
Adversarial Label-Flipping Attack and Defense for
Graph Neural Networks

Mengmei Zhang
dept. Computer Science

Beijing University of Posts and Telecommunications
Beijing, China

zhangmm@bupt.edu.cn

Chuan Shi*
dept. Computer Science

Beijing University of Posts and Telecommunications
Beijing, China

shichuan@bupt.edu.cn

Linmei Hu
dept. Computer Science

Beijing University of Posts and Telecommunications
Beijing, China

hulinmei@bupt.edu.cn

Xiao Wang
dept. Computer Science

Beijing University of Posts and Telecommunications
Beijing, China

xiaowang@bupt.edu.cn

Abstract—With the great popularity of Graph Neural Net-
works (GNNs), the robustness of GNNs to adversarial attacks
has received increasing attention. However, existing works ne-
glect adversarial label-flipping attacks, where the attacker can
manipulate an unnoticeable fraction of training labels. Exploring
the robustness of GNNs to label-flipping attacks is highly critical,
especially when labels are collected from external sources and
false labels are easy to inject (e.g., recommendation systems).
In this work, we introduce the first study of adversarial label-
flipping attacks on GNNs. We propose an effective attack
model LafAK based on approximated closed form of GNNs and
continuous surrogate of non-differentiable objective, efficiently
generating attacks via gradient-based optimizers. Furthermore,
we show that one key reason for the vulnerability of GNNs to
label-flipping attack is overfitting to flipped nodes. Based on this
observation, we propose a defense framework which introduces
a community-preserving self-supervised task as regularization
to avoid overfitting. We demonstrate the effectiveness of our
proposed attack model to GNNs on four real-world datasets.
The effectiveness of our defense framework is also well validated
by the substantial improvements of defense based GNN and its
variants under label-flipping attacks.

Index Terms—Adversarial label-flipping attacks, adversarial
robustness, graph neural networks

I. INTRODUCTION

Graph is commonly used to model many real-world rela-
tionships, such as social networks [1], [2], citation networks
[3] and the e-commerce networks [4]. In recent years, deep
learning starts to push forward the performance on graph data.
Typically, graph neural networks (GNNs) [3], [5], which com-
bine node feature information with the graph structure by using
neural networks, have achieved state-of-the-art performance on
a wide range of tasks (e.g., node classification task).

Despite great success, GNNs have been proved to often
suffer from adversarial attacks, especially for poisoning attacks
[6] where the attacker tries to compromise the performance of
a model by manipulating training data. Specifically, [7]–[10]
pointed out the vulnerability of GNNs to topology attacks.

(a) Attack process.

Clean Rnd

LafAK w/ yU

LafAK w/o yU
0

20

40

60

80

100

Te
st

 a
cc

ur
ac

y
(%

) 87.5 85.3

62.3 61.7

(b) Test accuracy.

Fig. 1: An example of label-flipping attacks on Polblogs
dataset (1490 nodes with 40 labeled and 4 flipped). (a) A toy
example that illustrates the process of label-flipping attacks:
attacker maliciously uploads the crafted flipped label (e.g.,
flipping a node from blue to yellow with double outlines),
aiming for maximum misclassified test nodes (red border
circles) after retraining GNN. (b) Test accuracy of the retrained
model on clean labels (Clean), random noise labels (Rnd)
and our crafted flipped labels with/without true test labels yU

beforehand (LafAK w/ yU ; LafAK w/o yU). A smaller value
indicates better attack performance.

[7], [11] also demonstrated a susceptibility to feature attacks.
These vulnerabilities, with the wide applications of GNNs,
have received increasing attention from both academia and
industry.

However, existing works neglect a specific type of poisoning
attacks, i.e., adversarial label-flipping attack [12], where the
attacker can modify an unnoticeable fraction of training labels.
Adversarial label-flipping attacks, unlike random label noise,
can be specifically targeted to exploiting the vulnerabilities of
the learning algorithm, significantly degrading overall perfor-
mance. Over the past years, label-flipping attacks have been
extensively studied in many domains [12], [13]. More recently,
classical graph-based semi-supervised classifiers [14], have

been proved to be vulnerable to such attacks. For example, in
the label propagation model [15], the misleading information
of few flipped nodes can propagate along the whole graph
and affect a quite large proportion of nodes. Here one ques-
tion comes: Can deep learning graph model also be easily
destroyed by adversarial label-flipping attacks? The answer
to this question is indeed not foreseeable: On one hand, the
local aggregation mechanism might improve robustness since
the propagation of flipped labels is restricted to their local
neighbours. On the other hand, as deep learning models, they
can easily overfit the misinformation of incorrect labels [16].
Exploring the robustness of GNNs to label-flipping attacks
is highly critical, especially when labels are collected from
external sources, and false labels are easy to inject. For ex-
ample, recommendation systems (e.g., Netflix [17]) based on
users’ ratings and labelling in social networks (e.g., Polblogs
[2]) which rely on user’s self-reporting are all exposed to the
label-flipping attacks.

Figure 1 is an example illustrating the label-flipping attacks
against the target GNN model [3] on Polblogs network [2]
(1490 nodes with 40 labeled). As the figure shows, even
if only four labels flipped (e.g., flipping a node from blue
to yellow with double outlines), the test accuracy of target
model dramatically drops by about 29% after retraining. As
a comparison, the test accuracy under randomly flipping four
training labels (Rnd) decreases only by an average of 2.51%.
Obviously, the performance degradation of the GNN caused
by adversarial label-flipping attacks is far higher than random
noise. The result demonstrates that GNNs are vulnerable to
our attacks, which could hinder their applicability in various
domains. Hence, there is a strong need for systemically
studying and further improving the robustness of GNNs to
label-flipping attacks.

As existing adversarial attacks on graph data, label-flipping
attacks is essentially an NP-hard integer programming problem
due to discreteness. To avoid the combinatorial search, recent
advanced methods [10], [14] suggest to utilize gradient-based
optimizers to search for optimal attacks. But such ideas cannot
be directly applied for our problem due to two challenges:
(1) Label-flipping attack, where the (outer) optimization of
attacks involves solving the (inner) optimization of GNNs,
is inherently a bi-level optimization and usually intractable
to solve. (2) The problem contains unique non-differentiable
components (e.g., computing accuracy and flipping operation),
preventing us to directly applying gradients.

In this paper, we propose an effective adversarial Label-
f lipping AttacK model against GNNs (LafAK) ,directly tack-
ling the above two challenges, to systematically investigate the
robustness of GNNs to label-flipping attacks. Specifically, to
address the first challenge, we propose an approximated closed
form of GNN via linearization and replacement of (inner)
classification loss. Based on such closed form, we can directly
solve the bi-level optimization problem by transforming it into
single level. For the second challenge, we specially design
continuous surrogates for these non-differentiable components,
achieving better differentiability and functionality compared

to previous attacks [14], [18], [19]. In this way, we can
generate attacks effectively and efficiently with gradient-based
optimizers.

Furthermore, to improve the robustness of GNNs to label-
flipping attacks, we show that one key reason for their vul-
nerability to such attacks is the overfitting to flipped nodes.
To alleviate this issue, inspired by [20]–[22], we propose a
community-preserving self-supervised-based defense frame-
work, which can improve the robustness of GNNs against
label-flipping attacks by fully exploiting community-level sig-
nals. In particular, we first apply off-the-shelf community
detection methods to automatically extract community-level
signals. Next, we train GNNs with predicting the communities
of nodes as an auxiliary self-supervised task, explicitly retain-
ing community in training process. As a result, GNNs, once
overfitting flipped nodes, will be punished by community-level
signal.

In summary, our contributions are three folds:
• We introduce the first study on the robustness of

GNNs to label-flipping attacks, and propose an effective
label-flipping attack model LafAK based on approxi-
mated closed form of GNN and replacement of non-
differentiable components, efficiently generating attacks
for GNNs via gradients.

• To the best of our knowledge, we are the first to defend
label-flipping attacks for GNNs, and propose an effective
defense framework based on community-preserving self-
supervised learning, alleviating the overfitting to flipped
nodes.

• We show that GNNs are highly vulnerable to adversarial
label-flipping attacks. Empirical results on four real-world
datasets demonstrate the effectiveness of our attacks to
GNNs. The effectiveness and generalization ability of
our defense framework are shown by the considerable
improvement of both GNN and its variants under label-
flipping attacks.

II. RELATED WORK

A. Graph Neural Networks

Graph neural networks (GNNs) [23] on graph structured
data have shown outstanding results in various tasks such
as node classification [3], [5], link prediction [24], graph
clustering [25]. A special form of GNNs is graph convolutional
networks (GCNs) [3], which learn on graph structures using
convolution operations. By stacking multiple convolutional
layers, GCNs achieve state-of-the-art performance on semi-
supervised node classification task, and have drawn increasing
research interests in the past few years. To further improve
GCNs, [26] introduces attention mechanisms, [27] adds resid-
ual and jumping connections, [28] simplified GCN, etc. In this
paper, we mainly focus on attacking GCN [3] and its variants.

B. Adversarial Attacks on GNNs

The robustness of GNNs to adversarial attacks has been
extensively studied in recent years. In existing works, the
attacker is capable of adding/removing/rewiring edges in the

whole input graph [7]–[10], [29]–[33], manipulating the fea-
tures of target nodes [7], [11], [29], or injecting vicious nodes
[34]. More recently, poisoning attacks as a type of adversarial
attacks targeted to the training data, have received increasing
attention [6]. Basically, poisoning attacks are challenging due
to the inherent intractable bi-level optimization problem. To
confront it, existing works try to circumvent tackling the
problem by assuming the parameters of GNNs are static [7],
[8], [29], [32], or optimize the bi-level problem indirectly.
For example, [9], [10] transformed the problem into a min-
max problem. However, there is no existing adversarial attack
works on manipulating the labels of nodes for GNNs. This
paper sheds first light on this important problem. In addition,
different from previous poisoning attacks against GNNs, we
solve the bi-level problem directly by deriving an approxi-
mated closed form of inner model (GCN).

C. Adversarial Label-Flipping Attacks and Defenses

Adversarial label-flipping attack is a specific type of poison-
ing attacks where the attacker is restricted to modify the labels
of a few training nodes. This type of attacks, unlike random
label noise [35], can be specifically targeted to exploiting the
gradient information of the learning algorithm. Thus they can
significantly degrade the node classification performance. So
far, the robustness to such attacks have been widely studied
in many domains (e.g., deep learning [13]). More recently,
[14] first studied label-flipping attacks against classical graph-
based semi-supervised learning(e.g., label propagation which
has analytical solution), and proposed an efficient attack model
based on gradient descent optimizer. They cannot be applied
to GCN that has no closed-form solution. On the other
hand, few general defense mechanisms have been proposed
against label-flipping attacks. One common defense technique
is Sanitization [19], [36], where a defender attempts to identify
the training points that may have had their labels corrupted
and then removes/relabels them. In summary, we focus on
label-flipping attack and defense models towards graph neural
models.

III. BACKGROUND AND PRELIMINARIES

In this section, we briefly introduce the preliminaries of
GCNs and provide the background of bi-level optimization
problem.

A. Graph Convolutional Networks

We consider attacking GCNs on the task of semi-supervised
node classification. Formally, we define an undirected graph
as G = (V,E), where V is the set of N nodes, E represents
the set of edges and A ∈ {0, 1}N×N is the adjacency matrix
of graph. Basically, GCNs often assume nodes in a graph have
node attributes X ∈ RN×d where each node i is associated
with a feature vector xi ∈ Rd and a class label yi ∈ {1, ...,K}.
Given A, X, labeled nodes set VL with NL = |VL| , unlabeled
nodes set NU = |VU | and the labels of nodes in VL the goal
of GCNs is to predict the class of nodes in VU .

In this work, we focus on a representative GCN proposed by
[3] for simplicity. Typically, GCN learns on graph structures
using convolution operations to aggregate neighbouring nodes:

H(l+1) = ReLU(ÂH(l)W(l)), (1)

where H(l+1) denotes the hidden feature matrix at the (l+1)-
th layer. Initially, H(0) = X, W(l) is the trainable weight
matrix at l-th layer, Â is the normalized adjacency matrix,
given by Â = D̃−

1
2 ÃD̃−

1
2 , D̃ii = ΣjÃij and Ã = A + I.

Following [3], we consider GCNs with two layers (L = 2)
that compute the class probability vector of node i as

fθ(A,X)i = Softmax(ÂReLU(ÂXW(1))W(2))i, (2)

where fθ(A,X)i ∈ [0, 1]K and θ = (W(1),W(2)) are all
parameters of the two-layer GCN.

B. Bi-level Optimization Problem

The label-flipping attack on GNNs is essentially a bi-level
optimization problem, where an (outer) optimization involves
another (inner) optimization as a constraint. Unfortunately, this
bi-level problem, without the closed form of inner optimiza-
tion, is non-convex and intractable to solve precisely: (1) The
solving of inner optimization needs to retrain the inner model,
which is extremely time-consuming. (2) Minimizing the outer
objective with gradient-based optimizers is not straightforward
since the gradients cannot be easily back-propagated through
the retraining process of the inner model.

The solutions of this problem in adversarial attacks against
graph mainly can be divided into the following lines: (1)
Circumventing it by assuming that the inner model is fixed
[7]; (2) Tackling this problem indirectly. (e.g.Converting it
into min-max (a.k.a. saddle point) problem with assuming
that the empirical train and test distribution are close together
[9], [10].) (3) Directly transforming the bi-level problem into
single level with closed form of inner model (e.g., Label
Propagation and DeepWalk [14], [37]). In this paper, we follow
the third line.

IV. LABEL-FLIPPING ATTACK MODEL

In this section, we depict our proposed attack model LafAK
for GCNs, which can generate unnoticeable label-flipping at-
tacks efficiently. First, we define the attack objective formally,
which is essentially a non-differentiable bi-level optimization
problem and cannot be solved with the existing efficient
gradient-based optimizers. Next, to make such a problem
tractable, we propose an effective model consisting of two
components: (1) Approximating closed form of GCN, which
can be used to directly transform the bi-level optimization
into single level. (2) Designing continuous surrogates for the
non-differentiable components within the attack objective, still
preserving their functionality. In this way, the attack objective
can be optimized easily with gradients.

A. Attack Objective

In this paper, in line with most of the related works [14],
[18], [19], we restrict the attack scope to binary classification,
where the label of nodes y ∈ {−1,+1}N , the labels of
VL and VU are yL ∈ {−1,+1}NL and yU ∈ {−1,+1}NU

respectively.
The optimal parameters of two-layer GCN are learned in a

semi-supervised fashion by minimizing training (classification)
loss on the output of the labeled nodes VL as

L(θ;A,X,yL) =
NL∑
i

`
(
fθ(A,X)L[i],yL[i]

)
+ λ‖θ‖22,

(3)

where `(·, ·) is a point-wise loss function for node classifi-
cation and the output of GCN fθ(A,X) ∈ [−1,+1]N . In
general, the learned GCN model is evaluated by test accuracy
(0-1 test error)

L0−1(θ;A,X,yU) =
1

NU

NU∑
i

I[sign(fθ(A,X)U)[i] 6= yU [i]],

(4)
where I[·] is a non-differentiable indicator function and sign(·)
is the Heaviside step function mapping the prediction of nodes
to their discrete class label.

The goal of LafAK is to find an unnoticeable fraction of
training labels yL, such that once these labels are flipped, the
test accuracy of the retrained GCN are maximally degraded.
Specifically, the training labels yL are flipped by (δ � yL),
where δ ∈ {+1,−1}NL , � denotes Hadamard product,
δ[i] = −1 indicates flipping label yL[i], and δ[i] = 1 means
not flipping. Formally, the goal of our model LafAK can be
formulated as

min
δ
−L0−1(θ∗;A,X,yU),

s.t. θ∗ = arg min
θ

L(θ;A,X, δ � yL), ‖δ − 1‖0 ≤ εNL,

(5)
where the maximum number of flips is limited by a small
flipping ratio ε to ensure the imperceptibility of attacks.
As we can see, the (outer) optimization on 0-1 test error
L0−1(θ∗;A,X,yU) contains the (inner) optimization of clas-
sification loss L(θ;A,X, δ � yL) as a constraint. This is a
typical bi-level optimization problem. Note that θ∗ are always
constrained as the ‘optimal’ parameters of GCN with given δ.

Obviously, the whole attack objective is a non-differentiable
bi-level optimization problem. As mentioned in section III-B,
without the closed form of inner model (GCN), the above
bi-level optimization is highly challenging. Even worse, the
optimization of the attack objective contains non-differentiable
components (e.g., characteristic function I[·], Heaviside step
function sign(·) and flipping vector δ, becoming more difficult.

B. Approximating Closed Form of GCN

To address the bi-level optimization problem, we provide
an approximated closed form of GCN, transforming the bi-
level problem into single-level. Specifically, we obtain such

approximated closed form with two steps of simplification:
(1) Linearization. The linearization of GCN can reduce the
excessive complexity of GCNs while still preserve the idea of
graph convolutions. (2) Simplifying of inner (classification)
loss. To use existing closed-form estimator “ordinary least-
squares (OLS)”, we replace the (inner) classification loss with
regression loss which can be solved by OLS.

Linearization of GCN. As a deep learning model, the
inherent complexity of GCN hinders approximating the closed
form of GCN. Moreover, the complexity has been proved to
be unnecessary for some applications [28]. To obtain a ap-
proximated closed form of GCN while keep the functionality
of graph convolutions, we simplify GCN by performing a
linearization of GCN in Eq.(6). Here we remove the non-
linearities between GCN layers as [28]:

Softmax(Â(ÂXW(1))W(2)) = Softmax(Â2XW), (6)

where W(1) and W(2) are reparameterized into single matrix
W, yielding θ = W and θ ∈ Rd.

Replacement of (inner) classification loss. Given the
linearization version in Eq.(6), GCN is reduced to a simple
feature propagation step (i.e., Â2X) followed by a standard
logistic regression classification, which does not yet have
statistically efficient closed-form estimators even under small-
sample settings [38]. In contrast, linear regression models have
a closed-form estimator, i.e., the OLS estimator. Hence, we
simplify GCN to linear regression, yielding the approximated
closed form of GCN (named GCN (appr)) by replacing the
(inner) classification loss ` to be regression loss (namely,
squared loss):

θ∗ =
1

NL
arg min

θ
‖(Â2Xθ)L − yL‖22 + λ‖θ‖22. (7)

where θ∗ is the optimal parameter of GCN (appr). In this way,
the OLS estimator can be used to obtain the closed-form of
θ∗ as follows:

θ∗ = ((Â2X)TL(Â2X)L + λI)−1(Â2X)TL(δ � yL)

= P(δ � yL),
(8)

where P = ((Â2X)TL(Â2X)L + λI)−1(Â2X)TL can be pre-
processed easily for given graph.

Empirically, as Fig. 2 shows, our proposed GCN (appr) has
comparable performance to GCN under various flipping ratios.
Given such an approximated closed form of GCN, the bi-level
optimization problem can be transformed into single level:

min
δ
−L0−1(P(δ � yL);A,X,yU),

s.t. ‖δ − 1‖0 ≤ εNL.
(9)

C. Continuous Surrogates of Non-differentiable Components

Despite the given single-level formula in Eq. (9), it is still
challenging to optimize the attack objective due to the inherent
non-differentiable components. To address this problem, we
apply the following continuous surrogates of these compo-
nents:

(1) For the non-differentiable 0-1 error L0−1, one standard
solution is to replace L0−1 with the continuous test loss
L(θ∗;A,X,yU) [14], [18], [19]. However, such replacement
will hurt the functionality of 0-1 error and further reduce
attack effectiveness. Compared to 0-1 error, attack objective
equipped with test loss aims to maximally degrade the overall
confidence of classification, rather than test accuracy. To better
preserve the functionality, we first substitute the Heaviside
step function (namely sign(·)) with a smooth approximation
h̃(x) = tanh(τx) as shown in Fig. 3. As the figure shows,
smoothness coefficient τ can be used to tune the accuracy of
the approximation. The larger value of τ , the closer the smooth
function is to the step function. Next, given flips δ � yL, we
can further obtain the approximated predictions of test nodes
ỹU by:

ỹU = h̃(Â2Xθ∗(δ � yL))U , (10)

where θ∗ is computed with Eq.(8). Lastly, substituting the
above ỹU into L0−1 (Eq. (4)), we can obtain a continuous
differentiable 0-1 error:

L0−1(θ∗;A,X,yU)
def
=

1

NU

NU∑
i

(
ỹU [i]� yU [i]

)
. (11)

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy of closed form

0.0

0.2

0.4

0.6

0.8

1.0

A
ct

ua
l a

cc
ur

ac
y

of
 G

C
N

GCN(appr)
LP

Fig. 2: We compare the test
accuracy from actual GCN vs.
closed form of GCN (appr) /
label propagation (LP) under
different random splits and flip
ratios. We can see that GCN
(appr) has comparable perfor-
mance to the actual GCN (i.e.,
yellow points are near the di-
agonal).

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

h(
x)

sign(x)
= 1
= 2
= 4

Fig. 3: Smooth
approximation h̃(·)
to the Heaviside step
function sign(·). By
varying smoothness
coefficient τ , we
can approximate the
Heaviside step function
in terms of arbitrary
accuracy.

(2) To tackle the discrete-valued label-flipping operation
vector δ, we model the elements in δ with a set of mutually
independent Bernoulli random variables α as [14] (namely, the
probability of “flipping” i-th node is P (δ[i] = −1) = α[i].
So we can optimize the objective of continuous Bernoulli
parameters α easily. In particular, we sample flipping vector
δ from B(1,α) with p ∼ B(1,α) then δ = 2p − 1 by the
strategy of “reparameterization trick” [39].

Finally, based on the approximated closed form of GCN and
the above continuous surrogates, the overall attack objective

in Eq. (5) becomes:

L(α) := − E
p∼B(1,α)
δ=2p−1

[1

NU

NU∑
i

ỹU [i]� yU [i]
]
, (12)

which is differentiable and tractable now. So we can minimize
it with gradient-based optimizer for the optimal probability of
’flipping’ α.

D. Optimization

We summarize our model LafAK in Alg.1. Given a fixed
training set, we first pre-process the matrix P in Line 1,
including solving inverse matrix with time complexity O(d3).
In fact, this inverse matrix can be computed easily since the
value of the feature dimension d is usually small. The training
procedure of the probability vector α is presented in Line
2-6, which can be optimized by stochastic gradient descent
optimizer. Lastly, we generate attacks following the strategy
in [14] that if α[i] is one of the largest εNL elements in
probability α, the i-th label will be flipped. The intuition
behind such a strategy is similar to ε−greedy strategy [14],
which is a greedy heuristic for combinatorial optimization.
Furthermore, we discuss the efficiency of the proposed attack
strategies. Here we report the time consumption of the pro-
posed attack strategies on average (including pre-processing).
The time consumption for Polblogs, Cora, Citeseer, Pubmed
are 28.3s, 24.5s, 28.0s, and 45.5s, respectively. As we can see,
the proposed model takes less than 50 seconds on average to
generate perturbation. These results show that the proposed
attack strategies are quite efficient.

Algorithm 1 LafAK: Label-flipping attack model for GCN

Input: Graph with yL, A, X and yU (or using predictions of
GCN ŷU as substitution), flip ratio ε, smooth coefficient
τ and iteration numbers T .

Output: The modified training labels y
′

L.
1: y

′

L = yL

2: Pre-process P in Eq.(8).
3: for t ∈ T do
4: Sample flipping operation by p ∼ B(1,α) and δ =

2p− 1;
5: Calculate L(α) using Eq. (12);
6: Update α by ∂L(α)

∂α ;
7: end for
8: flip the labels in y

′

L with the largest εNL elements in α.

V. DEFENSE FRAMEWORK AGAINST LABEL-FLIPPING
ATTACKS

In order to improve the robustness of GCNs to label-
flipping attacks, we explore the reason for the vulnerability
of GCNs to such attacks, through analyzing the learning
process under attacks. Here we plot the training/validation
accuracy under clean/attack scenarios respectively in Fig. 4.
As we can see, compared with clean scenario, the training
accuracy with attacks has almost no changes while the gap

between training and validation accuracy clearly increases.
Typically, this indicates that GCN overfits the flipped nodes
and memorizes their inherent misinformation, resulting in a
poor generalization performance. Thus, preventing GCNs from
overfitting flipped nodes is a key issue, and one direct solution
is to exploit reliable high-level signals as regularization.

Here we consider community structure, which is a high-
level topological property of natural graphs (e.g., communities
in a social graph may represent users with common inter-
ests/ locations). We assume that communities can guide node
classification task as high-level signals. To verify this idea,
we compare the community labels learned with the existing
method [1] with the output of GCN classification in Fig. 5.
We can observe that the community labels of nodes are partly
consistent with node classification labels. So the community
signals can be valuable for node classification task.

0 25 50 75 100 125 150 175 200
Number of iterations

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Training(clean)
Valid(clean)

Training(attack)
Valid(attack)

Fig. 4: Mean accuracy on
training set (solid lines)
and validation set (dashed
lines) of Polblogs under
clean/attack (flipping ratio
ε = 0.1) scenarios. As we
can see the validation accu-
racy clearly decreases un-
der attack.

0 1
Community label

1.0

0.5

0.0

0.5

1.0

O
ut

pu
t o

f G
C

N

Fig. 5: Community labels vs.
GCN output fθ on Polblogs.
For most nodes, their commu-
nity labels are consistent with
fθ, i.e., the nodes with com-
munity labels (0 or 1) cor-
respond to GCN output fθ
([−1, 0] or [0,+1]).

Based on these observations, in this paper, we propose a
community-preserving self-supervised defense framework for
GCNs against label-flipping attacks, alleviating the overfitting
to flipped nodes via community signals. Specifically, the
proposed defense framework consists two steps:

(1) Learning community labels. Following a common strat-
egy, we first embed the nodes into a low dimensional Eu-
clidean space by existing graph embedding methods [1], [40].
The obtained embeddings can represent abstract structural
features of the network and enabling us to apply standard
clustering algorithm. Then we cluster the embeddings into K
(or more) distinct groups with a standard clustering algorithm,
such as K-means, and then use the cluster assignments as
pseudo community labels Yc.

(2) Training GCNs using community-preserving self-
supervised task as regularization. With community labels, we
train the GCNs with predicting the community label as an
auxiliary self-supervised task, which takes the hidden feature
matrix at (L− 1)-th layer H(L−1) as input and outputs a K-
way softmax distribution. This auxiliary task is trained along

with the community labels Yc as following:

Lc(θ
(L−1),Wc;A,X,Yc) = −

V c
L∑
v

K∑
i=1

Yc
v,ilnZ

c
v,i, (13)

where Zc
v,i = Softmax(ÂH(L−1)Wc), V c

L is the node set
for training self-supervised task. The parameters of low level
layers θ(L−1) = {W(1)...W(L−1)} are shared between the
two tasks, while keeping several task-specific output layers
Wc and W(L). The shared layers will be punished by the
community-level information as long as overfit the misleading
signals in flipped nodes. Our overall loss LMT during training
can be formulated in the following:

LMT (A,X,Y,Yc) = L(θ(L−1),W(L);A,X,Y)

+ λcLc(θ
(L−1),Wc;A,X,Yc).

(14)

When λc = 0, our total loss falls back to the original GCN.
In this paper, we set λc = 1 by default. Note that the self-
supervised component of the loss does not require the ground-
truth training labels Y as input.

VI. EXPERIMENTS

In this section, we explore the robustness of GCNs to
adversarial label-flipping attacks, and evaluate the effective-
ness of our proposed attack and defense models on multiple
datasets, including citation network (Citeseer, Cora, Pubmed
[3]) and social network (Polblogs [2]). We closely follow the
experimental setting in previous works [3], [41]. Specifically,
we use all node features and 20 labeled nodes per class as
the training set and another 500 labeled nodes for validation
and early-stopping. The statistics of the datasets are shown in
Table I.

TABLE I: Dataset statistics.

Dataset Nodes Edges Classes Features Train./Val./Test
Polblogs 1,490 19,025 2 - 40/500/950

Cora 2,708 5,429 7 1,433 140/500/1000
Citeseer 3,327 4,732 6 3,703 120/500/1000
Pubmed 19,717 44,338 3 500 60/500/1000

A. Attack

In this part, we evaluate the effectiveness and transferability
of our model LafAK assuming the attacker knows true test
labels. Additionally, we also examine LafAK under a more
practical scenario without these labels.

Effectiveness of attack model. To verify the effectiveness
of our model LafAK, we perform attacks considering various
ratios ε of flipped nodes in the target training data with ε ∈
[0.05, 0.1, 0.15, 0.2]. We randomly split each dataset following
Table I for five times, then run our model for five times under
each partition and report the average results of 25 times. Note
that our attacks focus on semi-supervised binary classification.
For multi-class datasets, we use LafAK to generate attacks for
the two classes with the most nodes.

We compare our model LafAK against these baselines:
(1) Random-flipping attacks (Rnd) which randomly flip the

labels of a same number of nodes. (2) Degree-based flipping
attacks (Deg) which flip the nodes with the highest degrees.
(3) Label-flipping attacks against label propagation (LPattack)
[14] which is the state-of-the-art attack model for graph-based
semi-supervised learning. Besides, to further examine the
effectiveness of each component of LafAK, we also consider
two variants: (1) LafAKLP: It uses the label propagation
to approximately compute the predictions of unlabeled data
ỹh in Eq. (10). (2) LafAKMSE: It adopts the continuous
mean squared error (MSE) to replace 0-1 error, solving non-
differentiable objective while introducing unnecessary loss
of attack accuracy. The parameters in all the models are
optimized using the attack loss.

The results are presented in Table II. Here, we show the
test accuracy under different flip ratios ε on four datasets. The
major findings from the experimental results are summarized
as follows:

• Our model LafAK significantly outperforms Rnd on all
metrics, which indicates that GCNs are robust to random
label noise but quite vulnerable to well-designed adver-
sarial label-flipping attacks. One can observe that with the
increasing flip ratio ε, the test performance under LafAK
consistently decreases even reaches less than random
guessing. (e.g., Polblogs’ test accuracy (%) is 46.4 when
ε = 0.20.) The explanation is that adversarial label-
flipping attacks can be specifically targeted to exploit the
prediction information of the learning algorithm to search
for the most effective flipping operation, significantly
degrading performance.

• Our model LafAK achieves better performance than other
label-flipping attacks, and we argue that this comes from
the fact that they fail to approximate the influence of a
label to GCN model precisely: (1) Deg simply identifies
the influential nodes based on degrees. (2) LPattack is
specifically designed for label propagation rather than
GCNs. which are different in information propagation and
feature modeling. Compared with Deg and LPattack, our
model LafAK is specifically designed for GCN, estimat-
ing the influence of flips precisely and efficiently with
the approximated closed form of GCN and continuous
surrogate of objective.

• Considering the two variants of our model LafAKLP
and LafAKMSE, it is easy to see LafAK achieves better
performance than LafAKLP and LafAKMSE. It indicates
that the approximated closed form of GCN and continu-
ous surrogates of discrete components in our model are
reasonable and effective.

Transferability of attacks. Can attacks learned for one
model generalize to other models? In practical attack scenario,
the attacker dose not know what model the system is using
exactly. In this part, we explore the transferability of our model
LafAK. We find the optimal perturbations based on GCN,
and then apply them to the state-of-the-art GCNs including
graph attention networks (GAT) [26] and graph isomorphism
network (GIN) [42]. For each model, we use the default

settings for the hyper-parameters. The results presented in
Fig. 6 show that the perturbations generated by LafAK can
successfully transfer to different graph neural models such as
GAT and GIN, even achieving better attack performance on
some datasets.

Analysis of the number of labeled nodes per class. To
comprehensively evaluate our model LafAK, we gradually
increase the number of labeled nodes per class (L/C) for
training (i.e., 20, 40, 60, 80) and study the performance.
The attack results are reported in Fig. 7. As we can see,
for each dataset, the curves of 20, 40, 60, 80 L/C show
the similar declining trend with the increasing flip ratio
ε ∈ {0.00, 0.05, 0.10, 0.15, 0.20}. We notice that models with
larger L/C tend to have better performance under both clean
data (ε = 0.00) and poisoned data. The possible reasons are:
(1) With the increase of L/C, GCN can propagate the labels
to the entire data graph more sufficiently, which improves the
overall classification confidence and reduces the number of
nodes close to the classification boundary. (2) Given more
training labeled data, the overfitting to flipped labels can be
better alleviated.

Evaluating attack model without true test labels. In this
part, we consider the case that attacker has no access to true
test labels yU , which is common in practical attack scenarios.
The attacker uses the predictions of GCN on test nodes ŷU as
a substitution of true test labels. Here, we take Polblogs and
Citeseer as examples. As shown in Fig. 8, we can observe that
there is no significant decrease for our model LafAK without
true labels of test data. This experiment provides a valuable
implication that hiding the ground-truth labels cannot protect
the GCN models, because the attackers can alternatively use
the estimated labels yU .

B. Defense

In this part, we evaluate the effectiveness and generalization
ability of our defense framework on multiple datasets. We
compare against the following two baselines: (1) RGCN:
A robust GCN model, designed against adversarial topol-
ogy/feature attacks. It adopts Gaussian distributions as the
hidden representations of nodes and uses a variance-based
attention mechanism to remedy the propagation of adversarial
attacks. (2) Sanitation: A common defense technique against
label-flipping attacks. It uses k-Nearest-Neighbours (k-NN)
based methods to identify the training points that may have
had their labels corrupted and then removes/relabels them. The
above baselines are initialized with the parameters suggested
by their papers and we also further carefully tune the param-
eters to get optimal performance. For our model, we train
our community-preserving based defense framework with the
same hyper-parameters as GCN [3]. In addition, the number
of labeled nodes per class for training community-preserving
self-supervised task (L/Cc) are searched in {1, 2, 4, 6, 8}. For
all methods, we run our model for five times under each
train./valid./test partition following Table I and report the
average results.

TABLE II: Results of attack models under different flip ratios ε. A lower test accuracy(%) indicates better performance. We
also report the performance drop rate w.r.t. the clean model. A larger drop rate indicates better attack performance.

Dataset ε Rnd Deg LPattack LafAKLP LafAKMSE LafAK

Polblogs

0.05 85.2 (-2.63%) 85.3 (-2.51%) 81.5 (-6.86%) 78.8 (-9.94%) 80.1 (-8.46%) 78.5 (-10.29%)
0.10 85.3 (-2.51%) 81.6 (-6.74%) 67.8 (-22.51%) 66.3 (-24.23%) 72.2 (-17.49%) 61.7 (-29.49%)
0.15 85.0 (-2.86%) 73.0 (-16.57%) 59.3 (-32.23%) 59.7 (-31.77%) 64.6 (-26.17%) 60.9 (-30.40%)
0.20 82.5 (-5.71%) 57.0 (-34.86%) 51.5 (-41.14%) 51.7 (-40.91%) 48.6 (-44.46%) 46.4 (-46.97%)

Cora

0.05 78.7 (-0.76%) 78.6 (-0.88%) 75.8 (-4.41%) 75.3 (-5.04%) 74.5 (-6.05%) 75.0 (-5.42%)
0.10 78.7 (-0.76%) 76.7 (-3.28%) 71.1 (-10.34%) 69.4 (-12.48%) 68.2 (-14.00%) 67.6 (-14.75%)
0.15 76.3 (-3.78%) 73.9 (-6.81%) 66.1 (-16.65%) 66.3 (-16.39%) 62.9 (-20.68%) 62.7 (-20.93%)
0.20 75.5 (-4.79%) 71.8 (-9.46%) 63.1 (-20.43%) 62.3 (-21.44%) 60.7 (-23.46%) 60.7 (-23.46%)

Citeseer

0.05 66.8 (-2.05%) 66.3 (-2.79%) 66.4 (-2.64%) 65.3 (-4.25%) 65.6 (-3.81%) 64.8 (-4.99%)
0.10 66.8 (-2.05%) 63.0 (-7.62%) 63.4 (-7.04%) 62.8 (-7.92%) 62.7 (-8.06%) 59.6 (-12.61%)
0.15 66.1 (-3.08%) 59.8 (-12.32%) 60.2 (-11.73%) 58.3 (-14.52%) 59.7 (-12.46%) 55.8 (-18.18%)
0.20 58.7 (-13.93%) 58.5 (-14.22%) 58.4 (-14.37%) 57.1 (-16.28%) 55.1 (-19.21%) 51.6 (-24.34%)

Pubmed

0.05 76.6 (–0.79%) 73.4 (-3.42%) 71.4 (-6.05%) 71.9 (-5.39%) 70.7 (-6.97%) 68.9 (-9.34%)
0.10 75.9 (-0.13%) 68.9 (-9.34%) 65.0 (-14.47%) 65.5 (-13.85%) 64.1 (-15.66%) 63.2 (-16.84%)
0.15 71.5 (-5.92%) 67.4 (-11.32%) 57.6 (-24.23%) 58.1 (-23.49%) 59.1 (-22.24%) 58.4 (-23.16%)
0.20 69.5 (-8.55%) 62.0 (-18.42%) 54.4 (-28.46%) 53.9 (-29.02%) 53.5 (-29.61%) 54.0 (-28.95%)

0.00 0.05 0.10 0.15 0.20
Flip rate

40
45
50
55
60
65
70
75
80
85
90

Te
st

 a
cc

ur
ac

y
(%

) GCN
GAT
GIN

(a) Polblogs.

0.00 0.05 0.10 0.15 0.20
Flip rate

55

60

65

70

75

80

Te
st

 a
cc

ur
ac

y
(%

) GCN
GAT
GIN

(b) Cora.

0.00 0.05 0.10 0.15 0.20
Flip rate

45

50

55

60

65

70

Te
st

 a
cc

ur
ac

y
(%

) GCN
GAT
GIN

(c) Citeseer.

0.00 0.05 0.10 0.15 0.20
Flip rate

45

50

55

60

65

70

75

80

Te
st

 a
cc

ur
ac

y
(%

) GCN
GAT
GIN

(d) Pubmed.

Fig. 6: Transferability of our attack model LafAK.

0.00 0.05 0.10 0.15 0.20
Flip rate

45
50
55
60
65
70
75
80
85
90

Te
st

 a
cc

ur
ac

y
(%

)

L/C=20
L/C=40
L/C=60
L/C=80

(a) Polblogs.

0.00 0.05 0.10 0.15 0.20
Flip rate

60

65

70

75

80

85

Te
st

 a
cc

ur
ac

y
(%

)

L/C=20
L/C=40
L/C=60
L/C=80

(b) Cora.

0.00 0.05 0.10 0.15 0.20
Flip rate

50

55

60

65

70

75

Te
st

 a
cc

ur
ac

y
(%

)

L/C=20
L/C=40
L/C=60
L/C=80

(c) Citeseer.

0.00 0.05 0.10 0.15 0.20
Flip rate

50

55

60

65

70

75

80

85

Te
st

 a
cc

ur
ac

y
(%

)

L/C=20
L/C=40
L/C=60
L/C=80

(d) Pubmed.

Fig. 7: Analysis of label rate for our attack model LafAK. L/C denotes the number of labeled nodes per class for training set.

0.05 0.10 0.15 0.20
Flip rate

45
50
55
60
65
70
75
80
85
90

Te
st

 a
cc

ur
ac

y
(%

) w/ yU

w/o yU

(a) Polblogs.

0.05 0.10 0.15 0.20
Flip rate

45

50

55

60

65

70

Te
st

 a
cc

ur
ac

y
(%

) w/ yU

w/o yU

(b) Citeseer.

Fig. 8: Attack performance without true test labels.

Polblogs Cora Citeseer Pubmed
Dataset

0

20

40

60

80

100

Te
st

 a
cc

ur
ac

y
(%

)

RGCN
dRGCN

 GAT
dGAT

GIN
dGIN

Fig. 9: Generalization
ability of our defense.

1 2 4 6 8
L/Cc

50

55

60

65

70

Te
st

 a
cc

ur
ac

y
(%

) Polblogs
Citeseer

Fig. 10: Analysis of L/Cc

for our defense.

Effectiveness of defense framework. In the following, we
evaluate the effectiveness of the proposed defense framework
under different flipping ratios ε on multiple datasets. The
overall results are presented in Table III. We have the following
observations:

• Our model significantly improves the robustness of GCN
model on all metrics, which indicates that the GCN
can greatly benefit from community-preserving self-
supervised task, alleviating the overfitting to misinforma-
tion in flipped nodes.

• The existing method RGCN and Sanitization fail to
defense our attack. The reasons are: (1) RGCN is mainly
focused on feature/topology attacks, rather than label-
flipping attacks. (2) Sanitization relabels flipped nodes
by exploiting a large volume of training data, and may
fail in semi-supervised learning.

• Moreover, compared with GCN, the improvement of our
model is relatively small on the Pubmed dataset. This
could be due to the poor intrinsic community structure
of Pubmed. It implies the effectiveness of community
structure for improving robustness.

TABLE III: Results of defense framework. A higher test
accuracy(%) indicates better performance.

Dataset ε GCN RGCN Sanitization OursGCN

Polblogs

0.05 78.5 77.9 78.5 83.9
0.10 61.7 60.6 61.5 69.7
0.15 60.9 61.6 58.4 62.8
0.20 46.4 47.6 46.3 56.1

Cora

0.05 78.6 79.2 78.6 79.7
0.10 73.7 75.0 73.7 77.3
0.15 66.4 67.4 66.4 71.9
0.20 61.2 61.9 61.2 64.2

Citeseer

0.05 64.5 64.2 64.5 69.1
0.10 58.7 59.0 58.7 62.6
0.15 56.2 57.3 56.2 57.4
0.20 55.4 55.9 55.4 57.2

Pubmed

0.05 74.6 74.3 73.3 76.0
0.10 69.0 68.4 69.0 69.4
0.15 61.8 62.6 61.8 63.9
0.20 58.9 57.4 58.9 57.0

Generalization ability of defense framework. In addition,
to demonstrate that our proposed defense framework is generic
to other GCN models, we also generalize our defense frame-
work to RGCN, GAT and GIN, obtaining dRGCN, dGAT and
dGIN. We evaluate the robustness of it with fixed flipping ratio
ε = 0.10. The results are presented in Fig. 9. As we can see,
our defense framework can successfully generalize to existing
GCNs, improving the robustness of GCNs to label-flipping
attacks.

Analysis of L/Cc. We test the impact of the number of
labeled nodes per class for training community-preserving
self-supervised learning (L/Cc). Here, we take the datasets
Polblogs and Citeseer as examples. As shown in Fig. 10, we
can observe that, basically, our framework is stable when L/Cc

is within the range from {1, 2, 4, 6, 8}.

VII. CONCLUSION

In this paper, we introduce the first study on the adversarial
label-flipping attacks against GNNs. We propose an effective
label-flipping attack model based on approximated closed
form of GNN and replacement of non-differentiable objective,
overcoming the challenges of inherent bi-level optimization
problem and non-differentiability. Our extensive experiments
show that by only flipping an unnoticeable fraction of train-
ing labels, the overall classification performance of GNNs
can be dramatically impaired. Additionally, we propose an
effective defense framework based on community-preserving
self-supervised learning to improve the robustness of GNNs,
by alleviating the overfitting to flipped nodes. Experiments
on various datasets show the effectiveness of our defense
framework. In future work, we would like to study clean-label
poisoning attacks on graph data, inserting innocuous-looking
(and “correctly” labeled) poison training nodes but causing the
classifier to perform poorly.

ACKNOWLEDGMENT

This work is supported in part by the National Natu-
ral Science Foundation of China (No. 61772082, 61806020,
61702296), the National Key Research and Development Pro-
gram of China (2018YFB1402600), and Alibaba Group under
its Alibaba Innovative Research (AIR) programme.

REFERENCES

[1] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: online learning
of social representations,” in The 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, New
York, NY, USA - August 24 - 27, 2014, 2014, pp. 701–710.

[2] L. A. Adamic and N. S. Glance, “The political blogosphere and the 2004
U.S. election: divided they blog,” in Proceedings of the 3rd international
workshop on Link discovery, LinkKDD 2005, Chicago, Illinois, USA,
August 21-25, 2005. ACM, 2005, pp. 36–43.

[3] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings, 2017.

[4] D. Eswaran, S. Günnemann, C. Faloutsos, D. Makhija, and M. Kumar,
“Zoobp: Belief propagation for heterogeneous networks,” Proc. VLDB
Endow., vol. 10, no. 5, pp. 625–636, 2017.

[5] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing
Systems 2017, 4-9 December 2017, Long Beach, CA, USA, 2017, pp.
1024–1034.

[6] L. Sun, Y. Dou, C. Yang, J. Wang, P. S. Yu, and B. Li, “Adversarial attack
and defense on graph data: A survey,” arXiv preprint arXiv:1812.10528,
2018.

[7] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks
on neural networks for graph data,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2018, London, UK, August 19-23, 2018. ACM, 2018,
pp. 2847–2856.

[8] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song,
“Adversarial attack on graph structured data,” in Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018, ser. Proceedings of
Machine Learning Research, vol. 80. PMLR, 2018, pp. 1123–1132.

[9] D. Zügner and S. Günnemann, “Adversarial attacks on graph neural net-
works via meta learning,” in 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

[10] K. Xu, H. Chen, S. Liu, P. Chen, T. Weng, M. Hong, and X. Lin, “Topol-
ogy attack and defense for graph neural networks: An optimization
perspective,” in Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August
10-16, 2019. ijcai.org, 2019, pp. 3961–3967.

[11] T. Takahashi, “Indirect adversarial attacks via poisoning neighbors for
graph convolutional networks,” in 2019 IEEE International Conference
on Big Data (Big Data), Los Angeles, CA, USA, December 9-12, 2019.
IEEE, 2019, pp. 1395–1400.

[12] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” in Proceedings of the 29th International Conference
on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26
- July 1, 2012. icml.cc / Omnipress, 2012.

[13] L. Muñoz González, B. Biggio, A. Demontis, A. Paudice, V. Wongras-
samee, E. C. Lupu, and F. Roli, “Towards poisoning of deep learning
algorithms with back-gradient optimization,” in Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security, ser. AISec ’17.
Association for Computing Machinery, 2017, p. 27–38.

[14] X. Liu, S. Si, J. Zhu, Y. Li, and C. Hsieh, “A unified framework
for data poisoning attack to graph-based semi-supervised learning,”
in Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS
2019, 8-14 December 2019, Vancouver, BC, Canada, 2019, pp. 9777–
9787.

[15] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data
with label propagation,” Tech. Rep., 2002.

[16] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Un-
derstanding deep learning requires rethinking generalization,” in 5th
International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017.

[17] M. Zhao, B. An, W. Gao, and T. Zhang, “Efficient label contamination
attacks against black-box learning models,” in Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI 2017, Melbourne, Australia, August 19-25, 2017. ijcai.org, 2017,
pp. 3945–3951.

[18] P. W. Koh, J. Steinhardt, and P. Liang, “Stronger data poisoning attacks
break data sanitization defenses,” CoRR, vol. abs/1811.00741, 2018.

[19] A. Paudice, L. Muñoz-González, and E. C. Lupu.
[20] J. Xie, R. B. Girshick, and A. Farhadi, “Unsupervised deep embedding

for clustering analysis,” in Proceedings of the 33nd International Con-
ference on Machine Learning, ICML 2016, New York City, NY, USA,
June 19-24, 2016, ser. JMLR Workshop and Conference Proceedings,
vol. 48. JMLR.org, 2016, pp. 478–487.

[21] C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, and C. Zhang, “Attributed
graph clustering: A deep attentional embedding approach,” in Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019. ijcai.org,
2019, pp. 3670–3676.

[22] B. Rozemberczki, R. Davies, R. Sarkar, and C. A. Sutton, “GEMSEC:
graph embedding with self clustering,” in ASONAM ’19: International
Conference on Advances in Social Networks Analysis and Mining,
Vancouver, British Columbia, Canada, 27-30 August, 2019. ACM,
2019, pp. 65–72.

[23] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2009.

[24] M. Zhang and Y. Chen, “Link prediction based on graph neural
networks,” in Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, 3-8 December 2018, Montréal, Canada, 2018, pp. 5171–
5181.

[25] Z. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pooling,”
in Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS
2018, 3-8 December 2018, Montréal, Canada, 2018, pp. 4805–4815.

[26] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018.

[27] K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”

in Proceedings of the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, vol. 80. PMLR, 2018, pp. 5449–5458.

[28] F. Wu, A. H. S. Jr., T. Zhang, C. Fifty, T. Yu, and K. Q. Weinberger,
“Simplifying graph convolutional networks,” in Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15
June 2019, Long Beach, California, USA, ser. Proceedings of Machine
Learning Research, vol. 97. PMLR, 2019, pp. 6861–6871.

[29] H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, and L. Zhu, “Adver-
sarial examples for graph data: Deep insights into attack and defense,”
in Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19. International Joint Conferences on
Artificial Intelligence Organization, 7 2019, pp. 4816–4823.

[30] Y. Ma, S. Wang, L. Wu, and J. Tang, “Attacking graph convolutional
networks via rewiring,” CoRR, vol. abs/1906.03750, 2019.

[31] B. Wang and N. Z. Gong, “Attacking graph-based classification via
manipulating the graph structure,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2019, London, UK, November 11-15, 2019. ACM, 2019, pp. 2023–
2040.

[32] H. Chang, Y. Rong, T. Xu, W. Huang, H. Zhang, P. Cui, W. Zhu,
and J. Huang, “A restricted black-box adversarial framework towards
attacking graph embedding models.” AAAI, 2020.

[33] N. Entezari, S. A. Al-Sayouri, A. Darvishzadeh, and E. E. Papalexakis,
“All you need is low (rank): Defending against adversarial attacks on
graphs,” in WSDM ’20: The Thirteenth ACM International Conference
on Web Search and Data Mining, Houston, TX, USA, February 3-7,
2020. ACM, 2020, pp. 169–177.

[34] J. Li, H. Zhang, Z. Han, Y. Rong, H. Cheng, and J. Huang, “Adversarial
attack on community detection by hiding individuals,” in WWW ’20:
The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020. ACM /
IW3C2, 2020, pp. 917–927.

[35] G. Patrini, A. Rozza, A. K. Menon, R. Nock, and L. Qu, “Making deep
neural networks robust to label noise: A loss correction approach,” in
2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Computer
Society, 2017, pp. 2233–2241.

[36] R. Taheri, R. Javidan, M. Shojafar, Z. Pooranian, A. Miri, and M. Conti,
“On defending against label flipping attacks on malware detection
systems,” CoRR, vol. abs/1908.04473, 2019.

[37] A. Bojchevski and S. Günnemann, “Adversarial attacks on node em-
beddings via graph poisoning,” in Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, ser. Proceedings of Machine Learning Research,
vol. 97. PMLR, 2019, pp. 695–704.

[38] E. Yang, A. C. Lozano, and P. Ravikumar, “Closed-form estimators for
high-dimensional generalized linear models,” in Advances in Neural
Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, 2015, pp. 586–594.

[39] M. Figurnov, S. Mohamed, and A. Mnih, “Implicit reparameterization
gradients,” in Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, 3-8 December 2018, Montréal, Canada, 2018, pp. 439–
450.

[40] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, “Adversarially
regularized graph autoencoder for graph embedding.” in IJCAI, 2018,
pp. 2609–2615.

[41] D. Zhu, Z. Zhang, P. Cui, and W. Zhu, “Robust graph convolutional
networks against adversarial attacks,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019. ACM,
2019, pp. 1399–1407.

[42] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” in 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

