
Semi-supervised Co-Clustering on
Attributed Heterogeneous Information Networks

Yugang Jia, Chuan Shia,∗, Yuan Fangb, Xiangnan Kongc, Mingyang Yind

aBeijing University of Posts and Telecommunications, Beijing, China
bSingapore Management University, Singapore

cWorcester Polytechnic Institute, USA
dAlibaba Group, Hangzhou, China

Abstract

Node clustering on heterogeneous information networks (HINs) plays an im-

portant role in many real-world applications. While previous research mainly

clusters same-type nodes independently via exploiting structural similarity search,

they ignore the correlations of different-type nodes. In this paper, we focus on

the problem of co-clustering heterogeneous nodes where the goal is to mine the

latent relevance of heterogeneous nodes and simultaneously partition them into

the corresponding type-aware clusters. This problem is challenging in two as-

pects. First, the similarity or relevance of nodes is not only associated with

multiple meta-path-based structures but also related to numerical and cate-

gorical attributes. Second, clusters and similarity/relevance searches usually

promote each other.

To address this problem, we first design a learnable overall relevance measure

that integrates the structural and attributed relevance by employing meta-paths

and attribute projection. We then propose a novel approach, called SCCAIN,

to co-cluster heterogeneous nodes based on constrained orthogonal non-negative

matrix tri-factorization. Furthermore, an end-to-end framework is developed to

jointly optimize the relevance measures and co-clustering. Extensive experi-
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ments on real-world datasets not only demonstrate that SCCAIN consistently

outperforms state-of-the-art methods but also validate the effectiveness of inte-

grating attributed and structural information for co-clustering.

Keywords: co-clustering, heterogeneous information network, meta-paths,

matrix tri-factorization, semi-supervised learning

1. Introduction

In recent years, heterogeneous information networks (HINs), consisting of

various nodes and multiple relations among these nodes, have been proposed to

model the complex real-world data [1, 2]. Figure 1 illustrates a toy HIN with

different types of nodes such as authors, conferences and papers. Compared5

with traditional homogeneous networks where both nodes and edges belong to

a single type, HINs are able to effectively fuse more structural information and

carry richer semantics. Given the advantage of HINs in modeling real-world

data, many innovative data mining tasks have been performed on HINs.

For clustering on HINs, it is vital to do similarity search among nodes con-10

nected by various paths. As defined in [3] to describe the order of types within

paths, meta-paths have been widely adopted to extract structural semantics

of heterogeneous connections between nodes on HINs. Taking Figure 1 as an

example, given the authors (A), papers (P) and conferences (C), we can utilize

the meta-path A-P-A to capture cooperation of authors (e.g., A1 and A2), while15

adopting the meta-path A-P-C to describe the relation of submission (e.g., A1

and C1). The earlier works [3, 4, 5] are to evaluate the similarity/relevance of

nodes connected by a single meta-path. Recently, considering there are multiple

meta-paths between nodes (e.g., authors can be connected by meta-paths A-P-A

and A-P-C-P-A), it becomes popular to compose multiple meta-paths together20

and automatically learn the importance of these meta-paths via semi-supervised

manners [6, 7, 8]. These methods mainly take advantage of the structural in-

formation on HINs, while ignoring attributes of nodes which can contribute

significantly to the relevance or similarity between nodes.
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Figure 1: A toy example of attributed heterogeneous information network. A, P and C

respectively denote authors, papers and conferences. The attributes of authors are their

interest in research areas including network embedding, anomaly detection, NMF, and co-

clustering, while the attributes of conferences are topics such as clustering, topic modeling,

and recommender systems.

Additional attributed information has been proved beneficial for dealing with25

many data mining tasks. For example, in Figure 1, authors form two clusters

{A1, A2, A3} and {A4, A5} based on the structural information alone. With

additional attributes on authors, more precise, fine-grained clustering is possible,

such as separating A3 from {A1, A2}. Although some studies have explored

attributes on homogeneous networks [9, 10, 11], earlier clustering methods on30

HINs [6] fail to leverage node attributes.

To integrate attributes into HINs, a näıve idea is to represent each attribute

as nodes of a new type [12]. However, only categorical attributes, such as cities

and keywords can be integrated in this way, leaving out ordinal attributes, such

as age and number of co-authors. To describe both ordinal and categorical at-35

tributes in HINs, a better way is to consider attributes of a node as a vector,

where each dimension denotes one attribute [13]. While recent works focus on

similarity search on same-type nodes, they fail to jointly analyze the clusters of

different-type nodes in HINs. Actually, the different-type clusters are usually

associated with each other because of the latent relevance/similarity between40

different-type nodes. For instance, the clusters of authors help to guide confer-

ence clustering and vice versa.

In order to make full use of the relevance for clustering different-type nodes
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and mining latent correlation of clusters at the same time, co-clustering has

been a good choice [14, 15, 16, 17]. Different from traditional clustering meth-45

ods, co-clustering leverages the duality between features and samples to achieve

the simultaneous clustering of features and samples. Moreover, co-clustering

methods have the ability to derive latent correspondence between clusters of

different node types, making the resulting clusters more interpretable. Further-

more, must-link or cannot-link pair-wise constraints [18, 15, 19], which are to50

limit whether nodes should be assigned to the same clusters, have been utilized

to guide co-clustering. Among these methods, non-negative matrix factorization

(NMF) [20, 14, 15, 21] has been commonly adopted. Given a similarity matrix

of different-type nodes, NMF would like to factorize the matrix into several la-

tent non-negative factors and generate both clusters of heterogeneous nodes by55

considering the row and column factors as the distribution of clusters. However,

when dealing with attributed HINs, since there are multiple relevance measures

based on structures and attributes, these previous models are unable to perform

co-clustering on HINs.

Challenges and Insights. In view of the shortcomings in existing method, we60

focus on the problem of co-clustering nodes of different types on attributed HINs.

For instance, as shown in Figure 1, given the links among authors, papers and

conferences as well as several node attributes, our goal is to co-cluster authors

and conferences at the same time by analyzing both structural and attributed

relevance between authors and conferences. We identify two major challenges65

here, and highlight the corresponding insights.

First, it is difficult to make full use of both attributed and structural infor-

mation for relevance search on heterogeneous nodes. On the one hand, struc-

tural relevance alone can be captured by multiple meta-paths while previous

co-clustering methods [15, 16] just focus on the connection of nodes. On the70

other hand, the attributed relevance of different-type nodes cannot be calculated

directly because attributes of heterogeneous nodes contain quite different mean-

ings while current integration [13] just deals with same-typed nodes. Notice that
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both structures and attributes contribute to the overall relevance.

Second, it is desirable to jointly optimize both co-clustering and relevance75

measure with pair-wise constraints. On HINs, there could be must-link and

cannot-link pairwise constraints of nodes to help co-clustering and relevance

measure. For example, on bibliographic graphs, we have constraints on author-

conference, author-author, and conference-conference pairs. Moreover, the re-

sults of co-clustering promote relevance measure, and vice versa. How to design80

the unified framework to make full use of abundant semantics and constraints?

It needs to be delicately designed.

Inspired by the above, our goal is to obtain more accurate co-clusters by

integrating both relevance measure and constrained non-negative matrix fac-

torization. In this paper, we propose a novel Semi-supervised Co-Clustering85

framework on Attributed heterogeneous Information Network (SCCAIN). In

this framework, we introduce a new relevance measure which takes into account

both structural and attributed relevance of different-type nodes by utilizing mul-

tiple meta-paths and projection matrices. Moreover, we present the constrained

negative matrix tri-factorization (ONMTF) to co-cluster nodes with constraints.90

To integrate both relevance measure and co-clustering, we set the results of co-

clustering as the sharing factors and propose to design a unified semi-supervised

learning framework to jointly optimize the co-clustering and relevance measure

using the given constraints.

Contributions. In summary, the contributions of this paper are as follows.95

• To the best of our knowledge, this is the first to study the problem of co-

clustering nodes on attributed HINs. By designing the unified framework

SCCAIN, we can effectively co-cluster nodes of different types at the same

time.

• Our work overcomes the mentioned challenges including the integration of100

structural and attributed information and the suitable sharing factors of co-

clustering and relevance measure. We propose a novel relevance measure

that utilizes multiple meta-paths with learnable weights for the structural
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relevance and a parameterized attributed relevance measure for attributes

in different spaces. Furthermore, we alternately optimize overall relevance105

measure and co-clustering by setting the relevance matrix as sharing factors.

• We perform extensive experiments on three real-world datasets, including

Aminer, DBLP and a subset of Alibaba user activity dataset. We compare

SCCAIN against the various state of the arts and the experimental results

discriminate that our model outperforms the baselines.110

2. Related work

Since our work is to address the problem of co-clustering in attribute HINs,

here we briefly introduce the most related work about similarity measure, clus-

tering on HINs and co-clustering.

As a fundamental task in data mining, clustering is to simultaneously group115

similar nodes and separate dissimilar nodes[12, 22, 23]. Traditional clustering

methods, such as K-means, adopt cosine function or Euclidean distance to eval-

uate the feature-based similarity of nodes. Recently, with HINs being more and

more popular to model more complex data, similarity measure on HINs attaches

much attention of researchers. Sun et al. [3] firstly propose the meta-path to120

capture semantics of different-typed nodes and put forward the PathSim to eval-

uate the similarity of same-typed nodes in HINs. To measure the relevance of

different-typed nodes, Ni et al. [4] and Chuan et al. [5] respectively propose the

asymmetric PCRW and symmetric HeteSim based on random walk. Taking the

influence of different meta-paths into consideration, Luo et al. [7] propose to125

combining similarity measures of multiple meta-paths. Wang et al. [8] design

the weighted PathSim upon meta structure in a semi-supervised manner. How-

ever, these methods just pay attention to link-based similarity but ignore the

attributes of nodes.

For clustering on HINs, previous works mainly make use of the heteroge-130

neous relations. Sun et al. [24, 25] utilize the ranking information of nodes

of other types to cluster the nodes of the pointed type. Deng et al. [26, 27]
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propagate topic distribution among different-type nodes (i.e., papers, authors

and conferences) to cluster papers. However, these methods fail to make full

use of structural semantics in HINs because of ignoring the composited rela-135

tions (i.e., meta-paths) existing in such networks. Since different links between

nodes represent different semantic, Sun et al. [6] integrate meta-path selection

for clustering with user guide information. Li et al. [28] design a unsupervised

non-negative matrix factorization to cluster nodes by integrating node similar-

ity of different meta-paths with weights. Since nodes in HINs contain their own140

attributes to describe themselves, more and more research attempts to do clus-

tering in attributed networks. Sun et al. [29] put forward a probabilistic model

by utilizing both different-typed links and attributes of the pointed nodes. In

[12], the authors reconstruct attributed networks where not only the entities

but also the attributes are formed as nodes. Both Hsu et al. [9] and Perozzi145

et al. [30] assume attributes of nodes as vectors, and weight the links with the

attribute-based similarity between nodes. Recently, Li et al. [13] propose a semi-

supervised clustering method in attributed networks. Zhao et al. [31] integrate

structural and attributed information by respectively constructing the graphs

of links and attributes. Although take multiple nodes into consideration, these150

methods can only cluster nodes of the same type.

Taking the heterogeneity of nodes into consideration, there have been some

researches on simultaneously generating clusters for different-typed nodes, namely,

co-clustering [19, 32]. Dhillon et al. [33] consider documents as a bipartite

spectral graph, and then co-cluster documents and words in terms of finding155

minimum cut vertex partitions in such a graph. Since matrix factorization per-

forms well in detecting latent factors of different-type nodes (e.g., users and

items) [34], some researches attempt to integrate non-negative matrix factoriza-

tion for co-clustering [35, 20, 14, 36]. Nie et al. [16] attempt to learn a bipartite

graph with exactly k connected components with some constraints. Zhang et160

al. [37] propose to co-cluster different-typed nodes by factorize meta-path based

similarity matrices at the same time. These co-clustering methods are often

applied for networks neglecting node attributes but fail to deal with attributed
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HINs. Yao et al [38] propose to co-cluster multi-view data by measuring the

relevance of nodes in views like the texture view and a color view, while ig-165

noring the structural information. Recently, some works [10, 11, 39] attempt

to aggregate attributed information to reconstruct homogeneous/heterogeneous

graph embedding, which has attracted much attention. However, they focus on

learning a general graph embedding rather than aiming at co-clustering.

Thus, we consider this work is valuable and meaningful.170

3. Preliminaries and problem definition

Here we introduce the relevant concepts and the problem of semi-supervised

co-clustering on attributed HINs. Main notations are summarized in Table 1.

Definition 1. Heterogeneous Information Networks (HINs): A HIN is

denoted as G = {V, E , T ,R}. where V is the set of nodes, E is the set of links, T175

is the set of node types and R is the set of types of relations or links. There are

two mapping functions on HINs, one of which is node type mapping φ : V → T

to obtain the type of a node, and the other is link type mapping ψ : E → R to

obtain the type of a link. Notice that |T |+ |R| > 2.

Definition 2. Attributed HINs: An attributed HIN is a special type of HINs180

in the form of G = {V, E ,F}. Compared with traditional HINs, there are abun-

dant attribute information on attributed HINs, namely, F = {fv} where fv is

the attribute vector of node v. Notice that, the attribute vectors of heterogeneous

nodes may be of different sizes and meanings.

Taking Figure 1 as an example, there are three types of nodes (i.e., T =185

{A, P, C}), two types of links (i.e., R = {“write”,“submit”} ). Moreover, both

authors and conferences contain several attributes in the form of vectors. Since

the attributes of authors and conferences denote different meanings, here we

respectively utilize parallelograms and squares to distinguish them.

Definition 3. Meta-path: A meta-path P : T1
R1−−→ T2

R2−−→ · · · Rl−−→ Tl+1190

represents the connection from the source node of type T1 to the target node of
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Table 1: Notations

Symbols Descriptions

Vs,Vt source nodes, target nodes

P the given meta-path

Λ the weights of meta-path based relevance

fs,i,ft,j the attributes of node vs,i and vt,j

Dt, Ds the dimensions of ft,i and fs,j

A the relevance of attribute spaces

Mss,Css the must/cannot-link constraints of source nodes

Mtt,Ctt the must/cannot-link constraints of target nodes

Mst,Cst the must/cannot-link constraints between source and target nodes

Ks,Kt the number of source and target clusters

α the weight of structure and attributes

XL the link-based relevance ∈ R|Vs|×|Vt|
+

XA the attribute-based relevance ∈ R|Vs|×|Vt|
+

X the overall relevance ∈ R|Vs|×|Vt|
+

S , T cluster distribution of Vs/ Vt

W the matrix to absorb scales of S and T

type Tl+1 based on the composite relation R = R1 ◦ R2 ◦ · · · ◦ Rl.

In Figure 1, the source nodes and target nodes of meta-path A-P-C are au-

thors and conferences. Furthermore, different meta-paths will capture different

semantics, which is helpful for clustering. For instance, A4 and C3 can be con-195

nected by A-P-C or A-P-A-P-C, the first meta-path represents the “publication”

while the second path is to capture the relevance of authors and conferences

through co-authors.

The problem of semi-supervised co-clustering on attributed HINs:

Given an attributed HIN formed as G = {V, E ,F}, some meta-paths connect-200

ing source nodes Vs and target nodes Vt, and some must-link (Mss,Mst and

Mtt)/cannot-link (Css,Cst and Ctt) constraints between nodes, the goal is to

simultaneously generate clusters of Vs and Vt (i.e., S and T ) with the overall

relevance matrix X considering both structural and attributed information. No-

tice that Vs and Vt respectively denote the row instances and column instances205
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of X. In addition, the subscripts of M/C denote the types of constraints. For

instance, Mst are the must-link constraints between Vs and Vt.

This problem is meaningful and promising in real-world applications. On

the one hand, we focus on making full use of heterogeneous structures and at-

tributes rather than the single connection of graphs. On the other hand, the la-210

tent relevance of different-typed nodes can be detected for further recommender

systems.

4. The proposed model

In this section, we propose our method Semi-supervised Co-Clustering in

Attributed heterogeneous Information Network (SCCAIN). We will introduce215

the overall framework as well as zoom into each component in the following

sections.

4.1. The overall framework

We outline the overall framework of SCCAIN in Figure 2. In this frame-

work, we respectively design the structural relevance measure based on the220

importance of meta-paths Λ and the attributed relevance measure based on the

latent parameter A. Considering both kinds of relevance, we compose them

into an overall relevance measure, as introduced in Section 4.2. Secondly, we

design an ONMTF based semi-supervised co-clustering model in Section 4.3

which factorizes the relevance matrix into two cluster distributions, S and T ,225

and an auxiliary matrix W . Furthermore, since the performance of relevance

measure and co-clustering can mutually influence each other, we integrate the

two parts into a joint framework and optimize them in Section 4.4 to learn the

final clusters of heterogeneous nodes.
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Figure 2: The overall framework of SCCAIN. (a) is to measure the overall relevance based

on both attributes and structures, (b) is to co-cluster nodes of different types and (c) is the

results of co-clustering.

4.2. Relevance measure on attributed HINs230

4.2.1. Structural relevance

We adopt HeteSim [5] to measure the relevance between ith type-s nodes

and jth type-t nodes, denoted as

HS(vs,i, vt,j |R1 ◦ · · · ◦ Rl)

=

∑O(vs,i|R1)
i′=1

∑I(vt,j |R1)
j′=1 HS(vs,i′ , vt,j′ |R2 ◦ · · · ◦ Rl−1)

|O(vs,i|R1)||I(vt,j |Rl)|
,

(1)

where vs,i and vt,j respectively denotes the ith source node and the jth target

node, HS(vs,i, vt,j |R1 ◦ · · · ◦ Rl) is the HeteSim[5] value between vs,i and vt,j

on the meta-path R1 ◦ · · · ◦ Rl, O(vs,i|R1) is the out-neighbors of vs,i based

on relation R1, I(vt,j |Rl) is the input-neighbors of vt,j based on relation Rl.235

HS(vs,i′ , vt,j′ |R l+1
2

) = 1 if vs,i′ = vt,j′ , or else 0. Different from traditional

PathSim [3] which only calculates the similarity of homogeneous nodes or PCRW

[4] in which the relevance is not symmetric, HeteSim can measure the relevance

of different-type nodes.

Considering that there are several meta-paths and each meta-path indicates

one form of structural relevance, as is shown in Figure 2, we assign a meta-

path importance weight λP to the specific relevance HS(vs,i, vt,j |P), and then
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calculate the structural relevance, namely,

XL(vs,i, vt,j |Λ) =
∑
P
λP ·HS(vs,i, vt,j |P), (2)

where P denotes a specific meta-path, HS(vs,i, vt,i|P) denotes the structural240

relevance on P, λP ∈ Λ is the weight of the corresponding relevance and∑
P λP = 1.

4.2.2. Attributed relevance

Given the features of ith source node fs,i and jth target node ft,j , it is

impossible to directly measure the relevance of fs,i and ft,j . By mapping at-

tributes in different spaces into the same space, here we calculate the attributed

relevance measure of vs,i and vt,j as follows.

XA(vs,i, vt,j) = σ(fs,iAfT
t,j + b), (3)

where XA is the attributed relevance matrix, A ∈ RDs×Dt is the relevance

parameters of attribute vectors of different spaces, σ(·) is the activation function245

and we adopt relu to keep attributed relevances positive.

4.2.3. Overall relevance

Taking both structural and attributed information into consideration, SC-

CAIN evaluates the overall relevance of two nodes based on their structural

relevance and attributed relevance. By setting a balance parameter α ∈ [0, 1],

the overall relevance of vs,i and vt,j is defined as

X(vs,i, vt,j) = αXA(vs,i, vt,j) + (1− α)XL(vs,i, vt,j |Λ). (4)

To learn the parameters more effectively, we utilize additional constraints

to guide the optimization. The corresponding loss function with constraints is

denoted as

L1 = − 1

m
[
∑

MCi,j log (Xi,j) + (1−MCi,j) log(1−Xi,j)], (5)

where m is the number of labels, MCi,j is the constraints of different-type

nodes, according to the given must-link set Ms,t and cannot-link set Cs,t and
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. MCi,j = 1 if Mst,i,j = 1 while MCi,j = 0 if Cst,i,j = 1, Xi,j = X(vs,i, vt,j).250

These constraints, together with constraints on same-type nodes, can also be

utilized to guide co-clustering, as we will discuss next.

4.3. Semi-supervised co-clustering

In this section, we design the semi-supervised non-negative matrix tri-factorization

with orthogonal limitation to simultaneously cluster nodes of different types.255

L2 =||X − SWT T ||2 −
∑
i,j

(Mss,i,j −Css,i,j)SiS
T
j

−
∑
i,j

(Mtt,i,j −Ctt,i,j)TiT
T
j

s.t. S ≥ 0,W ≥ 0,T ≥ 0,STS = I,T TT = I,

(6)

where X ∈ R|Vs|×|Vt|
+ is the relevance matrix, S ∈ R|Vs|×Ks

+ and T ∈ R|Vt|×Kt

+

are the distributions of node clusters, Ks and Kt are the number of clusters

of source/target nodes, W ∈ RKs×Kt
+ is an extra factor to absorb S and T ,

Mss ∈ R|Vs|×|Vs| and Css ∈ R|Vs|×|Vs| are the must-link and cannot-link pair-

wise constraints of Vs, while Mtt ∈ R|Vt|×|Vt| and Ctt ∈ R|Vt|×|Vt| are the260

must-link and cannot-link pair-wise constraints of Vt.

4.4. Joint optimization

Given the different-type nodes, Vs and Vt, our goal is to simultaneously

cluster Vs and Vt by utilizing the structural information and attributed infor-

mation, as well as some constraints including must-link/cannot-link pairs. To

optimize both the co-clustering and relevance measure together in this model,

we design a joint model to learn the corresponding parameters including the

weights of meta-paths Λ and the clustering distributions S and T . Specifically,

we consider the relevance matrix X as a variable X(Θ) related to parameters

Θ = {Λ,A}, and the loss function is denoted as

L = L1(Θ) + L2(Θ) + γ(||Θ||2). (7)
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In SCCAIN, we learn the parameters Θ and (S,W ,T ) with an iterative

update approach, and each iteration is made up of two steps.

Update S,W ,T with fixed Θ Given Θ, the main goal in this step is to select265

the solution (S,W ,T ) of the semi-supervised co-clustering model. With the

fixed X, L can be written as:

Lcocl = Tr(XTX − 2XTSWT T + SWT TTW TST )

+ Tr((Css −Mss)SS
T + (Ctt −Mtt)TT T )

s.t. S ≥ 0,W ≥ 0,T ≥ 0,STS = I,T TT = I.

(8)

There are three parameters with some constraints in this function. We re-

spectively fix two of the parameters to optimize the other one.

Si,k ←− Si,k

√
[XTW T + MssS]i,k

[SST (XTW T −CssS + MssS) + CssSi,k
. (9)

Ti,k ←− Ti,k

√
[XTSW + MttT ]i,k

[TT T (XTSW −CttT + MttT ) + CttT ]i,k
. (10)

Wi,k ←−Wi,k

√
[STXT ]i,k

[STSWT TT ]i,k
. (11)

To obtain the accurate S, W and T , we iteratively update these three

parameters until they are stable. With the update process done, we fix S, W ,

T to optimize the relevance measure.270

Update Θ with fixed S,W ,T For the fixed S, W , T , L is a function of

Θ = {Λ,A}. The global loss function can be rewritten as follows.

Lrele = ||X(Θ)− SWT T ||2 + γ(||Θ||2), (12)

where X(Θ) is calculated by Eq. (4) with the parameters Θ, and SWT T is the

fixed value. In addition, considering Λ ≥ 0, we update λP by max(0, λP).

Finally, we respectively get the clusters of source nodes Gs and the clus-

ters of target nodes Gt from the optimized S and T . Specifically, Gs,i =

arg maxks
Si,ks

, and Gt,j = arg maxkt
Tj,kt

.275
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5. Experiments

In this section, we evaluate the empirical performance of our method on

three public real-world attributed HINs, including two bibliographic networks

(Aminer and DBLP) and a user-item Alibaba recommendation network. More

Specifically, we study the effectiveness and efficiency of our method.280

5.1. Datasets and metrics

The statistics of our three public datasets, namely, Aminer, DBLP and an

Alibaba recommendation dataset, are summarized in Table 2. The details of

these datasets are described as follows.

1) Aminer dataset: This is a public benchmark dataset1, which consists285

of three types of nodes, authors (A), papers (P) and conferences (C), and the

corresponding relations including “publish” (P-C), “participation” (A-C) and

“write” (A-P). There are five main research areas, including Data Mining, Med-

ical Informatics, Theory, Visualization and Database, and each node is assigned

to a specific area. We focus on clustering authors and conferences at the same290

time. The structural relevance is calculated based on three meta-paths includ-

ing A-P-C, A-P-A-P-C and A-P-C-P-A-P-C. The attributes of both authors and

conferences are the related abstracts of papers and we utilize doc2vec [40] to

model texts as dense vectors.

2) DBLP dataset: This is a public sub-network2 involving major confer-295

ences in four research areas: Database, Data Mining, Artificial Intelligence and

Information Retrieval. There are four types of nodes, authors (A), papers(P),

conference (C) and topics (T). In this network, we focus on co-clustering au-

thors and conferences, too. The structural relevance is calculated based on three

meta-paths, A-P-C, A-P-T-P-C and A-P-A-P-C. Here we set the number of pa-300

pers written by authors at the 20 conferences as the attributes of authors, and

1Available at https://www.aminer.cn/topic_paper_author
2Available at http://shichuan.org/HIN_dataset.html
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Table 2: Description of datasets.

Dataset #nodes #types Gs Gt P Ds Dt

Aminer 2,593 3 5 5 3 64 64

DBLP 14,495 4 4 4 3 20 20

Alibaba 5,415 2 9 65 3 5 22

set the number of links through the meta-path C-P-A-P-C as the attributes of

conferences.

3) Alibaba dataset: This is a subset of user activity dataset3 which captures

user actions in one week on a public Alibaba platform. It consists of two types305

of nodes, users (U) and items (I), as well as multiple types of relations, “click”,

“cart”, “favorite” and “buy” between users and items. The structural relevance

is calculated based on three meta-paths, U
click−−−→ I, U

cart−−−→ I and U
favorite−−−−−→

I. We consider the “buy” action as the constraint information. In this dataset,

users contain 5 numerical attributes including the total number of “click”, the310

rate of “cart” and so on, while items contain 22 numerical attributes including

the number of transactions, the rate of “cart” and so on. Users are of 9 age

groups, and items are of 65 main categories. In this network, we focus on

co-clustering users and items by utilizing the above relations and attributes.

5.2. Baselines and experimental settings315

We first compare our SCCAIN4 with the state-of-the-art methods including

three co-clustering methods and two graph embedding methods. And then, we

analyze the contributions of integrating attributes and structures by comparing

SCCAIN with its modified versions, SCCAIN(L) and SCCAIN(A), where

the former focuses on structures while the latter focuses on attributes. The320

details of baselines are listed as follow.

• DNMTF [14]: This is a matrix tri-factorization method that optimizes both

3Available at https://tianchi.aliyun.com/dataset/dataDetail?dataId=9716
4The source is available at https://github.com/yuduo93/SCCAIN
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matrix factorization and graph dual regularization when co-clustering. For

a fair comparison, both the k-nearest neighbor of nodes and the pair-wise

constraints are set as dual regularization. Here we utilize the links within325

attributed HINs as the input matrix.

• CPSSCC [15]: This is a semi-supervised co-clustering method which utilizes

both row constraint projections and column constraint projection to guide

cluster source nodes and target nodes in a low-dimensional space.

• ONMTF(HS) [20]: This is a non-negative matrix tri-factorization. Differ-330

ent from traditional ONMTF proposed in [20], we utilize the average rele-

vance of multple meta-paths as the similarity matrix and integrate pair-wise

constraints during training to discuss the effectiveless of learning relevance

measure.

• GCN(K) [10]: This is a popular attributed graph embedding learning method335

which aggregates graph information to reconstruct node embedding. We gen-

erate the basic embedding of nodes by using the supervised information and

adopt the K-means method to cluster nodes of each type respectively.

• H2V(K) [41]:This is a heterogeneous graph embedding model with K-means.

H2V samples neighbors according to heterogeneous edges and learns the em-340

bedding of both nodes and edges. In this model, we integrate the pair-wise

constraints into the graph for a fair comparison.

For SCCAIN, we set the learning rate as 0.001, the max-iterations as 200 and

γ as 0.01. We utilize Adam to minimize the loss of L1. Since the must-link and

cannot-link pairs are provided as supervision information, α are tuned by cross-345

validation. For Aminer, DBLP and Alibaba datasets, We respectively generate

fixed number of must-link and cannot-link neighbors as the total constraints,

and then sample 2.5%, 5%, 7.5% and 10% of the constraints for learning. The

baselines and our SCCAIN all run ten times and we report the mean value

as the performance. Both the Normalized Mutual Information (NMI)[42] and350

Purity[43] are adopted as the metrics. NMI ∈ [0, 1] and Purity ∈ [0, 1], and
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Table 3: The NMI and Purity value on the three datasets of different scales. For DBLP and

Aminer, the source nodes and target nodes respectively denote authors and conferences. For

Alibaba, the source nodes and target nodes respectively denote users and items. The best

method is bolded.

Dataset Rate Metric
Target Clustering Source Clustering

DNMTF CPSSCC GCN(K) H2V(K) ONMTF(HS) SCCAIN DNMTF CPSSCC GCN(K) H2V(K) ONMTF(HS) SCCAIN

D
B

L
P

2.5%

N
M

I

0.5048 0.2491 0.2219 0.2232 0.2336 0.6374 0.2187 0.0743 0.0220 0.0168 0.0755 0.2594

5% 0.6264 0.2925 0.3141 0.3011 0.3214 0.6353 0.5123 0.1737 0.3641 0.3819 0.2030 0.5282

7.5% 0.7013 0.2951 0.3816 0.3418 0.3816 0.6794 0.4833 0.3187 0.4898 0.6259 0.8410 0.8834

10% 0.7424 0.3683 0.4365 0.4177 0.4365 0.6265 0.6386 0.3655 0.7477 0.7731 0.9399 0.9666

2.5%

P
u

rity

0.5971 0.4012 0.4730 0.4839 0.3500 0.7013 0.4437 0.3194 0.3480 0.3439 0.3614 0.4565

5% 0.6688 0.4128 0.5232 0.5102 0.4510 0.7002 0.6842 0.3526 0.4543 0.6522 0.4666 0.6290

7.5% 0.7105 0.4505 0.5555 0.5672 0.5325 0.7328 0.6722 0.5154 0.6345 0.7481 0.9502 0.9551

10% 0.7536 0.4989 0.6150 0.6003 0.6000 0.6992 0.8070 0.5689 0.7099 0.7969 0.9840 0.9911

A
m

in
er

2.5%

N
M

I

0.3038 0.2474 0.4287 0.4528 0.3595 0.7688 0.1062 0.0379 0.0205 0.0378 0.0386 0.6285

5% 0.6285 0.3209 0.4027 0.3020 0.4635 0.7416 0.1670 0.0607 0.0243 0.0465 0.0669 0.6130

7.5% 0.7492 0.3609 0.3952 0.2867 0.5593 0.7504 0.1879 0.1396 0.0285 0.0451 0.1674 0.6952

10% 0.7514 0.3957 0.3059 0.5025 0.5987 0.7681 0.2120 0.1992 0.0303 0.0466 0.2278 0.7002

2.5%

P
u

rity

0.4089 0.4022 0.5909 0.5292 0.4545 0.7676 0.2929 0.2797 0.2653 0.2785 0.4730 0.7052

5% 0.6818 0.4523 0.5458 0.4101 0.5909 0.7218 0.3520 0.2886 0.2633 0.2777 0.3298 0.6943

7.5% 0.7625 0.5027 0.5001 0.4023 0.6364 0.7473 0.3831 0.3423 0.2730 0.2785 0.4189 0.7620

10% 0.7727 0.5909 0.4545 0.5455 0.6455 0.7510 0.4352 0.4002 0.2999 0.2843 0.5010 0.7466

A
lib

ab
a

2.5%

N
M

I

0.0812 0.0755 0.1421 0.0488 0.2225 0.2828 0.0294 0.0334 0.0153 0.0635 0.0521 0.2271

5% 0.0876 0.0724 0.1707 0.3929 0.4156 0.4543 0.0231 0.0333 0.0695 0.3528 0.3983 0.5233

7.5% 0.3181 0.0661 0.3641 0.5879 0.5507 0.5699 0.0227 0.0347 0.2065 0.4464 0.6479 0.7708

10% 0.6246 0.0658 0.5113 0.6198 0.6001 0.6126 0.0482 0.0445 0.3458 0.6822 0.8306 0.8216

2.5%

P
u

rity

0.3918 0.3900 0.4298 0.4057 0.5576 0.5672 0.3737 0.3731 0.3695 0.4069 0.3936 0.4665

5% 0.4033 0.3846 0.5142 0.6896 0.7764 0.7987 0.3719 0.3737 0.3984 0.5310 0.6920 0.7269

7.5% 0.5443 0.3918 0.6462 0.7498 0.9216 0.9295 0.3725 0.3719 0.5467 0.5546 0.8433 0.9403

10% 0.7743 0.3876 0.7257 0.8348 0.9699 0.9735 0.3773 0.3779 0.6010 0.6828 0.9689 0.9632

the larger NMI or Purity value indicate the better performance.

5.3. Effectiveness analysis

In this section, we firstly compare the performance of our method on clus-

tering of both source nodes and target nodes. The experimental results of355

co-clustering on three datasets are reported in Table 3. And then, we show the

co-clustering visualization in Figure 3 to describe the performance of detecting

latent correlations between heterogeneous clusters.

5.3.1. The performance of co-clustering

By comparing the co-clustering performance of these baselines and our model,360

we summary two main observations and list them as follows

• SCCAIN generally achieves the best performance for all three datasets. Com-

pared with DNMTF, CPSSCC, and ONMTF(HS), the main improvement is
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(a) DNMTF (b) ONMTF(HS) (c) SCCAIN

Figure 3: The relevance of co-clustering on Aminer dataset with 10% constraints. Both

authors and conferences are assigned into five groups. The deeper colored blocks denotes the

higher relevance of clusters.

from the learnable overall relevance. Compared with GCN(K) and H2V(K),

our method is a unified model considering both heterogeneity and attributes365

within attributed HINs. In addition, DNMTF and CPSSCC perform worse

on Alibaba dataset becasue of the sparsity of this network. Moreover, some

methods only work effectively in clustering one type of nodes, e.g., CPSSCC.

• With little supervision, SCCAIN performs much better than most baselines

on both clustering of source nodes and clustering of target nodes. This phe-370

nomenon indicates the advantages of SCCAIN on graphs without too many

constraints. However, the performance of some other models, e.g., GCN(K)

and DNMTF, depends on the scale of supervised information heavily and

increases more slowly than SCCAIN.

• Compared with ONMTF(HS) which adopts static relevance, our SCCAIN375

performs quite better with little supervision because of the adaptive overall

relevance measure.

5.3.2. Co-clustering visualization

As is mentioned above, our model is to simultaneously cluster different-type

nodes. In this section, we analyze the relevance of these clusters by setting380

the co-clustering on Aminer dataset as an example. In Figure 3, we rearrange

relevance matrices of DNMTF, ONMTF(HS) (which perform better than other
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Figure 4: The NMI performance of SCCAIN(A), SCCAIN(L) and SCCAIN on co-clustering.

baselines in this dataset) and our SSCAIN based on authors’ clusters and con-

ferences’ clusters, and then show the corresponding matrix visualization. By

comparing the blocks in Figure 3a, Figure 3b and Figure 3c, we can easily find385

that our SCCAIN have a better ability to detect the relevance of different-type

clusters because of obvious blocks. It will be helpful to utilize such information

for recommendation systems and some other valuable tasks.

5.4. Model analysis

In this section, we analyze the characteristics of SCCAIN, including the390

advantages of integrating attributes and structures for co-clustering, the con-

vergences, and the parameter sensitivity.

5.4.1. Ablation study

Here we compare SCCAIN with SCCAIN(L) and SCCAIN(A). As shown

in Figure 4, compared with both SCCAIN(A) and SCCAIN(L), our model per-395

forms better on both three datasets. On Aminer dataset and DBLP dataset, SC-

CAIN(L) achieves better performance than SCCAIN(A), However, SCCAIN(A)

is better on Alibaba dataset. These phenomenons authenticate the effective-

ness of integrating both attributed and structural information for co-clustering.

Moreover, although containing similar structures, SCCAIN is better than ON-400

MTF(HS) because of the auto-learning meta-path weights.

5.4.2. Convergence study and parameter analysis

To analyze the convergence of SCCAIN, we increase the max iteration from

0 to 200 and showcase the NMI value of SCCAIN with different supervised
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Figure 5: The NMI value of SCCAIN on Aminer dataset with different iterations.

Figure 6: The NMI value of SCCAIN on Aminer dataset with different α.

information. As shown in Figure 5, we can easily observe that SCCAIN can405

more quickly converge with the supervised information increasing on all three

datasets. This phenomenon proves the effectiveness of supervised information

as well as the optimization framework.

To analyze the influence of the balance parameter α, we adjust it from 0

to 1 and report the NMI value of SCCAIN in Figure 6. By comparing the410

performance on each dataset, we can find that a suitable α will improve the

NMI value of clustering. By comparing the trend of performances on different

datasets, we can observe that α is quite more sensitive on Aminer dataset. This

phenomenon is reasonable. Specifically, the attributes of authors and confer-

ences on Aminer dataset are the average of associated abstract vectors. It could415

be difficult to distinguish authors or conferences based on too much attributed

relevance (namely, α ≥ 0.5). On the one hand, papers of a conference often

belong to multiple domains, so that the average of their attribute vectors could

become similar for many different conferences. On the other hand, there could

be some noisy information in modeling the representation of abstract texts since420
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the corpus is not very large. On DBLP and Alibaba dataset, the stable perfor-

mance indicates that the relevance of node attributes can be more easily learnt

to help co-clustering.

6. Conclusion

In this paper, we address the problem of co-clustering on attributed hetero-425

geneous information networks by making full use of both attributed and struc-

tural information. We design a joint model called SCCAIN to integrate the

semi-supervised ONMTF and the overall relevance measure for co-clustering

different-type nodes. We test our model on three public real-world datasets

and the experimental results demonstrate the effectiveness of SCCAIN compar-430

ing with representative methods. Furthermore, we analyze the key factors of

SCCAIN including the co-clustering visualization, the integration of attributes

and structures, the convergence and the balance parameters, to showcase the

effectiveness of our solutions.

Co-clustering different-typed nodes on attributed HINs still remains an open435

problem on evolving networks. It is worth of considering the dynamics of edges

and attributes and modeling the evolving of relevance by splitting attributed

HINs into several snapshots of HINs. More future work can be done along this

line.
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