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Abstract. Heterogeneous Information Network (HIN) has been widely
adopted in various tasks due to its excellence in modeling complex net-
work data. To handle the additional attributes of nodes in HIN, the
Attributed Heterogeneous Information Network (AHIN) was brought
forward. Recently, clustering on HIN becomes a hot topic, since it is
useful in many applications. Although existing semi-supervised cluster-
ing methods in HIN have achieved performance improvements to some
extent, these models seldom consider the correlations among attributes
which typically exist in real applications. To tackle this issue, we pro-
pose a novel model SCAN for semi-supervised clustering in AHIN. Our
model captures the coupling relations between mixed types of node at-
tributes and therefore obtains better attribute similarity. Moreover, we
propose a flexible constraint method to leverage supervised information
and network information for flexible adaption of different datasets and
clustering objectives. Extensive experiments have shown that our model
outperforms state-of-the-art algorithms.

Keywords: Attributed heterogeneous information network· Semi-supervised
clustering· Coupled attributes.

1 Introduction

Heterogeneous Information Network (HIN) [15], as a new network modeling
method, has drawn much attention due to its ability to model complex objects
and their rich relations. Moreover, in many real HINs, objects are often asso-
ciated with various attributes. For example, in Yelp dataset, where businesses
and users can be regarded as nodes. Business objects are associated with at-
tributes like locations, ratings and business types; besides, users own attributes
including age and gender. Researchers have brought forward the concept of At-
tributed Heterogeneous Information Network [9] (AHIN) to address HINs with
node attributes.

Clustering is a fundamental task in data analysis. Given a set of objects,
the goal is to partition them into clusters such that objects in the same clus-
ters are similar to each other, while objects in different clusters are dissimilar.



Semi-supervised clustering incorporates supervision about clusters into the algo-
rithm in order to improve the clustering results. Till now, many semi-supervised
clustering algorithms for information networks have been proposed. Some semi-
clustering methods [1,6,8] are proposed for semi-supervised clustering in homo-
geneous information networks, where links are assumed to be of the same type.
As for heterogeneous information networks, GNetMine [4], PathSelClus [16] and
SemiRPClus [10] are proposed. All of the algorithms above do not concern the
attributes of nodes. Recently, SCHAIN [9] studies the problem of semi-supervised
clustering in AHIN and achieves state-of-the-art clustering performance.

Although these methods have achieved satisfactory performances to some ex-
tent, they have some obvious shortcomings. First of all, they do not consider the
coupling relationships among object attributes. In the real world, attributes are
associated with each other and have complex relationships addressed as coupling
relationships [10,16]. To illustrate, in a movie dataset, the “budget” and “gross”
attribute of a movie is largely dependent on the “country” attribute. Ignoring
the dependency between attributes will inevitably lead to inferior clustering re-
sults. In addition, previous works cannot flexibly consider the importance of
supervision with datasets while many real applications may need to take into
account the different importance of supervision for different tasks.

To handle these issues, we put forward an innovative model Semi-supervised
Clustering with Coupled Attributes in Attributed Heterogeneous Information
Networks (SCAN). Inspired by the newly emerging non-IID learning [3], we take
one step further to mine the coupled similarity between node attributes, thus
capturing the inter-dependent relationships between attributes. Moreover, we
propose a novel constraint method to flexibly leverage the supervision informa-
tion through which users can adjust the importance of supervised information
for different clustering objectives.

The main contributions of this paper can be summarized as follows:

– To our best knowledge, we are the first to mine the coupling relationships
between node attributes in AHIN. We propose a coupled node similarity
measure to better analyze the inter-dependent relationships between mixed
data types of node attributes.

– We propose a novel approach to use supervision information, which is able
to leverage node similarity and supervision constraint flexibly.

– We conduct extensive experiments on two real-world datasets. The proposed
method is proved to be effective over the state-of-the-art methods.

2 Definitions and Model Overview

2.1 Problem Definition

In this paper, we consider the problem of semi-supervised clustering in AHINs.
The terms are defined as follows.
Definition 1. Attributed Heterogeneous Information Network (AHIN)
[9] Let T = {T1, ..., Tm} be a set of m object types. For each type Ti, let Xi
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Fig. 1: An AHIN (a), its network schema (b), and its node attributes (c)

be the set of objects of type Ti and Ai be the set of attributes defined for
objects of type Ti. An object xj of type Ti is associated with an attribute vector
fj = (fj1 , fj2 , . . . , fj|Ai|

). An AHIN is a graph G = (V,E,A), where V =
!m

i=1 Xi

is a set of nodes, E is a set of links, each representing a binary relation between
two objects in V , and A =

!m
i=1 Ai. If m = 1 (i.e., there is only one object type),

G reduces to a homogeneous information network.
Fig.1a shows an example of movie AHIN consisting of four types of objects:

T={movies (M), actors (A), genres (G), directors (D)}. The network schema [15]
is shown in Fig.1b. In this AHIN, the M , A and D node types are associated
with both numerical and categorical attributes shown in Fig.1c.

A meta-path [15] P : T1
R1−→ · · · Rl−→ Tl+1 defines a composite relation

R = R1 ◦ · · · ◦Rl that relates objects of type T1 to objects of type Tl+1. We say
P is symmetric if the defined relation R is symmetric. Giving a meta-path P, the
multiple specific paths under the meta-path are called path instances denoted
by P . To illustrate, in the AHIN shown in Fig.1a, the meta-path MDM means
two movies are directed by the same director, M1D1M4 is a path instance of the
MDM meta-path. Different meta-paths preserve different semantic meanings in
AHIN.
Definition 2. Semi-supervised clustering in an AHIN [9] Given an AHIN
G = (V,E,A), a supervision constraint (M, C) of must-link set M and the
cannot-link set C, a target object type Ti, the number of clusters k, and a set of
meta-paths PS, the problem of semi-supervised clustering of type Ti objects in G
is to (1) discover an object similarity measure S that is based on object attributes
and meta-paths, and (2) partition the objects in Xi into k disjoint clusters
C = C1, . . . , Ck based on the similarity measure S such that the clustering
results best agree with the constraint (M, C).

2.2 Model Overview

In this section, we will take a brief look at the proposed model SCAN. As in-
troduced in Definition 2.1, the task can be decomposed into two steps, namely
node similarity calculation and clustering. In the following, we will detail the
two steps.



To begin with, our model calculates the similarity of every node pair based
on their attribute similarity and the nodes network connectedness: The former
is obtained by an attribute similarity measure considering coupling relation-
ship amongst attributes, while the latter is derived based on the meta-paths
connecting the object pair. Moreover, SCAN assigns a weight to each object
attribute and meta-path to compute the overall node similarity S, thus enabling
the model to learn different weights for different clustering objectives. As for the
supervision constraint, SCAN proposes a flexible penalty function to leverage
clustering quality and supervision. Finally, SCAN employs the iterative, 2-step
learning process of SCHAIN [9] to determine the optimal weights and cluster
assignments as output.

The rest of the paper is organized as follows: The calculation of coupled
similarity between nodes is explained in Section 3, clustering and weight learning
process are explained in Section 4, extensive experiments along with parameter
discussion are illustrated in Section 5. Finally, we conclude the whole paper in
Section 6.

3 Node Similarity with Coupled Attributes

In this section, we introduce how to calculate the similarity between two nodes
in an AHIN. Given a node pair < xa, xb > of the same node type Ti in an AHIN,
the node similarity between a node pair in an AHIN is twofold: On the one hand,
similarity can be obtained from attribute similarity; on the other hand, similar-
ity can be measured by the connectedness of the given node pair, namely link
similarity. The overall node similarity matrix S can be obtained by aggregating
the coupled attribute similarity matrix SA and the link similarity matrix SL. To
mine the complex coupling relationships between node attributes, we take one
step further to calculate the coupled similarity between node attributes. We will
detail this concept in the following section.

3.1 Coupled Node Attribute Similarity

In this section we explain how to capture the coupling relations between node
attributes. Given a node pair < xa, xb > of type Ti, let fa and fb be the attribute
vectors of xa and xb, respectively (see Definition 1). Recall that Ai is the set of
attributes associated with type Ti objects. We define an attribute weight vector
ω, whose j-th component, ωj , captures the importance of the j-th attribute in
Ai for the clustering task. The entries of SA are calculated by:

SA(xa, xb) =

|Ai|"

j=1

ωj · valSim(faj , fbj). (1)

The valSim() function calculates the similarity between the attribute value faj
and fbj . Since in real world, many nodes are assigned with mixed type of at-



tributes. We define Aij as the j-th attribute type of node Ai and calculate the
value similarity of different attribute types separately.

For numerical attributes, we firstly normalize numerical attribute to [0, 1],
and use Equation (2) to convert distance to similarity. Euclidean distance is
adopted as distance metric in this paper.

valSim(faj , fbj) = 1− d(faj , fbj), if Aij is numerical. (2)

However, categorical attributes are associated with each other in terms of cer-
tain coupling relationships, ignoring attribute value similarity will lead to coarse
similarity [17]. This motivates us to design a coupled similarity measure of cat-
egorical attributes. Thus, we go one step further to mine the coupled value
similarity between categorical attribute values:

valSim(faj , fbj) =(1− η)Sp(faj , fbj)

+ ηSc(faj , fbj), if Aij is categorical.
(3)

We capture two levels of categorical value similarity: The plain similarity Sp to
measure the value difference of the categorical value, and the coupled similarity
Sc to measure the value similarity in terms of couplings. The overall categorical
attribute similarity is obtained by a weighted fusion of Sp and Sc using coupled
coefficient η.

For plain similarity, we use SMS [7], which uses 0s and 1s to distinguish the
similarity between distinct and identical categorical values, to calculate the value
difference. As for the coupled similarity, following IeASV [17], we measure the
co-occurrence of the measured attribute to other attributes. To elaborate, we
bring forward the inter-coupled attribute value similarity.

Definition 3. Inter-coupled attribute value similarity (IAVS) Given
two attribute values faj and fbj from attribute Aij in an AHIN. The inter-
coupled attribute value similarity between attribute values faj and fbj in terms
of attribute Aik is denoted by δj|k(faj , fbj).

Although the definition of IAVS is similar to IeASV, IeASV only handles
categorical data. Since we are dealing with mixed types of data, we generalize
the inter-coupled relative similarity candidate Aik to numerical data. Therefore,
the coupled similarity of two attribute values Sc(faj , fbj) can be obtained by an
aggregated similarity of other attributes:

Sc(faj , fbj) =

#|Ai|−1
k=1,k ∕=j δj|k(faj , fbj)

|Ai|− 1
. (4)

Let us explain the intuition behind the equation by a toy example. In the
movie AHIN shown in Fig 1, suppose we are calculating the coupled similarity
Sc(faj , fbj) between attribute value faj =“USA” and fbj =“UK” of attribute
Aij =“country”. The coupled similarity of “USA” and “UK” will be the ag-
gregated similarity of USA movies and UK movies in terms of other attributes



Aik ∈{“language”, “budget”, “gross”, “IMDB score”} calculated by Equation
(4).

For categorical attribute similarity, we adopt the inter-coupled relative sim-
ilarity based on intersection set (IRSI) [17] to capture the co-occurrence rela-
tionship between categorical attributes. However, IRSI is designed to measure
the dependencies between categorical variables, while the coupling relationships
between categorical and numerical attributes remain undiscussed.

To capture the dependency between a categorical attribute and a numerical
attribute, we define V al(faj , Aik) as the values sets of attribute Aik generated by
the objects with value faj . In our example, if Aik = “gross”, then δj|k(faj , fbj)
stands for the similarity between USA and UK movies in terms of gross respec-
tively. Thus, V al(faj , Aik) and V al(fbj , Aik) stands for the gross values of USA
and UK movies. The task is to judge the similarity between the two distribu-
tions of V al(faj , Aik) and V al(fbj , Aik), the closer the two distributions, the
more similar the two categorical values are. This is a problem of measuring two
finite and continuous distributions.

Inspired by the histogram, we simplify the problem by discretizing the two
distributions to finite discrete distributions. The discretization method can be
any of the methods described in [5]. We define Ψ(Vajk, Pajk) as the discretized
distribution of V al(faj , Aik), where Vajk and Pajk are the discretized value sets
(known as bins in the histogram) of V al(faj , Aik) and its corresponding value
occurrence frequency. For simplicity, we use uniform quantization as our dis-
cretization method in the experiments.

Till now, the dependency between a categorical attribute and a numerical
attribute has been simplified to the similarity between two discrete distributions.
We first calculate the distance between two distributions and then we convert
the distance to similarity. Thus, δj|k(faj , fbj) can be calculated by the following
equation:

δj|k(faj , fbj) =

$
IRSI(faj , fbj , Aik), if Aik is categorical.

1− d(Ψ(Vajk, Pajk),Ψ(Vbjk, Pbjk)), if Aik is numerical.

(5)
Since Aik is numerical, the difference between different discretized sets in Vajk

and Vbjk can be measured by the distance between the corresponding discretized
numerical attribute values (bins in the histogram). To capture this cross-bin
relationship, we adopt the earth mover distance (EMD) [12] to measure the
distance between the two value distributions.

3.2 Link Similarity and Similarity Aggregation

In this section, we calculate the similarity between a node pair in terms of
network connectedness. We adopt the widely used meta-path to calculate link
similarity. Given a meta-path set PS, we define a weight vector λ. Each meta-
path Pj ∈ PS is assigned to a weight λj , the overall link similarity SL is obtained



by a weighting scheme:

SL(xa, xb) =

|PS|"

j=1

λj · SPj
(xa, xb), (6)

SCHAIN [9] uses PathSim [15] to measure the meta-path based similarity SPj

for a given path Pj . However, PathSim is designed for computing the similarity
between symmetric meta-paths. In real applications, asymmetric meta-paths are
also useful and cannot be ignored. To illustrate, in movie networks, MAMDM and
MDMAM are asymmetric yet useful meta-paths which preserve the cooperating
relationship between actors and directors. Thus, we use HeteSim [13] to calculate
SPj

, so that SCAN is capable of handling both symmetric and asymmetric meta-
paths.

SPj (xa, xb) = HeteSim(xa, xb), (7)

The overall node similarity matrix S represents the aggregated similarity of link
similarity and coupled attribute similarity, which can be calculated by a weighted
sum of SA and SL:

S = αSA + (1− α)SL, (8)

where α is a weighting factor that controls the relative importance of the two
similarity matrices.

4 Clustering and Weight Learning

4.1 Leveraging the Supervision

The penalty function is introduced in this part. Recall that our objective is to get
C = C1, . . . , Ck based on the similarity matrix S such that the clustering results
best agree with the constraint (M, C). After generating the similarity matrix
S, we adopt the clustering and optimization framework of SCHAIN. Different
from SCHAIN, we propose a more flexible penalty function to better leverage
the supervised information.

We use a semi-supervised normalized cut [14] to measure the similarity be-
tween clusters. The penalty function of clustering is:

J (λ,ω, {Cr}kr=1) =

k"

r=1

links(Cr,Xi\Cr)

links(Cr,Xi)

− β

k"

r=1

"

(xa,xb)∈M
L(xa)=L(xb)=r

S(xa, xb)

links(Cr,Xi)

+ ρ

k"

r=1

"

(xa,xb)∈C
L(xa)=L(xb)=r

S(xa, xb)

links(Cr,Xi)
.

(9)

This penalty function is composed of two parts:



1. Clustering quality based on the similarity matrix S: Normalized cut [14]

is used to define the similarity between clusters defined as:NC =
#k

r=1
links(Cr,Xi\Cr)
links(Cr,Xi)

, where links(Cp, Cq) =
#

xa∈Cp,xb∈Cq
S(xa, xb). The larger

the similarity between different clusters, the worse the clustering quality.
2. Supervision constraints: For an object pair < xa, xb > belongs to the same

cluster Cr, the presence of < xa, xb > inM indicates good clustering quality;
the presence of < xa, xb > in C indicates bad clustering quality.

For flexibility, we define two supervision importance parameters β and ρ to
balance the influence of supervised information set. The penalty function of
SCHAIN for clustering is equal to Equation (9) with β and ρ assigned to 1.
Thus, SCHAIN regards clustering objective and supervision of M and C as equal
importance. However, while handling different datasets and different clustering
objectives, it is flexible to cluster with different β and ρ. In this paper, we set ρ
to a fixed value 1, and use β as a hyper-parameter. The larger β indicates more
penalty considered for the object pairs in must-link set M.

By defining {zr}kr=1, where each zr is a binary indicator vector of length
n = |Xi|, zr(a) = 1 represents xa is assigned to cluster Cr and 0 otherwise, we
obtain the overall penalty function for clustering:

J (λ,ω, {zr}kr=1) =

k"

r=1

zT
r (D − S −W ◦ S)zr

zT
r Dzr

. (10)

◦ is the Hadamard product for two matrices. W is a constraint matrix of
W ∈ Rn×n, where W (xa, xb) = β for < xa, xb >∈ M, W (xa, xb) = −1 for
< xa, xb >∈ C and 0 otherwise. Furthermore, we add a regularization term to
Equation (10) and get the overall penalty function:

J (λ,ω, {zr}kr=1) =

k"

r=1

zT
r (D − S −W ◦ S)zr

zT
r Dzr

+ γ(‖λ‖2 + ‖ω‖2). (11)

Finally, to find the best clustering, we minimize the penalty function subject to

the following constraints:
#k

r=1 zr(a) = 1;zr(a) ∈ {0, 1};
#|Ai|

l=1 ωl = 1; ωl > 0
and λj > 0. Note that α, β, η and γ are hyper-parameters in the function.

4.2 Model Optimization

There are two objectives to be optimized in the learning process: the clustering
results {zr}kr=1 and the weighting vectors λ and ω. In this section, we introduce
the optimization of our model. Following SCHAIN [9], we use a mutual updating
optimization method. Firstly, given the weights λ and ω, we find the optimal
clustering {zr}kr=1. Secondly, given {zr}kr=1, we find the optimal λ and ω. We
iterate until J is smaller than a given threshold ε. We will briefly explain how
the two update steps are performed.



Step 1: Optimize {zr}k
r=1 given λ and ω

In this step, the task is to find the best clustering {zr}kr=1.We define a matrix Ẑ

with the r-th column of Ẑ equals to D
1
2 zr/(z

T
r Dzr)

1
2 , s.t. ẐT Ẑ = Ik, where Ik

is the identity matrix of Rk×k. Since the weights of meta-paths and attributes,
namely λ and ω, are given, the objective function J (λ,ω, {zr}kr=1) becomes a
function of clustering indicator matrix {zr}kr=1. The minimization of J can be
derived to a trace maximization problem:

max
ẐT Ẑ=Ik

trace(ẐTD− 1
2 (S +W ◦ S)D− 1

2 Ẑ), (12)

which has a closed form solution by calculating top k eigenvectors [2]. K-means
is then adopted to obtain hard clustering results {zr}kr=1.

Step 2: Optimize λ and ω given {zr}k
r=1

In this step, the model finds the best λ and ω given fixed cluster {zr}kr=1. As
proved in SCHAIN [9], minimizing J is equivalent to maximizing:

max
λ,ω

k"

r=1

zT
r (S +W ◦ S)zr

zT
r Dzr

− γ(‖λ‖2 + ‖ω‖2), (13)

which can be rewritten as:

H(λ,ω) = max
λ,ω

f(λ,ω)

g(λ,ω)
, (14)

where f(λ,ω) and g(λ,ω) are two nonlinear multivariate polynomial function.
This can be optimized by solving the following non-linear parametric program-
ming problem: Let f(λ,ω) and g(λ,ω) be two multivariate polynomial func-

tions. For a given µ, find F (µ) = f(λ,ω) − µg(λ,ω), s.t.
#k

r=1 zr(a) = 1;

zr(a) ∈ {0, 1};
#|Ai|

l=1 ωl = 1; ωl > 0 and λj > 0. Readers may refer to
SCHAIN [9] for proving and other details.

To sum up the whole model, SCAN firstly calculates the coupled attribute
node similarity and link similarity between nodes. Secondly, SCAN computes
the overall similarity by aggregating the similarity matrices with weighting vec-
tors λ and ω and a balance factor α. The constraint matrix is generated by
supervision using supervision importance β. Finally, SCAN adopts an iterative
mutual update process to learn the clustering and weighting vectors.

5 Experiments

In this section, we firstly introduce the datasets used in the experiments. Then
we discuss the attribute similarity matrix of the IMDB dataset. Further, we
show the effectiveness of the SCAN model against 6 representative algorithms.
Finally, we explain the influence of different hyper-parameters and the weight
learning process.



5.1 Datasets

Yelp1 This experiment is similar to the experiment of Yelp-Restaurant dataset
used in SCHAIN [9]. The clustering task is to cluster restaurants by three sub-
categories: “Fast Food”, “Sushi Bars” and “American (New) Food”. The AHIN
is composed of 2,614 business objects (B); 33,360 review objects (R); 1,286 user
objects (U) and 82 food relevant keyword objects (K). 5 attributes are consid-
ered: 3 categorical attributes (reservation, service, and parking) and 2 numerical
attributes (review count and quality star). For meta-paths: we choose BRURB
(businesses reviewed by the same user) and BRKRB (businesses receive the same
keyword in the reviews).

IMDB5k2 We extracted an AHIN network from the IMDB5k dataset. The
AHIN is composed of 4 node types: 4,140 movies (M), 4,907 actors(A), 1,867 di-
rectors (D) and 24 Genres (G). The movies are extracted into three types by their
IMDB scores. Each movie has 2 categorical attributes (content rating and coun-
try) and 3 numerical attributes (gross, critic reviews and movie Facebook likes).
Three meta-paths: MAM (movies with the same actor), MGM (movies with the
same genre) and MDM (movies with the same director) are chosen in our experi-
ments for link-based algorithms. Note that, as mentioned before, PathSim based
clustering algorithms cannot handle asymmetric meta-paths, though SCAN is
able to handle asymmetric meta-paths, we choose symmetric meta-paths for the
sake of fairness.

5.2 Discussion of Attribute Value Similarity

(a) Attribute similarity of IMDB-country (b) Attribute similarity of IMDB-ratings

Fig. 2: Attribute value similarity of IMDB

1 http://www.yelp.com/academic dataset
2 https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset



Table 1: The MPAA rating system.
Content rating Description

G General Audiences: All ages admitted.
PG Parental Guidance Suggested: May not be suitable for children.
PG-13 Parents Strongly Cautioned: Inappropriate for children under 13.
R Restricted: Children under 17 requires adult guardian.
Unrated Not Rated or Unrated: The film has not been submitted for a rating.

The SCAN model captures the coupling relationships between attributes and
therefore obtains better node attribute similarity. We will take a closer look at
the attribute value similarity of the IMDB dataset. There are two categorical
attributes in the IMDB dataset, namely “country” and “content ratings”. The
similarity between the attribute values are visualized in Fig.2. Attribute value
pairs with higher similarity are visualized with darker colors.

The attribute similarity of “country” attribute of node type “movie” is shown
in Fig.2a. Top 15 countries in the dataset are analyzed, other countries are com-
bined to the “Others” category. As known, the USA, UK, France, Canada and
Australia are all developed countries while India is a developing country. By min-
ing the dependency between movie attributes, our model successfully discovers
that USA, UK, France, Canada, and Australia are similar countries, while In-
dia is dissimilar to any of the other countries shown in the table. Interestingly,
our algorithm also reveals that New Zealand and India are the most dissimilar
attribute values in the selected countries.

The Motion Picture Association of America (MPAA) film rating system3

is used to rate a film’s suitability for certain audiences based on its content
The attribute similarity of “content rating” attribute of node type “movie” is
shown in Fig.2b. Top 5 genres in the dataset are analyzed (“G”, “PG”, “PG-13”,
“R”, and “Unrated”), other genres are combined to the “Others” category. The
meanings of the rating levels are shown in the Table 1. Generally speaking, our
attribute value similarity obtained is reasonable. To illustrate, our model finds
that “G” is most similar to “PG” and “G” is more similar to “PG-13” than
“R”. Meanwhile, “R” is most similar to “PG-13”, which is its neighbor level in
Table 1; “Others” is somehow similar to other rating levels since its a combined
categorical value. “Unrated” is relatively dissimilar to other rating levels.

5.3 Clustering Performance

We conduct experiments of three groups of comparison algorithms: attribute-
only, link-only and attribute+link. For each group of comparison algorithms, we
consider two algorithms listed as follows.

– Attribute-only: The clustering algorithms in the first group consider only
object attributes. These are traditional methods which ignore the network

3 https://www.mpaa.org/film-ratings/



structure of an AHIN. We choose Spectral-Learning [6] and a semi-supervised
version of normalized cuts [8] as representatives, which are denoted SL and
SNcuts, respectively.

– Link-only These methods utilize only the link information of the network
and they ignore object attribute values. GNetMine [4], PathSelClus [16] are
chosen as representative methods of this category.

– Attribute+Link: Methods of this group use both attribute and link in-
formation. We consider FocusCO [11], SCHAIN [9], and SCAN-C. Since
FocusCO does not consider the heterogeneity of networks, the AHINs are
constructed as homogeneous networks for experiments of FocusCO. The
SCAN-C is another version of our model using CASV [17] as the categori-
cal attribute value similarity measure. Since CASV only considers categorical
data, in the SCAN-C related experiments, numerical attributes are converted
to categorical attributes.

Table 2 shows the clustering performance in terms of NMI for Yelp-Restaurant
and IMDB5k respectively. We run every experiment 10 times and calculate the
average NMI. As can be observed, for both datasets, the clustering performance
of SCAN outperforms other algorithms.

For Yelp-Restaurant, the attribute-only algorithms perform relatively worse
than link-only algorithms, suggesting that link similarity is more significant of
this clustering objective. Since our improvement is mostly on attribute similarity,
SCAN turns out to be slightly better than SCHAIN.

For IMDB, due to the sparsity of the network, the attribute-only algorithms
perform much better than link-only algorithms, indicating that attribute-based
similarity is more significant to the clustering objective. Taking into account
the coupling relationships between attributes, SCAN outperforms other algo-
rithms significantly on IMDB dataset. Additionally, SCAN generally outper-
forms SCAN-C, which proves the importance of mining the coupling relation-
ships between mixed type attributes.

Table 2: NMI Comparison on Yelp-Restaurant and IMDB5k
Dataset seeds SL SNCuts GNetMine PathSelClus FocusCO SCHAIN SCAN-C SCAN

5% 0.156 0.190 0.278 0.564 0.088 0.681 0.683 0.708
10% 0.179 0.192 0.288 0.612 0.087 0.703 0.692 0.727

Yelp 15% 0.289 0.194 0.364 0.632 0.093 0.709 0.714 0.746
20% 0.295 0.198 0.380 0.631 0.090 0.736 0.736 0.754
25% 0.303 0.253 0.399 0.637 0.090 0.742 0.752 0.764

5% 0.118 0.102 0.083 0.085 0.072 0.132 0.180 0.325
10% 0.108 0.191 0.127 0.135 0.075 0.137 0.165 0.335

IMDB5k 15% 0.149 0.175 0.157 0.168 0.082 0.191 0.187 0.370
20% 0.156 0.220 0.157 0.203 0.092 0.223 0.240 0.450
25% 0.415 0.259 0.246 0.247 0.090 0.361 0.371 0.493



(a) Attribute weight learn-
ing

(b) Meta-path weight learn-
ing

(c) Clustering performance

Fig. 3: Weight learning on IMDB

5.4 Weight Learning

SCAN retains the ability of SCHAIN [9] to learn the weights of attributes and
meta-paths. We will take clustering of IMDB dataset for illustration. In the
following discussion, we assume 25% seed objects. Fig.3a and Fig.3b exhibit how
our algorithm learns the weight through iteration for attributes and meta-paths.
From Fig.3c, we see that SCAN identifies that the “Facebook likes” attribute to
be the most useful attribute to cluster movies. As shown in Fig.3b, the weights of
meta-paths remain almost unchanged through optimization, since the network
is really sparse and link similarity does not contribute much to the clustering
task. In Fig.3c, we observe that the overall clustering performance is improving
through iterations and finally to an optimal value.

(a) Varying α (b) Varying β (c) Varying η

Fig. 4: Influence of hyper-parameters on Yelp

5.5 Parameters Discussion

There are three hyper-parameters to be tuned in our model: The balance coeffi-
cient α for link similarity and attribute similarity, the supervision importance β
to leverage constraints, and the coupled coefficient η to balance plain and cou-
pled similarity. The influence of hyper-parameters for Yelp and IMDB are shown
in Fig.4.



Fig.4a shows the relationship between clustering performance and the balance
coefficient α. If α = 0, only link similarity is considered; if α = 1, only attribute
similarity is considered. We can observe that the attribute similarity is more
important for IMDB and link similarity is more important for Yelp in terms of
clustering performance. Therefore, it is better to balance between link similarity
and attribute similarity.

Fig.4b shows the relationship between clustering performance and supervi-
sion importance β. For visualization, we map the value of β from [0,∞] to [0, 1],
and plot 1

β+1 . We can observe that, in both datasets, focusing too much (large β)
on the supervision always lead to inferior results. In Yelp, the optimal β = 1.5,
whilst in IMDB, it is better to set β = 0.43. This result indicates that the im-
portance of supervision in terms of clustering is different, it’s better to leverage
the supervision and node similarity flexibly.

Fig.4c shows the relationship between clustering performance and the cou-
pled coefficient η. If η = 0, plain similarity (SMS [7]) is used as our categorical
value similarity; if η = 1, the plain similarity is ignored and only coupled similar-
ity is concerned. We can observe that, for both datasets, it is better to balance
the plain similarity and the coupled similarity. The optimal values of η for Yelp
and IMDB are 0.5 and 0.7 respectively, which indicates that the attributes from
different datasets have different degree of coupling relationships. For highly cor-
related datasets, high coupled coefficients are recommended.

6 Conclusion

In this paper, we study semi-supervised clustering in attributed heterogeneous
information networks. To mine the coupling relationships between node at-
tributes, we propose a new model SCAN. In our model, We present a coupled
attribute node similarity measure to capture the dependency between mixed at-
tribute types. Furthermore, we use a flexible approach to better leverage the
importance of supervision information and network similarity. Extensive exper-
iments are conducted on two real-world datasets to prove that our model is
capable of capturing the coupling relationships between attributes and outper-
forms other state-of-the-art algorithms.
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