing motivations.

For many modern recommender systems, a de facto so-
lution is the Collaborative Filtering (CF) technique, whose
basic assumption is that people who share similar purchase
in the past tend to have similar choice in the future (Koren,
Bell, and Volinsky 2009). Essentially, the user-item interac-
tions can be naturally modeled as a graph (Kalofolias et al.
2014), as exemplified by heterogeneous graph based recom-
mendation (Shi et al. 2016). Therefore, graph convolutional
networks (Defferrard, Bresson, and Vandergheynst 2016;
Kipf and Welling 2016), which have demonstrated their re-
markable ability in graph representation learning, are intro-
duced to recommender systems and achieve promising per-
formance (Berg, Kipf, and Welling 2017; Zheng et al. 2018).
Typically, stacked graph convolutional layers are used on
user-item graph to aggregate user and item features. In this
way, these convolution operations can spread the informa-
tion and fully take advantage of high-order relationship,
thereby effectively alleviating the data sparsity problem in
collaborative filtering.

Despite their enormous success, they all presume that user
purchases items with uniform motivation, and ignore the
fact that the formation of a real recommender system typ-
ically follows a complex and heterogeneous process, driven
by the interactions of multiple latent components. That is to
say, although user-item interactions are all uniformly repre-



sented by the edges in user-item bipartite graph, there can
be many different purchasing motivations for users to pur-
chase items. For instance, different users may have different
purchasing motivations, e.g., some prefer high cost perfor-
mance, while some like eye-catching appearance. Basically,
the user-item interaction system is not dominated by only
one latent component (motivation), so treating all these la-
tent components indistinguishably will inevitably lose some
fine-grained valuable information. Considering the differ-
ences between purchasing motivations can capture more
complex interaction characteristic and comprehensively re-
flect user preference, providing more accuracy recommen-
dation clue.

Figure 1 shows a toy example. The purchasing motiva-
tion of user U1, U3 and U4 is high cost performance, while
userU2’s is eye-catching appearance. If ignoring latent com-
ponents, it is not clear that user U1 will purchase item I3
or I4. However, if we consider latent components, we may
find item I4 is a better recommendation to user U1 be-
cause item I4 has been purchased by value-oriented users,
which is more in line with the user U1 ’s purchasing mo-
tivation. Hence failing to recognize the latent components
underneath interactions may limit the recommendation per-
formance. As a consequence, it is highly desired to design
a new type of multi-component learner which can describe
the fine-grained user preference.

Although it is promising to comprehensively utilize mul-
tiple latent components, it still faces the following two chal-
lenges. (1) How to identify multiple components in a user-
item graph? The user-item interaction system is highly com-
plex, while the multiple components usually can not be di-
rectly observed. We need to effectively discover the cor-
responding latent component causing a specific purchas-
ing relationship. Moreover, the extracted latent components
should reflect different fine-grained user preference and em-
body rich semantics. (2) How to reorganize the multiple la-
tent components to learn the user (item) embedding? Even
if we can extract multiple components, however, different
users may be diverse in the selection of components. There-
fore, effectively fusing these components is still a severe
challenge.

In this paper, we propose a novel Multi-Component
Graph Convolutional Collaborative Filtering (MCCF) ap-
proach, an end-to-end deep model that considers the diver-
sity and heterogeneity of latent components in a uniform
framework. Particularly, the key ingredient of MCCF con-
sists of two modules, decomposer and combiner. Given a
user-item interaction (edge), decomposer is to identify the
latent components by decomposing the edge into multiple
latent spaces with a node-level attention. The combiner is
then to automatically determine the importance of these la-
tent components and combine them to obtain the unified user
(item) embeddings. Moreover, to cope with the overparam-
eterization and overfitting problem, a sparse regularizer is
utilized; to deal with noisy pairwise labels and accelerate
the optimization, a weighted random sample strategy based
on ratings is utilized meanwhile.

We make the following contributions in this paper:
• We first study the problem of exploring multiple la-

tent purchasing components in recommender system
to capture more fine-grained user preference, given
only explicit user-item interaction graph.
• We propose MCCF, a novel collaborative filtering

approach based on graph neural networks, to de-
compose and recombine the latent components un-
derneath the edges of user-item graph. Moreover,
the sparse regularizer and weighted random sample
strategy are utilized to handle overparameterization
and accelerate optimization, respectively.
• We conduct extensive experiments on three real

datasets and one synthetic dataset, which show the
state-of-the-art performance of MCCF and the ne-
cessity of multiple components.

2 Related Work
Our work bridges two very active areas of research: collab-
orative filtering and graph neural networks. Therefore, we
mainly review the most related papers in the two areas.

2.1 Collaborative Filtering
Most popular collaborative filtering algorithms are based
on matrix factorization (MF). Basically, they assume the
rating matrix can be approximated by two low rank ma-
trices. PMF (Mnih and Salakhutdinov 2008) optimizes the
maximum likelihood through minimizing the mean squared
error between the observed entries and the reconstructed
ratings. BiasedMF (Koren, Bell, and Volinsky 2009) im-
proves PMF by incorporating a user and item specific bias,
as well as a global bias. Local low rank matrix approxi-
mation (Lee et al. 2013) reconstructs rating matrix entries
using different combinations of low rank approximations.
Recently, with the surge of deep learning technique, neu-
ral MF models appear, such as AutoRec (Sedhain et al.
2015) where the user’s (item’s) partially observed rating
vector is projected onto a latent space through an encoder
layer and reconstructs using a decoder layer; CF-NADE
(Zheng et al. 2016) drops out part of input space at ran-
dom in every iteration, which can be seen as a denoising
auto-encoder. Another line is to treat the user-item interac-
tions as graph to infer user preference. Early efforts attempt
to leverage the compatibility of graph to fuse additional in-
formation, such as social information (Zhao et al. 2015;
2014) and heterogeneous information (Shi et al. 2016). Re-
cently, deep network models are also employed to extract
refined features from the user-item graph. GC-MC (Berg,
Kipf, and Welling 2017) uses two multi-link graph convo-
lution layers to aggregate user features and item features.
SpectralCF (Zheng et al. 2018) proposes a spectral convolu-
tion operation to discover all possible connectivity between
users and items. All these methods only treat the edge as
a bridge to connect users and items without distinguishing
multiple latent components.

2.2 Graph Neural Networks
Graph neural networks (GNNs) (Gori, Monfardini, and
Scarselli 2005; Scarselli et al. 2008), especially graph con-
volutional networks (Bruna et al. 2013; Henaff, Bruna,
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Figure 2: The framework of Multi-Component Graph Convolutional Collaborative Filtering (MCCF). It takes in the user-item
bipartite graph and predicts user-item interaction ratings. This example assumes that there are two latent components, and
predicts the rating that user U1 would give to item I4.

and LeCun 2015), have been attracting considerable atten-
tion lately, because of their remarkable success in various
graph analysis tasks. The early attempts (Bruna et al. 2013;
Henaff, Bruna, and LeCun 2015) to derive a graph convolu-
tional layer are based on graph spectral theory, graph Fourier
transformation (Shuman et al. 2012) in particular. Then
polynomial spectral filters are used to greatly reduce the
computational cost (Defferrard, Bresson, and Vandergheynst
2016), and the usage of a linear filter makes further simpli-
fication (Kipf and Welling 2016). Along with spectral graph
convolution, directly performing graph convolution in the
spatial domain is also investigated (Duvenaud et al. 2015;
Atwood and Towsley 2016). Later the attention mechanism
(Bahdanau, Cho, and Bengio 2014) is employed to adap-
tively specify weights to the neighbors of a node when per-
forming spatial convolution (Veličković et al. 2017). And
heterogeneous graph attention network (Wang et al. 2019) is
also used to fully consider the different importance of node
and meta-path in the convolution process.

DisenGCN (Ma et al. 2019) is proposed to learn disen-
tangled node representations, which employs a novel neigh-
borhood routing mechanism to find the factor that may have
caused the edge from a given node to one of its neighbors.
However, DisenGCN is a homogeneous graph representa-
tion learning method, which does not distinguish the differ-
ent importance among latent components meanwhile.

3 Methodology
3.1 Overview
Figure 2 shows the overall framework of Multi-Component
graph convolutional Collaborative Filtering (MCCF). As we
can see, the model takes the user-item bipartite graph as in-
put and predicts user-item interaction ratings. Specifically,
the user part will aggregate the purchased item features to
learn user embedding. During the item feature aggregation,

we consider multiple latent components underneath the ex-
plicit user-item interactions through the following two mod-
ules: (1) a decomposer with node-level attention that identi-
fies the latent components from the item feature; (2) a com-
biner with component-level attention that recombines the
above latent components to obtain unified user embedding.
When aggregating the user feature to learn the item embed-
ding, we have the similar procedure as above. Finally, the
MLP layers are applied to the learned user and item embed-
dings to output the rating.

3.2 Decomposer
Here we give a formal definition of the user-item bipartite
graph, followed by the description on the whole model from
the user part, since the user and item parts are dual.

User-Item Bipartite Graph In a recommendation sce-
nario, we can typically model the historical user-item rat-
ings as a user-item bipartite graph G = {U , I,R, E}, where
U and I are the sets of Nu users and Ni items; the rating set
R may contain several ordinal rating levels {1, · · · , R}. For
each edge e = (u, i, r) ∈ E , it represents that there is an ob-
served rating value r from user u to item i. Generally, users
have the feature matrix U = [u1,u2, · · · ,uNu

] ∈ RLu×Nu ,
where Lu is the dimension of user feature; items have fea-
ture matrix P = [p1,p2, · · · ,pNi ] ∈ RLi×Ni , where Li is
the dimension of item feature.

Multi-Component Extraction We assume that the user-
item bipartite graph G is driven by M latent components.
The m-th component captures the m-th latent purchas-
ing motivation in the user-item interactions. Therefore, we
first design M component-specific transformation matrices
for the user and item respectively to extract different fea-
tures that correspond to particular components, i.e. W =
{W1,W2, · · · ,WM} and Q = {Q1,Q2, · · · ,QM}. For



the item i, its m-th item-specific component hi
m can be ex-

tracted as:
hi
m = Qmpi. (1)

Similarly, for user u, its m-th user-specific component sum
can be extracted as:

sum = Wmuu. (2)

Node-Level Attention In the following, we focus on user
u and his purchased item set Pu. For user u, there are M
user-specific components {sum}Mm=1. For the item i ∈ Pu,
it also has M item-specific components {hi

m}Mm=1. The key
insight here is that user u does not need aggregate all the
purchased items to describem-th component. Therefore, we
propose node-level attention mechanism to infer the items
that are actually purchased by user u due to m-th compo-
nent.

Specifically, the possibility of user u purchasing item i
based on the m-th component can be formulated as follows:

euim = attnode(s
u
m,h

i
m;m), (3)

where attnode denotes the deep neural network which per-
forms the node-level attention. Eq. (3) shows that based on
m-th component, the possibility of user u purchasing item
i depends on their own features with this component. Af-
ter obtaining the possibility euim , we normalize it to get the
weight coefficient αui

m via softmax function:

αui
m = softmax

(
euim
)

=
exp

(
σ
(
aT
m ·
[
sum‖hi

m

]))∑
i∈Pu

exp (σ (aT
m · [sum‖hi

m]))
,

(4)
where σ denotes the activation function, ‖ denotes the con-
catenate operation and am is the node-level attention vector
for m-th component.

Finally, for all the items in Pu, by aggregating all their
m-th item-specific components, we can learn the m-th item-
aggregated component zum for user u as follows:

zum = σ

(∑
i∈Pu

αui
m · hi

m

)
. (5)

Now, each user u will have M item-aggregated components
{zum}Mm=1. Please note that, every item-aggregated compo-
nent of user u is aggregated by the features of his purchased
items under this component, thus it is semantic-specific and
able to capture the corresponding purchasing motivation
represented by the component. Next, we will introduce how
to combine {zum}Mm=1 to learn the final user embedding.

3.3 Combiner
It is well recognized that a user’s purchasing behavior is usu-
ally driven by one or some motivations, which can be re-
flected by the learned item-aggregated components. There-
fore, different components should have different contribu-
tions to learn the user embedding, motivating us to pro-
pose a combiner with component-level attention mecha-
nism to automatically learn the importance of different item-
aggregated components.

Component-Level Attention Taking M item-aggregated
components of user u as input, we aim to learn the weights of
each item-aggregated component (βu

1 , β
u
2 , · · · , βu

M ) as fol-
lows:

(βu
1 , β

u
2 , · · · , βu

M ) = attcom (zu1 , z
u
2 , · · · , zuM ) , (6)

where attcom denotes the deep neural network which per-
forms the component-level attention. It shows that the
component-level attention can differentiate the importance
of item-aggregated components.

Considering that the importance of the m-th item-
aggregated component βu

m should also depend on the user
u, we first concatenate zum and sum, and learn their unified
embedding as follows:

du
m = σ (Cm · [zum‖sum] + bm) , (7)

where Cm is the weight matrix and bm is the bias vector.
Then with a component-level attention vector q, the impor-
tance of the m-th item-aggregated component, denoted as
wm, is shown as follows:

wm = σ
(
qT · du

m + b
)
, (8)

where b is bias. Note that parameters q and b are shared for
all users and item-aggregated components, which is because
there are some similar decision patterns in human nature
while purchasing the items. We then normalize wm via soft-
max function to obtain the weight of m-th item-aggregated
component βu

m as follows:

βu
m =

exp (wm)∑M
k=1 exp (wk)

. (9)

Obviously, the higher βu
m, the purchasing relationship more

likely to be caused by the m-th purchasing component.
With these learned weights, we can fuse these item-

aggregated components to obtain the final embedding zu of
user u as follows:

zu =

M∑
m=1

βu
m · zum. (10)

Remark: We elaborately describe the user representation
learning process here. Because the item representation learn-
ing is a dual process, we omit it for brevity.

3.4 Rating Prediction
Once obtaining the final embeddings of user u and item i
from the user and item part separately (i.e., zu and vi), we
concatenate them and make it pass through MLP to predict
the rating r′ui from u to i as:

g1 = [zu‖vi] , (11)
g2 = σ (W2 · g1 + b2) , (12)

· · · (13)
gl−1 = σ (Wl · gl−1 + bl) , (14)

r′ui = wT · gl−1, (15)

where l is the index of a hidden layer.



3.5 Optimization
Objective Function Since the task is the rating prediction,
the primary goal is to minimize the difference of predicted
ratings and ground truth:

Lr =
1

2|O|
∑

(u,i)∈O

(r′ui − rui)
2
, (16)

whereO is the set of observed ratings, and rui is the ground
truth rating by the user u on the item i.

Then it is worth noting that to alleviate overparametriza-
tion and overfitting, the multiple components should be
properly regularized. Therefore, we employ the L0 regular-
ization (Louizos, Welling, and Kingma 2017) to our objec-
tive function. By sparsifying the multi-component extraction
matrices W and Q, we can avoid unnecessary resources and
alleviate overfitting, because irrelevant degrees of freedom
are pruned away. The final objective function is as follows:

min
Θ
L = Lr + λ ‖θ‖0 , (17)

where Θ denotes the model parameter set, θ = {W,Q} and
λ is a hyper-parameter to balance the rating loss and sparse
regularization.

Sample Strategy It is well known that items with high rat-
ings better reflect user preference, and we may not need to
aggregate all the purchased items of users in practice. There-
fore, we employ a weighted random sampling. The sampling
can pay more attention on high-rating user-item pairs and
accelerate model optimization meanwhile.

Specifically, we calculate the average degree Nu (N i) of
user (item) node in the bipartite graph, which is used as the
user (item) threshold. When the number of neighbors ex-
ceeds the threshold, the sample strategy is applied, otherwise
all neighbors are retained. The sampling process (Efraimidis
and Spirakis 2006) is as follows:

u ∼ U(0, 1), (18)

k = u
1
r , (19)

where U denotes the uniform distribution, r denotes the rat-
ing and k is the generated weighted random number. We
generate a corresponding k for every neighbor, then sort
them in the descending order. Finally, we select top-Nu (N i)
neighbors for the convolution operation.

4 Experiments
We perform experiments on three real datasets and a syn-
thetic dataset to evaluate our proposed model and answer
the following questions:
• Q1: How does MCCF perform as compared with

state-of-the-art collaborative filtering methods?
• Q2: Does the embedding learned from multiple

components have stronger representation capabil-
ity than the undecomposed? Could multiple compo-
nents capture some latent semantics?
• Q3: How do different hyper-parameters settings af-

fect MCCF?

4.1 Experimental Settings
Datasets We conduct experiments on three real datasets:
MovieLens, Amazon and Yelp, which are publicly accessi-
ble and vary in terms of domain, size and sparsity.
• MovieLens-100k: A widely adopted benchmark

dataset in movie recommendation, which contains
100,000 ratings from 943 users to 1, 682 movies.
• Amazon: A widely used product recommendation

dataset, which contains 65, 170 ratings from 1, 000
users to 1, 000 items.
• Yelp: A local business recommendation dataset,

which contains 30, 838 ratings from 1, 286 users to
2, 614 items.

For each dataset, we randomly select 80% of historical rat-
ings as training set, and treat the remaining as test set.

Baselines We compare MCCF with several state-of-the-
arts, including matrix factorization methods: PMF (Mnih
and Salakhutdinov 2008), BiasMF (Koren, Bell, and Volin-
sky 2009) and LLORMA-Local (Lee et al. 2013); auto-
encoders based methods: AUTOREC (Sedhain et al. 2015)
and CF-NADE (Zheng et al. 2016); graph convolutional net-
works based collaborative filtering model: GC-MC (Berg,
Kipf, and Welling 2017). Typically, we use I-AUTOREC
and I-CF-NADE to represent the item-based setting, which
has better performance than the user-based. In addition,
we also adopt two variants of MCCF (MCCF-nd and
MCCF-cmp) as baselines to analyze the role of hierarchical
attention. Specifically, MCCF-nd removes the node-level
attention in decomposer, while MCCF-cmp removes the
component-level attention in combiner.

Implementation We consider the feature matrix X as
the adjacency matrix. And we vary the number of com-
ponents K in range {1, 2, 3, 4} and the embedding di-
mension d in range {8, 16, 32, 64, 128}. For neural net-
work, we empirically employ two layers for all the neu-
ral parts and the activation function as ReLU. We ran-
domly initialize the model parameters with a Gaussian
distribution N (0, 0.1), then use the Adam as the opti-
mizer. The batch size and learning rate are searched in
{64, 128, 256, 512} and {0.0005, 0.001, 0.002, 0.0025}, re-
spectively. Meanwhile, the dropout is applied to our model
except for multi-component extraction, and the dropout rate
is tested in {0.1, 0.4, 0.5, 0.6}. The parameters for L0 regu-
larization are set according to literature (Louizos, Welling,
and Kingma 2017). All the baselines are initialized as the
corresponding papers, and in terms of neural network mod-
els we use the same embedding dimension for fair compar-
ison. Then they are carefully tuned to achieve optimal per-
formance. We adopt two widely-used evaluation protocols:
Root Mean Squard Error (RMSE) and Mean Absolute Er-
ror (MAE) as evaluation metrics. We repeat five runs with
random initialization for all models and report the average
results.

4.2 Performance Comparison (Q1)
We first compare the recommendation performance of all
methods. Table 1 shows the overall rating prediction error.



Table 1: Performance comparison of rating prediction. The smaller values, the better performance.
Models PMF BiasMF LLORMA-Local I-AUTOREC I-CF-NADE GC-MC MCCF-nd MCCF-cmp MCCF

Yelp RMSE 0.3967 0.3902 0.3890 0.3817 0.3857 0.3850 0.3836 0.3806 0.3806
MAE 0.1571 0.1616 0.1547 0.1201 0.1427 0.1354 0.1286 0.1029 0.1029

Amazon RMSE 0.9339 0.9028 0.9019 0.9213 0.8987 0.8946 0.8942 0.8919 0.8876
MAE 0.7113 0.6759 0.6725 0.7064 0.6565 0.6619 0.6595 0.6483 0.6428

Movielens RMSE 0.9638 0.9257 0.9313 0.9435 0.9229 0.9145 0.9203 0.9142 0.9070
MAE 0.7559 0.7258 0.7286 0.7370 0.7168 0.7165 0.7160 0.7081 0.7050

Figure 3: RMSE and MAE on synthetic user-item bipartite
graph generated with three latent components.

We have the following observations: (1) Our model MCCF
consistently outperforms all the baselines, suggesting the ef-
fectiveness of MCCF on recommendation. (2) By compar-
ing with MCCF, we find that the performances of MCCF-nd
and MCCF-cmp have various degrees of degeneration ex-
cept for MCCF-cmp on Yelp, for reason that the number
of latent components on Yelp is one according to the opti-
mal experiment setting. These results are consistent with the
two assumptions of MCCF, namely not all purchased items
of one user contribute equally to the different latent compo-
nents and not all latent components have the same impor-
tance to learning the final embeddings. This phenomenon
also demonstrates the benefits of the hierarchical attention.
(3) We observe that I-AUTOREC, I-CF-NADE and GC-MC
generally outperform PMF, BiasMF and LLORMA-Local,
suggesting the power of neural network models. Meanwhile
among these baselines, GC-MC shows quite strong perfor-
mance, which implies that the GNNs are powerful in repre-
sentation learning for graph data.

4.3 Effect of Multiple Components (Q2)
We further generate a synthetic user-item bipartite graph to
investigate the behavior of multiple components. Since the
features of users and items in our model are equal to adja-
cency vectors, different latent components are distinguished
by the sparsity of the adjacency vectors. Thus to generate a
user-item graph with three latent components, we first gen-
erate three user-item subgraphs with different sparsity, each
of which has 300 users and 100 items. User-item pairs in
a user-item subgraph are connected if the absolute value of
the number p sampled from the Gaussian distribution ex-
ceeds the threshold 0.5. Corresponding to three subgraphs,
we sample from three different Gaussian distributions, and
their mean is 0, while variances are 0.5, 5 and 50 respec-
tively. The 300 users among these subgraphs are shared,
while items are disjointed. Then we generate the final syn-
thetic graph with 300 users and 300 items by concatenat-

(a) Node-level attention
weights visualization for
the 3rd epoch.

(b) Component-level atten-
tion weights visualization
for the 3rd epoch.

(c) Node-level attention
weights visualization for
the 10th epoch.

(d) Component-level atten-
tion weights visualization
for the 10th epoch.

Figure 4: Attention weights visualization of the synthetic
dataset on different epochs. Each point indicates one atten-
tion weights distribution of item, and the color of a point
indicates the class of the item.

ing the adjacency matrices of the above three user-item sub-
graphs. And the ground-truth components of items are used
as labels.

Consistency in the Number of Latent Components We
vary the number of components K from 1 to 5, while keep-
ing the other parameters the same, and report the recom-
mendation results in Figure 3. From the results, we find that
as the number of latent components increases from 1 to 3,
MCCF starts to achieve a greater improvement, indicating
the importance of considering multiple components. In par-
ticular, when the number of components K equals to 3, the
best performance is achieved. This demonstrates the implicit
semantic capturing capability of multiple components. How-
ever, when the number of components K continues to grow,
the performance is saturated and even drops.

Attention Weights Visualization The hierarchical atten-
tion mechanism is also a key ingredient of MCCF. There-
fore, to further verify the validity of the hierarchical atten-
tion and the implicit semantic capturing capability of mul-
tiple components, we apply the best performance setting on
synthetic dataset, i.e. the number of components K is 3, and



(a) Yelp. (b) Amazon. (c) MovieLens.

Figure 5: Impact of latent components numbers on three real datasets.

(a) Yelp. (b) Amazon. (c) MovieLens.

Figure 6: Impact of embedding dimensions on three real datasets.

use the attention weights learned by hierarchical attention as
the input to the visualization tool t-SNE (Maaten and Hin-
ton 2008). For the node-level attention, we randomly select
a user u so that he is connected to all items, and visualize
the node-level attention weights {αui

m}Mm=1 on item-specific
components for every item i in Figure 4 (a) and (c). For
the component-level attention, we visualize the component-
level attention weights {βi

m}Mm=1 on user-aggregated com-
ponents for every item i in Figure 4 (b) and (d). Specifi-
cally, according to the generation process of the user-item
graph, we know that items are divided into three disjointed
classes. Based on the MCCF premises, items of the same
class should have similar weights distributions. A good visu-
alization result is that the points of the same class are closer
to each other. At the beginning of model training, the re-
sult is unsatisfactory since the points belonging to different
classes are mixed with each other. And after a few epoches,
we can observe clear clusters of different classes. This again
validates the strong representation power of multiple com-
ponents.

4.4 Parameter Analysis of MCCF (Q3)
As the number of components K plays a pivotal role in
MCCF, we investigate its impact on the performance, and
then we analyze the influence of embedding dimension d.

Impact of Latent Components Numbers To investigate
whether MCCF can benefit from multiple components,
we vary the number of components K in the range of
{1, 2, 3, 4}, while keeping the other parameters the same.
Figure 5 shows the experimental results in real datasets.
We can see that the optimal number of components varies
with the specific dataset. For Yelp, the user-item graph is
extremely sparse, and most ratings are 1 or 2. Therefore,
one component is enough to model latent semantics. As for
Amazon and MovieLens, user-item graphs are much denser
with an even distribution of ratings. At this point, the power

of multiple components is more prominent. Increasing K
leads to performance improvement. After the best perfor-
mance is reached, the improvement tends to become satu-
rated and even drop as K continues to grow, possibly due to
overfitting problem.

Impact of Embedding Dimensions The dimension of
embeddings d is also a key parameter to control the com-
plexity and capacity of MCCF. Therefore, we evaluate how
it affects the recommendation performance. In Figure 6, gen-
erally speaking, as we gradually increase embedding di-
mension d, the recommendation performance grows since
a larger d could enhance the representation capability. Nev-
ertheless, when d is larger than the optimal values, increas-
ing d will hurt the performance. Therefore, we employ the
proper embedding dimension d to balance the trade-off be-
tween performance and complexity.

5 Conclusion
We develop a novel recommender system model called
Multi-Component graph convolutional Collaborative Filter-
ing (MCCF). The idea is to explore the differences between
purchasing motivations underneath the simple edges in user-
item bipartite graph, where edges are decomposed and then
recombined with hierarchical attention to encode the latent
semantics based on the specific user-item pair. In contrast
to standard holistic methods, multiple components signifi-
cantly enrich the representation capability and reflect fine-
grained user preference. Extensive experiments demonstrate
that MCCF not only outperforms existing methods in terms
of recommendation accuracy, but also captures the latent se-
mantics in datasets. In future, we will work on the further
improvement in optimization efficiency. In addition, we are
interested in integrating auxiliary information to advance the
performance, not limited to the structural information of the
user-item graph.
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