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ABSTRACT
Clustering is a fundamental task in data analysis. Recently, deep

clustering, which derives inspiration primarily from deep learning

approaches, achieves state-of-the-art performance and has attracted

considerable attention. Current deep clustering methods usually

boost the clustering results bymeans of the powerful representation

ability of deep learning, e.g., autoencoder, suggesting that learning

an eective representation for clustering is a crucial requirement.

The strength of deep clustering methods is to extract the useful rep-

resentations from the data itself, rather than the structure of data,

which receives scarce attention in representation learning. Moti-

vated by the great success of Graph Convolutional Network (GCN)

in encoding the graph structure, we propose a Structural Deep

Clustering Network (SDCN) to integrate the structural information

into deep clustering. Specically, we design a delivery operator

to transfer the representations learned by autoencoder to the cor-

responding GCN layer, and a dual self-supervised mechanism to

unify these two dierent deep neural architectures and guide the

update of the whole model. In this way, the multiple structures of

data, from low-order to high-order, are naturally combined with the

multiple representations learned by autoencoder. Furthermore, we

theoretically analyze the delivery operator, i.e., with the delivery

operator, GCN improves the autoencoder-specic representation as

a high-order graph regularization constraint and autoencoder helps

alleviate the over-smoothing problem in GCN. Through compre-

hensive experiments, we demonstrate that our propose model can

consistently perform better over the state-of-the-art techniques.
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1 INTRODUCTION
Clustering, one of the most fundamental data analysis tasks, is to

group similar samples into the same category [5, 23]. Over the past

decades, a large family of clustering algorithms has been devel-

oped and successfully applied to various real-world applications,

such as image clustering [31] and text clustering [1]. Recently, the

breakthroughs in deep learning have led to a paradigm shift in

articial intelligence and machine learning, achieving great success

on many important tasks, including clustering. Therefore, the deep

clustering has caught signicant attention [6]. The basic idea of

deep clustering is to integrate the objective of clustering into the

powerful representation ability of deep learning. Hence learning

an eective data representation is a crucial prerequisite for deep

clustering. For example, [30] uses the representation learned by

autoencoder in K-means; [4, 29] leverage a clustering loss to help

autoencoder learn the data representation with high cluster cohe-

sion [24], and [9] uses a variational autoencoder to learn better

data representation for clustering. To date, deep clustering meth-

ods have achieved state-of-the-art performance and become the de

facto clustering methods.

Despite the success of deep clustering, they usually focus on the

characteristic of data itself, and thus seldom take the structure of

data into account when learning the representation. Notably, the

importance of considering the relationship among data samples

has been well recognized by previous literatures and results in data

representation eld. Such structure reveals the latent similarity

among samples, and therefore provides a valuable guide on learning

the representation. One typical method is the spectral clustering

[23], which treats the samples as the nodes in weighted graph and

uses graph structure of data for clustering. Recently, the emerging

Graph Convolutional Networks (GCN) [11] also encode both of

the graph structure and node attributes for node representation.

In summary, the structural information plays a crucial role in data

https://doi.org/10.1145/3366423.3380214
https://doi.org/10.1145/3366423.3380214
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representation learning. However, it has seldom been applied for

deep clustering.

In reality, integrating structural information into deep cluster-

ing usually needs to address the following two problems. (1) What
structural information should be considered in deep clustering? It is
well known that the structural information indicates the underlying

similarity among data samples. However, the structure of data is

usually very complex, i.e., there is not only the direct relationship

between samples (also known as rst-order structure), but also the

high-order structure. The high-order structure imposes the sim-

ilarity constraint from more than one-hop relationship between

samples. Taking the second-order structure as an example, it im-

plies that for two samples with no direct relationship, if they have

many common neighbor samples, they should still have similar

representations. When the structure of data is sparse, which always

holds in practice, the high-order structure is of particular impor-

tance. Therefore, only utilizing the low-order structure in deep

clustering is far from sucient, and how to eectively consider

higher-order structure is the rst problem; (2)What is the relation
between the structural information and deep clustering? The basic
component of deep clustering is the Deep Neural Network (DNN),

e.g. autoencoder. The network architecture of autoencoder is very

complex, consisting of multiple layers. Each layer captures dierent

latent information. And there are also various types of structural

information between data. Therefore, what is the relation between

dierent structures and dierent layers in autoencoder? One can

use the structure to regularize the representation learned by the

autoencoder in some way, however, on the other hand, one can

also directly learn the representation from the structure itself. How

to elegantly combine the structure of data with the autoencoder

structure is another problem.

In order to capture the structural information, we rst construct

a K-Nearest Neighbor (KNN) graph, which is able to reveal the

underlying structure of the data[16, 17]. To capture the low-order

and high-order structural information from the KNN graph, we

propose a GCN module, consisting of multiple graph convolutional

layers, to learn the GCN-specic representation.

In order to introduce structural information into deep clustering,

we introduce an autoencoder module to learn the autoencoder-

specic representation from the raw data, and propose a delivery

operator to combine it with the GCN-specic representation. We

theoretically prove that the delivery operator is able to assist the

integration between autoencoder and GCN better. In particular,

we prove that GCN provides an approximate second-order graph

regularization for the representation learned by autoencoder, and

the representation learned by autoencoder can alleviate the over-

smoothing issue in GCN.

Finally, because both of the autoencoder and GCN modules will

output the representations, we propose a dual self-supervised mod-

ule to uniformly guide these two modules. Through the dual self-

supervisedmodule, thewholemodel can be trained in an end-to-end

manner for clustering task.

In summary, we highlight the main contributions as follows:

• We propose a novel Structural Deep Clustering Network

(SDCN) for deep clustering. The proposed SDCN eectively

combines the strengths of both autoencoder and GCN with

a novel delivery operator and a dual self-supervised module.

To the best of our knowledge, this is the rst time to apply

structural information into deep clustering explicitly.

• We give a theoretical analysis of our proposed SDCN and

prove that GCN provides an approximate second-order graph

regularization for the DNN representations and the data rep-

resentation learned in SDCN is equivalent to the sum of the

representations with dierent-order structural information.

Based on our theoretical analysis, the over-smoothing issue

of GCN module in SDCN will be eectively alleviated.

• Extensive experiments on six real-world datasets demon-

strate the superiority of SDCN in comparison with the state-

of-the-art techniques. Specically, SDCN achieves signi-

cant improvements (17% on NMI, 28% on ARI) over the best

baseline method.

2 RELATEDWORK
In this section, we introduce the most related work: deep clustering

and graph clustering with GCN.

Deep clustering methods aim to combine the deep representation

learning with the clustering objective. For example, [30] proposes

deep clustering network, using the loss function ofK-means to help

autoencoder learn a "K-means-friendly" data representation. Deep

embedding clustering [29] designs a KL-divergence loss to make

the representation learned by autoencoder surround the cluster

centers closer, thus improving the cluster cohesion. Improved deep

embedding clustering [4] adds a reconstruction loss to the objective

of DEC as a constraint to help autoencoder learn a better data

representation. Variational deep embedding [9] is able to model

the data generation process and clusters jointly by using a deep

variational autoencoder, so as to achieve better clustering results.

[8] proposes deep subspace clustering networks, which uses a novel

self-expressive layer between the encoder and the decoder. It is able

to mimic the "self-expressiveness" property in subspace clustering,

thus obtaining a more expressive representation. DeepCluster [3]

treats the clustering results as pseudo labels so that it can be applied

in training deep neural network with large datasets. However, all

of these methods only focus on learning the representation of data

from the samples themselves. Another important information in

learning representation, the structure of data, is largely ignored by

these methods.

To cope with the structural information underlying the data,

some GCN-based clustering methods have been widely applied.

For instance, [10] proposes graph autoencoder and graph variation

autoencoder, which uses GCN as an encoder to integrate graph

structure into node features to learn the nodes embedding. Deep at-

tentional embedded graph clustering [27] uses an attention network

to capture the importance of the neighboring nodes and employs

the KL-divergence loss from DEC to supervise the training process

of graph clustering. All GCN-based clustering methods mentioned

above rely on reconstructing the adjacency matrix to update the

model, and those methods can only learn data representations from

the graph structure, which ignores the characteristic of the data

itself. However, the performance of this type of methods might be

limited to the overlapping between community structure.
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Figure 1: The framework of our proposed SDCN. X, X̂ are the input data and the reconstructed data, respectively. H(`) and
Z(`) are the representations in the `-th layer in the DNN and GCN module, respectively. Dierent colors represent dierent
representations H(`), learned the by DNNmodule. The blue solid line represents that target distribution P is calculated by the
distribution Q and the two red dotted lines represent the dual self-supervised mechanism. The target distribution P to guide
the update of the DNN module and the GCN module at the same time.

3 THE PROPOSED MODEL
In this section, we introduce our proposed structural deep clustering

network, where the overall framework is shown in Figure 1. We rst

construct a KNN graph based on the raw data. Then we input the

raw data and KNN graph into autoencoder and GCN, respectively.

We connect each layer of autoencoder with the corresponding

layer of GCN, so that we can integrate the autoencoder-specic

representation into structure-aware representation by a delivery

operator. Meanwhile, we propose a dual self-supervised mechanism

to supervise the training progress of autoencoder and GCN. We

will describe our proposed model in detail in the following.

3.1 KNN Graph
Assume that we have the raw data X ∈ RN×d

, where each row

xi represents the i-th sample, and N is the number of samples

and d is the dimension. For each sample, we rst nd its top-K
similar neighbors and set edges to connect it with its neighbors.

There are many ways to calculate the similarity matrix S ∈ RN×N

of the samples. Here we list two popular approaches we used in

constructing the KNN graph:

1) Heat Kernel. The similarity between samples i and j is cal-
culated by:

Si j = e−
‖xi −xj ‖

2

t , (1)

where t is the time parameter in heat conduction equation.

For continuous data, e.g., images.

2) Dot-product.The similarity between samples i and j is cal-
culated by:

Si j = xTj xi . (2)

For discrete data, e.g., bag-of-words, we use the dot-product

similarity so that the similarity is related to the number of

identical words only.

After calculating the similarity matrix S, we select the top-K similar-

ity points of each sample as its neighbors to construct an undirected

K-nearest neighbor graph. In this way, we can get the adjacency

matrix A from the non-graph data.

3.2 DNN Module
As we mentioned before, learning an eective data representation is

of great importance to deep clustering. There are several alternative

unsupervised methods for dierent types of data to learn represen-

tations. For example, denoising autoencoder [26], convolutional

autoencoder [21], LSTM encoder-decoder [20] and adversarial au-

toencoder [19]. They are variations of the basic autoencoder [7].

In this paper, for the sake of generality, we employ the basic au-

toencoder to learn the representations of the raw data in order to

accommodate for dierent kinds of data characteristics. We assume

that there are L layers in the autoencoder and ` represents the layer

number. Specically, the representation learned by the `-th layer

in encoder part, H(`)
, can be obtained as follows:

H(`) = ϕ
(
W(`)

e H(`−1) + b(`)e

)
, (3)

where ϕ is the activation function of the fully connected layers

such as Relu [22] or Sigmoid function,W(`)
e and b(`)e are the weight

matrix and bias of the `-th layer in the encoder, respectively. Besides,

we denote H(0)
as the raw data X.

The encoder part is followed by the decoder part, which is to

reconstruct the input data through several fully connected layers

by the equation

H(`) = ϕ
(
W(`)

d H(`−1) + b(`)d

)
, (4)



WWW ’20, April 20–24, 2020, Taipei, Taiwan Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui

whereW(`)
d and b(`)d are the weight matrix and bias of the `-th layer

in the decoder, respectively.

The output of the decoder part is the reconstruction of the raw

data X̂ = H(L)
, which results in the following objective function:

Lr es =
1

2N

N∑
i=1

‖xi − x̂i ‖22 =
1

2N
| |X − X̂| |2F . (5)

3.3 GCN Module
Autoencoder is able to learn the useful representations from the

data itself, e.g. H(1),H(2), · · · ,H(L)
, while ignoring the relationship

between samples. In the section, we will introduce how to use the

GCN module to propagate these representations generated by the

DNN module. Once all the representations learned by DNN module

are integrated into GCN, then the GCN-learnable representation

will be able to accommodate for two dierent kinds of informa-

tion, i.e., data itself and relationship between data. In particular,

with the weight matrixW, the representation learned by the `-th

layer of GCN, Z(`), can be obtained by the following convolutional

operation:

Z(`) = ϕ(D̃− 1

2 ÃD̃− 1

2 Z(`−1)W(`−1)), (6)

where Ã = A+ I and D̃ii =
∑
j Ãij. I is the identity diagonal matrix

of the adjacent matrix A for the self-loop in each node. As can be

seen from Eq. 6, the representation Z(`−1) will propagate through
the normalized adjacency matrix D̃− 1

2 ÃD̃− 1

2 to obtain the new rep-

resentation Z(`). Considering that the representation learned by

autoencoderH(`−1)
is able to reconstruct the data itself and contain

dierent valuable information, we combine the two representations

Z(`−1) and H(`−1)
together to get a more complete and powerful

representation as follows:

Z̃(`−1) = (1 − ϵ)Z(`−1) + ϵH(`−1), (7)

where ϵ is a balance coecient, and we uniformly set it to 0.5 here.

In this way, we connect the autoencoder and GCN layer by layer.

Then we use Z̃(`−1) as the input of the l-th layer in GCN to

generate the representation Z(`):

Z(`) = ϕ
(
D̃− 1

2 ÃD̃− 1

2 Z̃(`−1)W(`−1)
)
. (8)

As we can see in Eq. 8, the autoencoder-specic representation

H(`−1)
will be propagated through the normailized adjacency ma-

trix D̃− 1

2 ÃD̃− 1

2 . Because the representations learned by each DNN

layer are dierent, to preserve information as much as possible, we

transfer the representations learned from each DNN layer into a

corresponding GCN layer for information propagation, as in Figure

1. The delivery operator works L times in the whole model. We will

theoretically analyze the advantages of this delivery operator in

Section 3.5.

Note that, the input of the rst layer GCN is the raw data X:

Z(1) = ϕ(D̃− 1

2 ÃD̃− 1

2XW(1)). (9)

The last layer of the GCN module is a multiple classication

layer with a softmax function:

Z = so f tmax
(
D̃− 1

2 ÃD̃− 1

2 Z(L)W(L)
)
. (10)

The result zi j ∈ Z indicates the probability sample i belongs to
cluster center j, and we can treat Z as a probability distribution.

3.4 Dual Self-Supervised Module
Now, we have connected the autoencoder with GCN in the neural

network architecture. However, they are not designed for the deep

clustering. Basically, autoencoder is mainly used for data represen-

tation learning, which is an unsupervised learning scenario, while

the traditional GCN is in the semi-supervised learning scenario.

Both of them cannot be directly applied to the clustering problem.

Here, we propose a dual self-supervised module, which unies

the autoencoder and GCN modules in a uniform framework and

eectively trains the two modules end-to-end for clustering.

In particular, for the i-th sample and j-th cluster, we use the

Student’s t-distribution [18] as a kernel to measure the similarity

between the data representation hi and the cluster center vector

µ j as follows:

qi j =
(1 +

hi − µ j
2 /v)−v+1

2∑
j′(1 +

hi − µ j′
2 /v)−v+1

2

, (11)

where hi is the i-th row of H(L)
, µ j is initialized by K-means on

representations learned by pre-train autoencoder and v are the

degrees of freedom of the Student’s t-distribution. qi j can be con-

sidered as the probability of assigning sample i to cluster j, i.e.,
a soft assignment. We treat Q = [qi j ] as the distribution of the

assignments of all samples and let v=1 for all experiments.

After obtaining the clustering result distribution Q , we aim to

optimize the data representation by learning from the high con-

dence assignments. Specically, we want to make data representa-

tion closer to cluster centers, thus improving the cluster cohesion.

Hence, we calculate a target distribution P as follows:

pi j =
q2i j/fj∑
j′ q

2

i j′/fj′
, (12)

where fj =
∑
i qi j are soft cluster frequencies. In the target distribu-

tion P , each assignment in Q is squared and normalized so that the

assignments will have higher condence, leading to the following

objective function:

Lclu = KL(P | |Q) =
∑
i

∑
j
pi j loд

pi j

qi j
. (13)

By minimizing the KL divergence loss between Q and P distribu-

tions, the target distribution P can help the DNN module learn a

better representation for clustering task, i.e., making the data rep-

resentation surround the cluster centers closer. This is regarded as

a self-supervised mechanism
1
, because the target distribution P is

calculated by the distribution Q , and the P distribution supervises

the updating of the distribution Q in turn.

As for training the GCN module, one possible way is to treat the

clustering assignments as the truth labels [3]. However, this strategy

will bring noise and trivial solutions, and lead to the collapse of

the whole model. As mentioned before, the GCN module will also

1
Although some previous work tend to call this mechanism self-training, we prefer to

use the term "self-supervised" to be consistent with the GCN training method.
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provide a clustering assignment distribution Z . Therefore, we can
use distribution P to supervise distribution Z as follows:

Lдcn = KL(P | |Z ) =
∑
i

∑
j
pi j loд

pi j

zi j
. (14)

There are two advantages of the objective function: (1) compared

with the traditional multi-classication loss function, KL divergence

updates the entire model in a more "gentle" way to prevent the data

representations from severe disturbances; (2) both GCN and DNN

modules are unied in the same optimization target, making their

results tend to be consistent in the training process. Because the

goal of the DNN module and GCN module is to approximate the

target distribution P , which has a strong connection between the

two modules, we call it a dual self-supervised mechanism.

Algorithm 1: Training process of SDCN
Input: Input data: X , Graph: G, Number of clusters: K ,

Maximum iterations:MaxIter ;

Output: Clustering results R;
1 Initialize W(`)

e , b
(`)
e ,W

(`)
d , b

(`)
d with pre-train autoencoder;

2 Initialize µ with K-means on the representations learned by

pre-train autoencoder;

3 Initialize W(`)
randomly;

4 for iter ∈ 0, 1, · · · ,MaxIter do
5 Generate DNN representations H(1),H(2), · · · ,H(L)

;

6 Use H(L)
to compute distribution Q via Eq. 11;

7 Calculate target distribution P via Eq. 12;

8 for ` ∈ 1, · · · , L do
9 Use the delivery operator with ϵ=0.5

Z̃(`) = 1

2
Z(`) + 1

2
H(`)

;

10 Generate the next GCN layer representation

Z(`+1) = ϕ
(
D̃− 1

2 ÃD̃− 1

2 Z̃(`)W(`)
д

)
;

11 end
12 Calculate the distribution Z via Eq. 10;

13 Feed H(L)
to the decoder to construct the raw data X;

14 Calculate Lr es , Lclu , Lдcn , respectively;

15 Calculate the loss function via Eq. 15;

16 Back propagation and update parameters in SDCN;

17 end
18 Calculate the clustering results based on distribution Z ;

19 return R;

Through this mechanism, SDCN can directly concentrate two

dierent objectives, i.e. clustering objective and classication ob-

jective, in one loss function. And thus, the overall loss function of

the our proposed SDCN is:

L = Lr es + αLclu + βLдcn, (15)

where α > 0 is a hyper-parameter that balances the clustering

optimization and local structure preservation of raw data and β > 0

is a coecient that controls the disturbance of GCN module to the

embedding space.

In practice, after training until the maximum epochs, SDCN will

get a stable result. Then we can set labels to samples. We choose

the soft assignments in distribution Z as the nal clustering results.

Because the representations learned by GCN contains two dierent

kinds of information. The label assigned to sample i is:

ri = argmax

j
zi j , (16)

where zi j is calculated in Eq. 10.

The algorithm of the whole model is shown in Algorithm 1.

3.5 Theory Analysis
In this section, we will analyze how SDCN introduces structural

information into the autoencoder. Before that, we give the denition

of graph regularization and second-order graph regularization.

Definition 1. Graph regularization [2]. Given a weighted graph
G, the objective of graph regularization is to minimize the following
equation: ∑

i j

1

2

hi − hj
2
2
wi j , (17)

where wi j means the weight of the edge between node i and node j,
and hi is the representation of node i.

Based on Denition 1, we can nd that the graph regularization

indicates that if there is a larger weight between nodes i and j , their
representations should be more similar.

Definition 2. Second-order similarity. We assume that A is the
adjacency matrix of graph G and ai is the i-th column of A. The
second-order similarity between node i and node j is

si j =
aTi aj

‖ai ‖
aj = aTi aj

√
di

√
dj
=

C
√
di

√
dj
, (18)

where C is the number of common neighbors between node i and node
j and di is the degree of node i.

Definition 3. Second-order graph regularization. The objective
of second-order graph regularization is to minimize the equation∑

i , j

1

2

hi − hj
2
2
si j , (19)

where si j is the second-order similarity.

Compared with Denition 1, Denition 3 imposes a high-order

constraint, i.e., if two nodes have many common neighbors, their

representations should also be more similar.

Theorem 1. GCN provides an approximate second-order graph
regularization for the DNN representations.

Proof. Here we focus on the `-th layer of SDCN. hi is the i-
th row of H(`)

, representing the data representation of sample

i learned by autoencoder and
ˆhi = ϕ

(∑
j ∈Ni

hj
√
di
√
dj
W

)
is the

representation hi passing through the GCN layer. Here we assume

that ϕ(x) = x and W = I, and ˆhi can be seen as the average

of neighbor representations. Hence we can divide
ˆhi into three

parts: the node representations
hi
di
, the sum of common neighbor
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representations S =
∑
p∈Ni∩Nj

hp√
dp

and the sum of non-common

neighbor representations Di =
∑
q∈Ni−Ni∩Nj

hq√
dq

, where Ni is

the neighbors of node i. The distance between the representations

ˆhi and ˆhj is:ˆhi − ˆhj

2

=

(hidi −
hj
dj

)
+

(
S
√
di

−
S√
dj
+

)
+

(
Di
√
di

−
Dj√
dj

)
2

≤

hidi −
hj
dj


2

+

�����
√
di −

√
dj

√
di

√
dj

����� ‖S‖
2
+

 Di
√
di

−
Dj√
dj


2

≤

hidi −
hj
dj


2

+

�����
√
di −

√
dj

√
di

√
dj

����� ‖S‖
2
+

( Di
√
di


2

+

 Dj√
dj


2

)
.

(20)

We can nd that the rst term of Eq. 20 is independent of the second-

order similarity. Hence the upper bound of the distance between

two node representations is only related to the second and third

terms. For the second item of Eq. 20, if di � dj ,wi j ≤
√

di
dj
, which

is very small and not consistent with the precondition. If di ≈ dj ,
the eect of the second item is paltry and can be ignored. For the

third item of Eq. 20, if two nodes have many common neighbors,

their non-common neighbors will be very few, and the values of Di√
di


2

and

 Dj√
dj


2

are positively correlated with non-common

neighbors. If the second-order similarity si j is large, the upper

bound of

ˆhi − ˆhj

2

will drop. In an extreme case, i.e. wi j = 1,ˆhi − ˆhj

2

= 1

d

hi − hj

2
. �

This shows that after the DNN representations pass through the

GCN layer, if the nodes with large second-order similarity, GCN

will force the representations of nodes to be close to each other,

which is same to the idea of second-order graph regularization.

Theorem 2. The representation Z (`) learned by SDCN is equiva-
lent to the sum of the representations with dierent order structural
information.

Proof. For the simplicity of the proof, let us assume that ϕ (x) =

x , b(`)e = 0 and W(`)
д = I, ∀` ∈ [1, 2, · · · , L]. We can rewrite Eq. 8

as

Z(`+1) = ÂZ̃(`)

Z(`+1) = (1 − ϵ)ÂZ(`) + ϵÂH(`),
(21)

where Â = D̃− 1

2 ÃD̃− 1

2 . After L-th propagation step, the result is

Z(L) = (1 − ϵ)L ÂLX + ϵ
L∑

`=1

(1 − ϵ)`−1 Â`H(`). (22)

Note that ÂLX is the output of standard GCN, which may suer

from the over-smoothing problem. Moreover, if L → ∞, the left

term tends to 0 and the right term dominants the data representa-

tion. We can clearly see that the right term is the sum of dierent

representations, i.e. H(`)
, with dierent order structural informa-

tion. �

Table 1: The statistics of the datasets.

Dataset Type Samples Classes Dimension

USPS Image 9298 10 256

HHAR Record 10299 6 561

Reuters Text 10000 4 2000

ACM Graph 3025 3 1870

DBLP Graph 4058 4 334

Citeseer Graph 3327 6 3703

The advantages of the delivery operator in Eq. 7 are two-folds:

one is that the data representation Z (`)
learn by SDCN contains

dierent structural information. Another is that it can alleviate the

over-smoothing phenomenon in GCN. Because multilayer GCNs

focus on higher-order information, the GCN module in SDCN is

the sum of the representations with dierent order structural infor-

mation. Similar to [12], our method also uses the fusion of dierent

order information to alleviate the over-smoothing phenomenon

in GCN. However, dierent from [12] treating dierent order ad-

jacency matrices with the same representations, our SDCN gives

dierent representations to dierent order adjacency matrices. This

makes our model incorporate more information.

3.6 Complexity Analysis
In this work, we denote d as the dimension of the input data and

the dimension of each layer of the autoencoder is d1,d2, · · · ,dL .

The size of weight matrix in the rst layer of the encoder isW(1)
e ∈

Rd×d1 . N is the number of the input data. The time complexity of

the autoencoder is O(Nd2d2
1
...d2L). As for the GCNmodule, because

the operation of GCN can be eciently implemented using sparse

matrix, the time complexity is linear with the number of edges |E |.

The time complexity is O(|E|dd1...dL). In addition, we suppose that
there are K classes in the clustering task, so the time complexity of

the Eq. 11 is O(NK + N logN ) corresponding to [29]. The overall

time complexity of our model is O(Nd2d2
1
...d2L+ |E |dd1...dL+NK+

N logN ), which is linearly related to the number of samples and

edges.

4 EXPERIMENTS
4.1 Datasets
Our proposed SDCN is evaluated on six datasets. The statistics of

these datasets are shown in Table 1 and the detailed descriptions

are the followings:

• USPS[13]: The USPS dataset contains 9298 gray-scale hand-
written digit images with size of 16x16 pixels. The features

are the gray value of pixel points in images and all features

are normalized to [0, 2].

• HHAR[25]: The Heterogeneity Human Activity Recogni-

tion (HHAR) dataset contains 10299 sensor records from

smart phones and smart watches. All samples are partitioned

into 6 categories of human activities, including biking, sit-

ting, standing, walking, stair up and stair down.

• Reuters[14]: It is a text dataset containing around 810000

English news stories labeled with a category tree. We use
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Table 2: Clustering results on six datasets (mean±std). The bold numbers represent the best results and the numbers with
asterisk are the best results of the baselines.

Dataset Metric K-means AE DEC IDEC GAE VGAE DAEGC SDCNQ SDCN

USPS

ACC 66.82±0.04 71.04±0.03 73.31±0.17 76.22±0.12∗ 63.10±0.33 56.19±0.72 73.55±0.40 77.09±0.21 78.08±0.19
NMI 62.63±0.05 67.53±0.03 70.58±0.25 75.56±0.06∗ 60.69±0.58 51.08±0.37 71.12±0.24 77.71±0.21 79.51±0.27
ARI 54.55±0.06 58.83±0.05 63.70±0.27 67.86±0.12∗ 50.30±0.55 40.96±0.59 63.33±0.34 70.18±0.22 71.84±0.24
F1 64.78±0.03 69.74±0.03 71.82±0.21 74.63±0.10∗ 61.84±0.43 53.63±1.05 72.45±0.49 75.88±0.17 76.98±0.18

HHAR

ACC 59.98±0.02 68.69±0.31 69.39±0.25 71.05±0.36 62.33±1.01 71.30±0.36 76.51±2.19∗ 83.46±0.23 84.26±0.17
NMI 58.86±0.01 71.42±0.97 72.91±0.39 74.19±0.39∗ 55.06±1.39 62.95±0.36 69.10±2.28 78.82±0.28 79.90±0.09
ARI 46.09±0.02 60.36±0.88 61.25±0.51 62.83±0.45∗ 42.63±1.63 51.47±0.73 60.38±2.15 71.75±0.23 72.84±0.09
F1 58.33±0.03 66.36±0.34 67.29±0.29 68.63±0.33 62.64±0.97 71.55±0.29 76.89±2.18∗ 81.45±0.14 82.58±0.08

Reuters

ACC 54.04±0.01 74.90±0.21 73.58±0.13 75.43±0.14∗ 54.40±0.27 60.85±0.23 65.50±0.13 79.30±0.11 77.15±0.21

NMI 41.54±0.51 49.69±0.29 47.50±0.34 50.28±0.17∗ 25.92±0.41 25.51±0.22 30.55±0.29 56.89±0.27 50.82±0.21

ARI 27.95±0.38 49.55±0.37 48.44±0.14 51.26±0.21∗ 19.61±0.22 26.18±0.36 31.12±0.18 59.58±0.32 55.36±0.37

F1 41.28±2.43 60.96±0.22 64.25±0.22∗ 63.21±0.12 43.53±0.42 57.14±0.17 61.82±0.13 66.15±0.15 65.48±0.08

ACM

ACC 67.31±0.71 81.83±0.08 84.33±0.76 85.12±0.52 84.52±1.44 84.13±0.22 86.94±2.83∗ 86.95±0.08 90.45±0.18
NMI 32.44±0.46 49.30±0.16 54.54±1.51 56.61±1.16∗ 55.38±1.92 53.20±0.52 56.18±4.15 58.90±0.17 68.31±0.25
ARI 30.60±0.69 54.64±0.16 60.64±1.87 62.16±1.50∗ 59.46±3.10 57.72±0.67 59.35±3.89 65.25±0.19 73.91±0.40
F1 67.57±0.74 82.01±0.08 84.51±0.74 85.11±0.48 84.65±1.33 84.17±0.23 87.07±2.79∗ 86.84±0.09 90.42±0.19

DBLP

ACC 38.65±0.65 51.43±0.35 58.16±0.56 60.31±0.62 61.21±1.22 58.59±0.06 62.05±0.48∗ 65.74±1.34 68.05±1.81
NMI 11.45±0.38 25.40±0.16 29.51±0.28 31.17±0.50 30.80±0.91 26.92±0.06 32.49±0.45∗ 35.11±1.05 39.50±1.34
ARI 6.97±0.39 12.21±0.43 23.92±0.39 25.37±0.60∗ 22.02±1.40 17.92±0.07 21.03±0.52 34.00±1.76 39.15±2.01
F1 31.92±0.27 52.53±0.36 59.38±0.51 61.33±0.56 61.41±2.23 58.69±0.07 61.75±0.67∗ 65.78±1.22 67.71±1.51

Citeseer

ACC 39.32±3.17 57.08±0.13 55.89±0.20 60.49±1.42 61.35±0.80 60.97±0.36 64.54±1.39∗ 61.67±1.05 65.96±0.31
NMI 16.94±3.22 27.64±0.08 28.34±0.30 27.17±2.40 34.63±0.65 32.69±0.27 36.41±0.86∗ 34.39±1.22 38.71±0.32
ARI 13.43±3.02 29.31±0.14 28.12±0.36 25.70±2.65 33.55±1.18 33.13±0.53 37.78±1.24∗ 35.50±1.49 40.17±0.43
F1 36.08±3.53 53.80±0.11 52.62±0.17 61.62±1.39 57.36±0.82 57.70±0.49 62.20±1.32∗ 57.82±0.98 63.62±0.24

4 root categories: corporate/industrial, government/social,

markets and economics as labels and sample a random subset

of 10000 examples for clustering.

• ACM2
[28]: This is a paper network from the ACM dataset.

There is an edge between two papers if they are written

by same author. Paper features are the bag-of-words of the

keywords. We select papers published in KDD, SIGMOD,

SIGCOMM, MobiCOMM and divide the papers into three

classes (database, wireless communication, data mining) by

their research area.

• DBLP3[28]: This is an author network from theDBLP dataset.

There is an edge between two authors if they are the co-

author relationship. The authors are divided into four areas:

database, data mining, machine learning and information

retrieval. We label each author’s research area according

to the conferences they submitted. Author features are the

elements of a bag-of-words represented of keywords.

• Citeseer4: It is a citation network which contains sparse

bag-of-words feature vectors for each document and a list

of citation links between documents. The labels contain six

area: agents, articial intelligence, database, information

retrieval, machine language, and HCI.

2
http://dl.acm.org/

3
https://dblp.uni-trier.de

4
http://citeseerx.ist.psu.edu/index

4.2 Baselines
We compare our proposed method SDCN with three types of meth-

ods, including clustering methods on raw data, DNN-based cluster-

ing methods and GCN-based graph clustering methods.

• K-means [5]: A classical clustering method based on the

raw data.

• AE [7]: It is a two-stage deep clustering algorithm which

performsK-means on the representations learned by autoen-

coder.

• DEC [29]: It is a deep clustering method which designs a

clustering objective to guide the learning of the data repre-

sentations.

• IDEC [4]: This method adds a reconstruction loss to DEC,

so as to learn better representation.

• GAE & VGAE [10]: It is an unsupervised graph embedding

method using GCN to learn data representations.

• DAEGC [27]: It uses an attention network to learn the node

representations and employs a clustering loss to supervise

the process of graph clustering.

• SDCNQ : The variant of SDCN with distribution Q .
• SDCN: The proposed method.

Metrics.We employ four popular metrics: Accuracy (ACC), Nor-

malized Mutual Information (NMI), Average Rand Index (ARI) and

macro F1-score (F1). For each metric, a larger value implies a better

clustering result.

Parameter Setting. We use the pre-trained autoencoder for all

DNN-based clustering methods (AE+K-means, DEC, IDEC) and



WWW ’20, April 20–24, 2020, Taipei, Taiwan Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui

SDCN. We train the autoencoder end-to-end using all data points

with 30 epochs and the learning rate is 10
−3
. In order to be con-

sistent with previous methods [4, 29], we set the dimension of the

autoencoder to d-500-500-2000-10, where d is the dimension of

the input data. The dimension of the layers in GCN module is the

same to the autoencoder. As for the GCN-based methods, we set

the dimension of GAE and VAGE to d-256-16 and train them with

30 epochs for all datasets. For DAEGC, we use the setting of [27].

In hyperparameter search, we try {1, 3, 5} for the update interval

in DEC and IDEC, {1, 0.1, 0.01, 0.001} for the hyperparameter γ
in IDEC and report the best results. For our SDCN, we uniformly

set α = 0.1 and β = 0.01 for all the datasets because our method

is not sensitive to hyperparameters. For the non-graph data, we

train the SDCN with 200 epochs, and for graph data, we train it

with 50 epochs. Because the graph structure with prior knowledge,

i.e. citation network, contains more information than KNN graph,

which can accelerate convergence speed. The batch size is set to

256 and learning rate is set to 10
−3

for USPS, HHAR, ACM, DBLP

and 10
−4

for Reuters, Citeseer. For all methods using K-means algo-

rithm to generate clustering assignments, we initialize 20 times and

select the best solution. We run all methods 10 times and report the

average results to prevent extreme cases.

4.3 Analysis of Clustering Results
Table 2 shows the clustering results on six datasets. Note that in

USPS, HHAR and Reuters, we use the KNN graph as the input of

the GCN module, while for ACM, DBLP and Citeseer, we use the

original graph. We have the following observations:

• For each metric, our methods SDCN and SDCNQ achieve

the best results in all the six datasets. In particular, compared

with the best results of the baselines, our approach achieves

a signicant improvement of 6% on ACC, 17% on NMI and

28% on ARI averagely. The reason is that SDCN successfully

integrates the structural information into deep clustering

and the dual self-supervised module guides the update of

autoencoder and GCN, making them enhance each other.

• SDCN generally achieves better cluster results than SDCNQ .

The reason is that SDCN uses the representations containing

the structural information learned by GCN, while SDCNQ
mainly uses the representations learned by the autoencoder.

However, in Reuters, the result of SDCNQ is much better

than SDCN. Because in the KNN graph of Reuters, many

dierent classes of nodes are connected together, which

contains much wrong structural information. Therefore, an

important prerequisite for the application of GCN is to con-

struct a KNN graph with less noise.

• Clustering results of autoencoder based methods (AE, DEC,

IDEC) are generally better than those of GCN-based methods

(GAE, VAGE, DAEGC) on the data with KNN graph, while

GCN-based methods usually perform better on the data with

graph structure. The reason is that GCN-based methods only

use structural information to learn the data representation.

When the structural information in the graph is not clear

enough, e.g. KNN graph, the performance of the GCN-based

methods will decline. Besides, SDCN integrates structural in-

formation into deep clustering, so its clustering performance

is better than these two methods.

• Comparing the results of AE with DEC and the results of

GAE with DAEGC, we can nd that the clustering loss func-

tion, dened in Eq. 13, plays an important role in improving

the deep clustering performance. Because IDEC and DAEGC

can be seen as the combination of the clustering loss with AE

and GAE, respectively. It improves the cluster cohesion by

making the data representation closer to the cluster centers,

thus improving the clustering results.

4.4 Analysis of Variants
We compare our model with two variants to verify the ability of

GCN in learning structural information and the eectiveness of the

delivery operator. Specically, we dene the following variants:

60
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USPS HHAR Reuters

SDCN
SDCN-w/o
SDCN-MLP

(a) Datasets with KNN graph

60
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ACM DBLP Citeseer

SDCN
SDCN-w/o
SDCN-MLP

(b) Datasets with original graph

Figure 2: Clustering accuracy with dierent variants

• SDCN-w/o: This variant is SDCN without delivery operator,

which is used to validate the eectiveness of our proposed

delivery operator.

• SDCN-MLP: This variant is SDCN replacing the GCN mod-

ule with the same number of layers of multilayer perceptron

(MLP), which is used to validate the advantages of GCN in

learning structural information.

From Figure 2, we have the following observations:

• In Figure 2(a), we can nd that the clustering accuracy of

SDCN-MLP is better than SDCN-w/o in Reuters and achieves

similar results in USPS and HHAR. This shows that in the

KNN graph, without delivery operator, the ability of GCN

in learning structural information is severely limited. The

reason is that multilayer GCN will produce a serious over-

smoothing problem, leading to the decrease of the clustering

results. On the other hand, SDCN is better than SDCN-MLP.

This proves that the delivery operator can help GCN alleviate

the over-smoothing problem and learn better data represen-

tation.

• In Figure 2(b), we can nd that the clustering accuracy of

SDCN-w/o is better than SDCN-MLP in all three datasets

containing original graph. This shows that GCN has the pow-

erful ability in learning data representation with structural

information. Besides, SDCN performs better than SDCN-w/o

in the three datasets. This proves that there still exists over-

smoothing problem in the SDCN-w/o, but the good graph

structure still makes SDCN-w/o achieve not bad clustering

results.
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Table 3: Eect of dierent propagation layers (L)

ACC NMI ARI F1

ACM

SDCN-4 90.45 68.31 73.91 90.42
SDCN-3 89.06 64.86 70.51 89.03

SDCN-2 89.12 66.48 70.94 89.04

SDCN-1 77.69 51.59 50.13 74.62

DBLP

SDCN-4 68.05 39.51 39.15 67.71
SDCN-3 65.11 36.81 36.03 64.98

SDCN-2 66.72 37.19 37.58 65.37

SDCN-1 64.19 30.69 33.62 60.44

Citeseer

SDCN-4 65.96 38.71 40.17 61.62
SDCN-3 59.18 32.11 32.16 55.92

SDCN-2 60.96 33.69 34.49 57.31

SDCN-1 58.58 32.91 32.31 52.38

• Comparing the results in Figure 2(a) and Figure 2(b), we can

nd no matter on which types of datasets, SDCN achieves

the best performance, compared with SDCN-w/o and SDCN-

MLP. This proves that both the delivery operator and GCN

play an important role in improving clustering quality.

4.5 Analysis of Dierent Propagation Layers
To investigate whether SDCN benets from multilayer GCN, we

vary the depth of the GCN module while keeping the DNN module

unchanged. In particular, we search the number of layers in the

range of {1, 2, 3, 4}. There are a total of four layers in the encoder

part of the DNN module in SDCN, generating the representation

H(1)
, H(2)

, H(3)
, H(4)

, respectively. SDCN-L represents that there is

a total of L layers in the GCN module. For example, SDCN-2 means

that H(3)
, H(4)

will be transferred to the corresponding GCN lay-

ers for propagating. We choose the datasets with original graph to

verify the eect of the number of the propagation layers on the clus-

tering eect because they have the nature structural information.

From Table 3, we have the following observations:

• Increasing the depth of SDCN substantially enhances the

clustering performance. It is clear that SDCN-2, SDCN-3 and

SDCN-4 achieve consistent improvement over SDCN-1 in

all the across. Besides, SDCN-4 performs better than other

methods in all three datasets. Because the representations

learned by each layer in the autoencoder are dierent, to

preserve information as much as possible, we need to put

all the representations learned from autoencoder into corre-

sponding GCN layers.

• There is an interesting phenomenon that the performance

of SDCN-3 is not as good as SDCN-2 in all the datasets. The

reason is that SDCN-3 uses the representation H(2)
, which is

a middle layer of the encoder. The representation generated

by this layer is in the transitional stage from raw data to se-

mantic representation, which inevitably loses some underly-

ing information and lacks of semantic information. Another

reason is that GCN with two layers does not cause serious

over-smoothing problems, proved in [15]. For SDCN-3, due

to the number of layers is not enough, the over-smoothing

term in Eq. 22 is not small enough so that it is still plagued

by the over-smoothing problems.
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Figure 3: Clustering accuracy with dierent ϵ

4.6 Analysis of balance coecient ϵ
In previous experiments, in order to reduce hyperparameter search,

we uniformly set the balance coecient ϵ to 0.5. In this experiment,

we will explore how SDCN is aected by dierent ϵ on dierent

datasets. In detail, we set ϵ = {0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. Note

that ϵ = 0.0 means the representations in GCN module do not

contain the representation from autoencoder and ϵ = 1.0 represents

that GCN only use the representation H(L)
learned by DNN. From

Figure 4, we can nd:

• Clustering accuracy with parameter ϵ = 0.5 in four datasets

(Reuters, ACM, DBLP, Citeseer) achieve the best perfor-

mance, which shows that the representations of GCNmodule

and DNN module are equally important and the improve-

ment of SDCN depends on the mutual enhancement of the

two modules.

• Clustering accuracy with parameter ϵ = 0.0 in all datasets

performs the worst. Clearly, when ϵ = 0.0, the GCN module

is equivalent to the standard multilayer GCN, which will

produce very serious over-smoothing problem [15], leading

to the decline of the clustering quality. Compared with the

accuracy when ϵ = 0.1, we can nd that even injecting a

small amount of representations learned by autoencoder into

GCN can help alleviate the over-smoothing problem.

• Another interesting observation is that SDCN with parame-

ter ϵ = 1.0 still gets a higher clustering accuracy. The reason

is that although SDCN with parameter ϵ = 1.0 only use the

representation H(L)
, it contains the most important informa-

tion of the raw data. After passing through one GCN layer,
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Figure 4: Training process on dierent datasets
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Figure 5: Clustering results with dierent K

it can still achieve some structural information to improve

clustering performance. However, due to the limitation of

the number of layers, the results are not the best.

4.7 K-sensitivity Analysis
Since the number of the nearest neighborsK is an important param-

eter in the construction of the KNN graph, we design aK-sensitivity
experiment on the datasets with KNN graph. This experiment is

mainly to prove that our model is K-insensitive. Hence we compare

SDCNwith the clusteringmethods focusing on the graph data (GAE,

VGAE, DAEGC). From Figure 5, we can nd that withK={1, 3, 5, 10},
our proposed SDCN is much better than GAE, VGAE and DAEGC,

which proves that our method can learn useful structural infor-

mation even in the graphs containing noise. Another nding is

that these four methods can achieve good performance when K =

3 or K = 5, but in the case of K = 1 and K = 10, the performance

will drop signicantly. The reason is that when K = 1, the KNN

graph contains less structural information and when K = 10, the

communities in KNN graph are over-lapping. In summary, SDCN

can achieve stable results compared with other baseline methods

on the KNN graphs with dierent number of nearest neighbors.

4.8 Analysis of Training Process
In this section, we analyze the training progress in dierent datasets.

Specically, we want to explore how the cluster accuracy of the

three sample assignments distributions in SDCN varies with the

number of iterations. In Figure 4, the red line SDCN-P, the blue

line SDCN-Q and the orange line SDCN-Z represent the accuracy

of the target distribution P , distribution Q and distribution Z , re-
spectively. In most cases, the accuracy of SDCN-P is higher than

that of SDCN-Q, which shows that the target distribution P is able

to guide the update of the whole model. At the beginning, the re-

sults of the accuracy of three distributions all decrease in dierent

ranges. Because the information learned by autoencoder and GCN

is dierent, it may rise a conict between the results of the two

modules, making the clustering results decline. Then the accuracy

of SDCN-Q and SDCN-Z quickly increase to a high level, because

the target distribution SDCN-P eases the conict between the two

modules, making their results tend to be consistent. In addition,

we can see that with the increase of training epochs, the cluster-

ing results of SDCN tend to be stable and there is no signicant

uctuation, indicating the good robustness of our proposed model.

5 CONCLUSION
In this paper, wemake the rst attempt to integrate the structural in-

formation into deep clustering. We propose a novel structural deep

clustering network, consisting of DNN module, GCN module, and

dual self-supervised module. Our model is able to eectively com-

bine the autoencoder-spectic representation with GCN-spectic

representation by a delivery operator. Theoretical analysis is pro-

vided to demonstrate the strength of the delivery operator. We show

that our proposed model consistently outperforms the state-of-the-

art deep clustering methods in various open datasets.
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