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Abstract

With the booming of the internet, a popular recommenda-

tion scenario has played a vital role in information acqui-

sition for user where the latent heterogeneous collaborative

signals and sequential patterns underlying a user’s histori-

cal behaviors are important for better inferring which item

she prefers to interact with next time. Traditional heteroge-

neous information network based methods or sequential rec-

ommendation methods either consider only heterogeneous

collaborative signals in the interactions or model user em-

bedding based on only their own item interaction sequence,

which either can hardly capture a user’s dynamic preferences

or face a common data sparsity problem. In this paper, we

propose a novel Sequence-aware Heterogeneous graph neural

Collaborative Filtering model, called SHCF, which can ad-

dress the above problems by considering both the high-order

heterogeneous collaborative signals and sequential informa-

tion. Specifically, we first construct a heterogeneous infor-

mation network (HIN) by enriching the user-item bipartite

graph with additional attribute information, and then de-

sign novel message passing layers for learning user and item

embedding. For user embedding, we consider the sequential

information to capture user’s dynamic interests over time

with a position-aware self-attention mechanism, and cap-

ture user’s fine-grained static preferences on different aspects

of an item with an element-wise attention mechanism. For

item embedding, we carefully incorporate the heterogeneous

attribute information with dual-level attention, which alle-

viates the data sparsity problem. Extensive experiments on

three real-world datasets illustrate that our model can im-

prove the recommendation performance compared with the

state-of-the-art methods.

1 Introduction

In the era of information explosion, information over-
load has become a challenge for people to find the in-
formation that they are interested in. The recommen-
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Figure 1: A toy example of user-item interactions with
heterogeneous information and sequential patterns.

dation system as an information filtering system that
can learn the user’s interests and hobbies based on the
user’s profile or historical behavior records, is widely
applied in many Web applications, e.g., e-commerce,
search, and media streaming sites. Based on the fact
that users with similar preferences may be interested
in similar items, most of the existing recommendation
methods mine such collaborative information through
user-item interactions, known as collaborative filtering
(CF). Matrix factorization (MF) [11] is one of the most
successful methods among CF techniques, which mod-
els the user preference as the inner product of user and
item latent representations.

However, collaborative filtering methods suffer from
the data sparsity problem, also called cold-start prob-
lem [19], thus many researchers consider blending more
side information for hybrid recommendation. Hetero-
geneous information network (HIN) as an effective in-
formation fusion method containing different types of
nodes and links, can be used to integrate multiple types
of objects and their complex interactions in the recom-
mendation system that may produce more accurate rec-
ommendation results [18]. Initially, many works lever-
age meta-path based semantic relatedness between users
and items over HIN for recommendation [28, 4]. More
recently, some works adopt network embedding models
to learn latent user and item representations for rat-
ing prediction [17]. Despite their effectiveness, we argue
that these methods consider only the heterogeneous col-
laborative information to model a user’s static prefer-
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ence with the assumption that all user-item interactions
in the historical sequence are equally important, while
ignoring the interactions’ sequential pattern that a small
set of the most recent interactions can better reflect a
user’s dynamic interests over time.

Considering the sequential pattern to model a user’s
latest interests, there is another line of work called se-
quential recommendation. The sequential recommenda-
tion system is to predict which item a user most prob-
ably would like to interact with next time given her
sequential interaction data as context. Markov Chain
(MC) is a classic example for sequential recommenda-
tion, which assumes that the next action is conditioned
on only the previous action [16]. Recently, many works
use Recurrent Neural Networks (RNNs) to summarize
all previous actions with a hidden state, which is used to
predict the next action [6, 12, 7, 14]. However, almost
all of the sequential recommendation methods model
user embeddings based on only their own sequential
item interactions while ignoring the heterogeneous in-
formation widely existing in recommendation system,
such like item attributes. When the data is sparse and
there are few user interaction behaviors, these methods
also suffer from cold-start problem.

Based on these observations, it motivates us to con-
duct sequential recommendation on HIN settings, since
these scenarios are very popular in real applications. For
example, in e-commerce, there are multiple-type objects
(e.g. user, item, agent, category, etc.) and multiple-
type relationships (e.g. buy, click, belong, etc.), the
platform can predict which item a user may interact
with next time based on her interaction sequence. More-
over, it is potential to promote the recommendation per-
formance when considering both sequential patterns and
heterogeneous information. Taking Fig. 1 for example,
the user u1 interacts with items {i1, i2, i3} in the time
order {t1, t2, t3}, and the user u2 interacts with i4 after
i3, these item sequential dependencies can imply u1’s
latest interests. Besides, the added item attributes such
as cj and aj can bring richer semantic information to
alleviate the data sparsity problem.

In this paper, we propose a novel Sequence-aware
Heterogeneous graph neural Collaborative Filtering
model (SHCF) to fully consider both the sequential
patterns and the high-order heterogeneous collaborative
signals. More specifically, we designed a novel hetero-
geneous graph neural network (GNN) for learning user
and item representations in the HIN, which can capture
heterogeneous collaborative information as well as in-
corporate sequential information during message prop-
agation. For user embedding, we aggregate the user’s
interacted item embeddings with a novel element-wise
attention mechanism, which assumes each dimension of

the item embedding reflects a distinct aspect of the item
and a user may prefer different aspects of the item. We
also consider a user’s dynamic interests by aggregat-
ing her interacted item sequence with a sequence-aware
self-attention mechanism, where each item is correlated
with a position embedding and self-attention is used
to pay attention to important items reflecting her latest
interests. For item embedding, we aggregate the hetero-
geneous information of its neighboring nodes including
users and item attributes with dual-level attention. In
this way, we can not only learn the importance of dif-
ferent nodes but also pay attention to important types
of nodes. By stacking multiple message passing lay-
ers, we can enforce the embeddings to capture the high-
order collaborative relationships. Experimental results
on real-world datasets show that our model significantly
outperforms state-of-the-art methods.

We summarize the contributions as follow:

• To our best knowledge, this is the first attempt
to fully consider both the sequential patterns and
the high-order heterogeneous collaborative signals
in recommendation system to improve the perfor-
mance of recommendation.

• We propose a novel sequence-aware heterogeneous
graph neural collaborative filtering model SHCF,
which incorporates additional attribute informa-
tion for enriching user and item embedding. In ad-
dition, our model captures a user’s dynamic inter-
ests over time with a sequence-aware self-attention
mechanism.

• We conduct extensive experiments on real-world
datasets to evaluate the performance of the pro-
posed model. The results show the superiority of
our model over the state-of-the-art models.

2 Related Work

2.1 Collaborative Filtering Recommendation
Collaborative filtering is a recommendation technique
that can filter out items that a user might like based on
reactions by similar users. Matrix factorization (MF) is
one of the most popular collaborative filtering meth-
ods and has shown its effectiveness and efficiency in
many applications [11, 10, 15]. MF factorizes the rating
matrix into two low-rank user-specific and item-specific
latent representations and then applies an inner prod-
uct on them for prediction. Recently, with the devel-
opment of deep learning techniques, neural CF models
appear. Instead of modeling the user preference on an
item as the inner product like traditional MF methods,
He et al. proposed NeuMF [5] to leverage a multi-layer
perceptron to learn the user-item interaction function
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with non-linearities. DMF [26] uses multiple nonlin-
ear layers to process both explicit ratings and implicit
feedbacks of users and items. Another line of research
exploits the user-item interaction graph to infer user
preference[27, 1, 22]. Yang et al. proposed HOP-Rec
[27] which performs random walks to enrich the interac-
tions of a user with multi-hop connected items. GC-MC
[1] uses two multi-link graph convolution layers to ag-
gregate user and item features. NGCF [22] explicitly in-
corporates collaborative signals by leveraging high-order
connectivities in the user-item interaction graph.

2.2 Heterogeneous Information Network based
Recommendation Facing the common data sparsity
problem in recommendation tasks, many researchers
consider blending more side information such as social
relations [24, 30], knowledge graph [21], and heteroge-
neous information network (HIN) [29] for hybrid rec-
ommendation. HIN as one of the most important in-
formation fusing frameworks can naturally character-
ize different relations between different types of objects,
thus it has attracted much attention. Feng et al. [3]
proposed an optimization-based graph method for per-
sonalized tag recommendation which incorporates dif-
ferent sources of information to alleviate the cold start
problem. Yu et al. [28] proposed to diffuse user pref-
erences along different meta-paths in information net-
works. Shi et al. [17] designed a new random walk
strategy based on meta-paths to derive more meaning-
ful node sequences for node embedding and then inte-
grated the embeddings into an extended matrix factor-
ization model for recommendation. Han et al. [4] pro-
posed NeuACF which explores aspect-level information
extracted from heterogeneous network with meta-paths
for collaborative filtering. Despite their effectiveness, all
these methods do not consider the interactions’ sequen-
tial pattern.

2.3 Sequential Recommendation Another line of
work is the sequential recommendation which is to pre-
dict which item a user most probably would like to inter-
act with next time given her sequential interaction data
as context. FPMC [16] is a traditional method for the
sequential recommendation. It utilizes MF and Markov
chains to capture the long-range and short-range item
transitions respectively. Other than MC-based meth-
ods, some works adopt RNNs to model user’s interaction
sequences [6, 12, 7, 14]. GRU4Rec [6] uses Gated Recur-
rent Units (GRU) to model click sequences for session-
based recommendation. NARM [12] employs RNN with
attention mechanism to capture users’ features of se-
quential behavior and main purposes. Recently, atten-
tion mechanisms have been incorporated into recom-

mender systems [13, 9, 25]. For example, STAMP [13]
applies an attention net to capture both users’ current
interests and general interests. SASRec [9] models the
entire interaction sequence with self-attention for the
next item recommendation. SR-GNN [25] presents a
novel architecture for the session-based recommenda-
tion that first models session sequences as graph struc-
ture data and develops an attention strategy to com-
bine long-term interests and current interests to bet-
ter predict users’ next actions. Although these meth-
ods achieve promising performances in real applications,
they model user embedding by just considering their
own sequential item interactions while ignoring the het-
erogeneous information.

Different from the existing works, we propose a
novel sequence-aware heterogeneous graph neural net-
work, which takes full advantage of both the sequential
interaction pattern and the high-order heterogeneous
collaborative signals in recommendation system to im-
prove the performance of recommendation.

3 Methodology

In this section, we present our proposed Sequence-aware
Heterogeneous graph neural Collaborative Filtering
(SHCF) model for recommendation, which takes full
advantage of both sequential information and hetero-
geneous collaborative information. Fig. 2 shows the
framework of our proposed model. Our model contains
three steps. First, we construct an HIN with user-item
interactions and item attributes as shown in Fig. 1.
Note that here we only consider item attributes in order
to focus on clearly illustrating how to handle sequence
patterns and heterogeneous information. In fact, user
attributes and other heterogeneous information can be
easily added into our SHCF through concatenating em-
bedding learned from these heterogeneous attributes as
item embedding does. Then we apply an embedding
layer to initialize the representations of users, items,
and item attributes (e.g., item categories). Second, we
design multiple message passing layers over the HIN to
learn the user and item embeddings. For user embed-
ding, we capture a user’s fine-grained static interests on
different aspects of an item with an element-wise at-
tention mechanism. We also consider a user’s dynamic
interests by aggregating her interacted item sequence
with a sequence-aware self-attention mechanism. For
item embedding, we aggregate the heterogeneous infor-
mation of its neighboring nodes including users and item
attributes with dual-level attention which considers the
importance of different neighboring nodes with differ-
ent types. Finally, the prediction layer aggregates the
learned embeddings from different message passing lay-
ers for both user and item representations, and outputs
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Figure 2: The framework of SHCF.

the prediction score of the target user-item pair.

3.1 Embedding Layer The users, items and item
attributes in real datasets are usually identified by
some unique IDs, whereas these original IDs have a
very limited representation capacity. Therefore, we
create a user embedding matrix U ∈ R|U|×d, where d
is dimensionality of the latent embedding spaces, and
the jth row of the embedding matrix U encodes the
user uj to the real-valued embedding uj , which is more
informative. In the same way, we respectively create an
item embedding matrix I ∈ R|I|×d and item attribute
embedding matrices, e.g. item category embedding
matrix C ∈ R|C|×d.

Positional Embedding: As we mentioned above,
traditional HIN based recommendation methods usu-
ally neglect the sequential pattern of the interactions.
Motivated by the recent works of transformer [20, 2],
we correlate each item with a learnable position embed-
ding P ∈ R|P|×d to capture the sequential pattern of
the items.

(3.1) Îu =


it + p1

it−1 + p2

· · ·
i1 + pt

 ,
where Su = {i1, · · · , it−1, it} 1 is the interacted item
sequence for a specific user u, sorted by the time t. Note
that we add the position embedding in a reverse order
to capture the relevant distance to the target item.

1We truncate or padding the sequence with a max length of
200.

3.2 Sequence-aware Heterogeneous Message
Passing Layer To capture high-order heterogeneous
collaborative information and the sequential informa-
tion, we first construct an HIN enriching user-item in-
teractions with added item attributes as shown in Fig.
1. We also model a user’s interacted item sequence with
a sequence-aware attention mechanism, in order to cap-
ture the user’s dynamic interests. In this way, we not
only can better model user preferences but also alleviate
the sparsity of the interactions. In the following, we will
first present a single graph convolution layer to model
item embedding and user embedding with considering
heterogeneous information and sequential information,
and then generalize it to multiple layers.

3.2.1 Item Modeling with Heterogeneous In-
formation To alleviate the sparsity problem, we add
item attribute information to the user-item bipartite
graph and create an HIN that includes different types of
nodes. Inspired by HGAT [8], in this part, we present
our proposed message passing layers which consider the
heterogeneous information.

Taking the item node as an example, it has different
types of neighboring nodes such as users, categories,
cities, etc. On one hand, different types of neighboring
nodes may have different impacts on it. For example,
the category of one item may be more informative than
the user who interacted with it. On the other hand,
different neighboring nodes of the same type could also
have different importance. For example, different users
may have different preference on one item. To capture
both the different importance at both node level and
type level, we design a dual-level attention mechanism
when aggregating embeddings from neighboring nodes.
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Node-level Attention: We design the node-level
attention to learn the different importance of neighbor-
ing nodes with the same type and aggregate the rep-
resentation of these neighbors to form a specific type
embedding. Formally, given a specific item v and its
neighboring node v′ ∈ N τ ′

v with type τ ′, the weight
coefficient αvv′ of the specific node pair (v, v′) can be
formulated as follows:

(3.2) αvv′ =
exp(σ(a>τ ′ · [iv||hv′ ]))∑

k∈N τ′v
exp(σ(a>τ ′ · [iv||hk]))

,

where σ(·) is the activation function, such like
LeakReLU, aτ ′ is the attention vector for the type τ ′

and || denotes the concatenate operation.
Then, for the item v, we can get the specific type

embedding gτ
′

v by aggregating neighboring nodes of the
same type with corresponding coefficients as follows:

(3.3) gτ
′

v = σ(
∑

v′∈N τ′v

αvv′ · hv′).

Type-level Attention: For any type τ ′ belonging
to the item v’s neighboring node type set T , we can get

a type specific embedding hτ
′

v following the Eq. (3.3).
To capture different importance of different node types,
we design a type-level attention defined as follows:

(3.4) mτ ′

v = V · tanh(w · gτ
′

v + b),

(3.5) βτ
′

v =
exp(mτ ′

v )∑
τ∈T exp(mτ

v)
.

With the learned weights as coefficients, we can
fuse these type embeddings gτ

′

v to obtain the final item
embedding ĩv as follows:

(3.6) ĩv = σ(
∑
τ ′∈T

βτ
′

v · gτ
′

v ).

Note that the above is an example of how to obtain
item embedding with heterogeneous information, other
typed nodes in HIN such as attribute nodes can be
modeled in the same way.

3.2.2 User Modeling with Fine-grained Static
and Dynamic Interest A great challenge for recom-
mendation is how to accurately model user preferences.
For traditional collaborative filtering or HIN based rec-
ommendation methods, on one hand, they usually view
an item as an entirety, which ignore the fact that users
may have different preferences on different aspects of
an item; on the other hand, they always neglect the se-
quential information of a user’s interaction history, thus

failing to capture the user’s dynamic interests. There-
fore, for user nodes, we present a carefully designed mes-
sage passing layer to capture a user’s fine-grained static
interests and dynamic interests. More specifically, we
propose an element-wise attention mechanism that as-
sumes each dimension of the item embedding reflects
a distinct aspect of the item. In addition, to capture
a user’s dynamic interests, we adopt a sequence-aware
self-attention mechanism where each item embedding is
correlated with a position embedding, and self-attention
is applied to pay attention to important items.

Element-wise Attention: Here we present the
details of element-wise attention to capture user’s fine-
grained static preference. For a specific item ij in user
u’s interaction sequence Su, we can calculate a weight
vector γj for different aspects of item ij as follows:

(3.7) γj = tanh(Wu · ij + b),

where Wu ∈ Rd×d, γj is the attention coefficients of
different aspects, and a large γkj means that the kth

aspect of item embedding ij is strongly relevant to the
user’s preference.

Then we aggregate with element-wise product be-
tween the weight coefficients γj and the user integrated
item ij to capture the user’s fine-grained static interests:

(3.8) us =
∑
j∈Su

γj � ij .

Sequence-aware Self-attention: Motivated by
the self-attention mechanism widely used in NLP
tasks such like machine translation[20, 2], we adopt
a sequence-aware self-attention mechanism where each
item Îu is integrated with its position embedding and
self-attention is used to pay attention to critical items,
to capture user’s dynamic interests over time:

(3.9) Attention(Q,K,V) = softmax(
QK>√

d
) ·V,

(3.10) ud =
H

||
h=1

Attention(ÎuW
Q, ÎuW

K , ÎuW
V ),

where Attention() calculates a weighted sum of all
values, and the scale factor

√
d is to avoid overly large

values of the inner product result. WQ,WK ,WV ∈
Rd×d is the projection matrices and we extend the self-
attention to multi-head attention by repeating it for H
times and concatenate the learned embeddings to get
the final user dynamic interest representation.

After getting the static interest embedding us and
dynamic interest embedding ud, we combine them with
a balance weight to get the final user embedding ũ:

(3.11) ũ = λud + (1− λ)us

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



3.2.3 High-order Propagation The above shows a
single messaging passing layer with heterogeneous infor-
mation and sequential information, which aggregates in-
formation from the first-order neighbors. To capture the
high-order collaborative information, we can stack it to
multiple layers in which each layer takes the last layer’s
output representation as its input 2. After L-layer em-
bedding propagation, we can get output embeddings of
L different layers.

3.3 Prediction and Optimization The embed-
dings of different layers may have different contributions
in reflecting user preferences, following [23], we concate-
nate the representation of each layer to constitute the
final embedding for both users and items:

(3.12) u = u1 ||u2 || · · · ||uL, i = i1 || i2 || · · · || iL.

Finally, we use the simple dot product to estimate
the user’s preference towards the target item:

(3.13) ŷ(u, i) = u>i.

To optimize our model, we use the Bayesian Per-
sonalized Ranking (BPR) loss[15] as our loss function:

(3.14) L =
∑

i∈Su,j /∈Su

−lnσ(ŷui − ŷuj) + η ||Θ||,

where σ(·) is the sigmid function, Θ denotes all the
trainable parameters and η is the regularization coef-
ficient, Su is the interaction sequence of the user u, and
for each positive sample (u, i), we sample a negative
sample j that the user not interacted for training.

4 Experiments

4.1 Experimental Setup

Datasets. To verify the effectiveness of our method,
we conduct extensive experiments on three real-world
datasets. Movielens is a widely used benchmark dataset
for recommendation task.In our experiments, we adopt
a small version of 100K interactions and a larger version
of 1M interactions. Yelp is a local business recommen-
dation dataset which records the user ratings on local
businesses. The details of them are shown in Table 1.

Evaluation Metrics. In our experiments, we use
the leave-one-out strategy for evaluation. For each user,
the last interacted item is selected out for testing, and
the remaining data for training. Following previous
works [5, 4], in test set, we randomly select 99 items

2According to our experiments, fine-grained and dynamic

user interest modeling layer is taken as the L-th layer for user
modeling.

Table 1: Details of the Datasets

Dataset
(Density)

#Users #Items #Categories #Cities
#Average
inteactions

/user
ML100K
(9.036%)

943 1,152 19 - 103.9

ML1M
(5.057%)

6,040 3,260 18 - 165.3

Yelp
(0.097%)

10,002 10,373 492 58 10.0

that are not interacted by the user as negative samples
and rank the 100 sampled items from high scores to
low scores. For a fair comparison with the baseline
methods, we use the same negative sample set for each
(user, item) pair in the test set for all the methods.
We evaluate the recommendation performance with two
popular metrics Hit Ratio (HR) and the Normalized
Discounted Cumulative Gain (NDCG).

Baselines. We compare our method with three groups
of recommendation baseline methods: collaborative fil-
tering methods(MF-BPR, NeuMF, NGCF), HIN-based
recommendation methods(NeuACF, HeRec) , and se-
quential recommendation methods(NARM, SR-GNN).

Implementation Details. For all the methods, we
apply a grid search for hyperparameters. For NGCF
and SR-GNN, the layer of GNN is searched from 1 to 4.
We implement our proposed model based on Tensorflow.
The dimension of embeddings d is set as 64. For the self-
attention network, the attention head number H is set
as 8. The hyperparameter λ to balance the weights of
a user’s dynamic interests and static interests is set as
0.5 and 0.2 for MovieLens and Yelp, respectively. In
addition, the learning rate is 0.0005 for MovieLens and
0.00005 for Yelp. The coefficient of L2 normalization η
for all the datasets is set to 10−5. We set the depth of
our proposed SHCF L as 4. We randomly initialize the
model parameters with Xavier initializer, then use the
Adam as the optimizer. To avoid over-fitting, we apply
early stopping strategy and apply dropout (dropout rate
is 0.1) in every layer of our proposed SHCF.

4.2 Comparison of Performance We first com-
pare the recommendation performance of all the meth-
ods. For a fair comparison, the embedding dimension of
all the methods is set as 64. Table 2 shows the experi-
ment results of different methods. We have the following
observations: 1) HIN based recommendation methods
generally perform better than traditional collaborative
filtering methods. They especially have great improve-
ments on the sparse dataset (i.e., Yelp), which illustrates
that applying HIN to incorporate side information for
recommendation can alleviate the data sparsity prob-
lem and improve recommendation performance. 2) For
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Table 2: Recommendation performance of different models. The best result in each row is bold and the second
best result is underlined. The improvements of our method over the second best models are shown in the last
column.

Dataset Metrics BPR-MF NeuMF NGCF NeuACF HeRec NARM SR-GNN SHCF Improve

ML100K

HR@5 0.4030 0.4057 0.4274 0.4337 0.4255 0.5228 0.5010 0.5414 3.56%
NDCG@5 0.2747 0.2676 0.2889 0.2874 0.2798 0.3659 0.3510 0.3859 5.47%
HR@10 0.5801 0.5689 0.5864 0.6034 0.6012 0.6723 0.6660 0.7108 5.73%

NDCG@10 0.3312 0.3127 0.3402 0.3420 0.3325 0.4142 0.4048 0.4401 6.25%
HR@15 0.6787 0.6706 0.6649 0.7084 0.6981 0.7529 0.7598 0.7817 2.88%

NDCG@15 0.3573 0.3462 0.3611 0.3697 0.3521 0.4354 0.4298 0.4592 5.47%
HR@20 0.7455 0.7595 0.7434 0.7720 0.7524 0.8038 0.8048 0.8324 3.43%

NDCG@20 0.3731 0.3672 0.3796 0.3847 0.3721 0.4475 0.4396 0.4693 4.87%

ML1M

HR@5 0.4921 0.5092 0.5017 0.5050 0.4923 0.6713 0.6634 0.6927 3.18%
NDCG@5 0.3376 0.3511 0.3437 0.3508 0.3455 0.5201 0.5233 0.5299 1.26%
HR@10 0.6577 0.6803 0.6688 0.6684 0.6601 0.7603 0.7699 0.7964 3.19%

NDCG@10 0.3910 0.4066 0.3977 0.4038 0.3982 0.5565 0.5580 0.5639 1.06%
HR@15 0.7551 0.7761 0.7587 0.7593 0.7403 0.8230 0.8184 0.8503 3.32%

NDCG@15 0.4168 0.4320 0.4216 0.4279 0.4194 0.5687 0.5709 0.5785 1.33%
HR@20 0.8159 0.8369 0.8167 0.8232 0.8105 0.8602 0.8584 0.8844 2.81%

NDCG@20 0.4311 0.4463 0.4353 0.4430 0.4328 0.5723 0.5803 0.5968 2.84%

Yelp

HR@5 0.3077 0.3571 0.4097 0.4094 0.3982 0.3490 0.3754 0.4421 7.91%
NDCG@5 0.2086 0.2419 0.2855 0.2844 0.2765 0.2373 0.2565 0.3100 8.58%
HR@10 0.4325 0.5018 0.5584 0.5553 0.5505 0.4900 0.5208 0.5878 5.27%

NDCG@10 0.2488 0.2885 0.3335 0.3314 0.3311 0.2828 0.3035 0.3572 7.11%
HR@15 0.5084 0.6006 0.6434 0.6504 0.6423 0.5851 0.6054 0.6725 3.40%

NDCG@15 0.2689 0.3146 0.3544 0.3565 0.3499 0.3080 0.3259 0.3796 6.48%
HR@20 0.5643 0.6717 0.7005 0.7138 0.6923 0.6496 0.6684 0.7260 1.71%

NDCG@20 0.2821 0.3315 0.3686 0.3715 0.3603 0.3232 0.3408 0.3922 5.57%

the dense datasets ML100K and ML1M that users have
adequate interaction behaviors (the average number of
interactions per user is 103.9 and 165.3 respectively), se-
quential recommendation methods perform better than
collaborative filtering methods and HIN based recom-
mendation methods. But for the sparse dataset Yelp
where the average number of interactions per user de-
creases to 10.0, the performance of sequential recom-
mendation methods significantly decline. It illustrates
the limitation of sequential recommendation methods in
modeling user embeddings based on only the user’s own
sequential item interactions without considering the col-
laborative information of similar users or items when the
user does not have sufficient interaction records. 3) Our
proposed model SHCF consistently outperforms all the
baselines on all the datasets including the two dense
datasets (i.e., ML100K and ML1M) and one sparse
dataset (i.e., Yelp). These results verify the effective-
ness of SHCF in modeling users and items in both sparse
and dense datasets by fully considering the high-order
heterogeneous collaborative information and sequential
information.

4.3 Effect of Different Components Since there
are many components in our model, we also analyze

Table 3: Comparison of SHCF Variants

Dataset Metrics
SHCF

w/o DS
SHCF

-S
SHCF

-D
SHCF

ML100K

HR@5 0.3881 0.5306 0.5350 0.5414
NDCG@5 0.2570 0.3645 0.3779 0.3859
HR@10 0.5619 0.6892 0.6908 0.7108

NDCG@10 0.3121 0.4136 0.4280 0.4401
HR@15 0.6892 0.7636 0.7692 0.7817

NDCG@15 0.3459 0.4388 0.4521 0.4592
HR@20 0.7455 0.8107 0.8098 0.8324

NDCG@20 0.3598 0.4473 0.4609 0.4693

Yelp

HR@5 0.4241 0.4355 0.4273 0.4421
NDCG@5 0.2997 0.3049 0.3014 0.3100
HR@10 0.5572 0.5767 0.5694 0.5878

NDCG@10 0.3397 0.3479 0.3461 0.3572
HR@15 0.6385 0.6572 0.6543 0.6725

NDCG@15 0.3612 0.3714 0.3685 0.3796
HR@20 0.6986 0.7139 0.7090 0.7260

NDCG@20 0.3754 0.3847 0.3813 0.3922

their impacts via an ablation study. Table 3 shows
the performance of our model and its three variants
on ML100K and Yelp. The basic model SHCF w/o
DS learns the user embedding in the same way as
other types of nodes with L message passing layers
based on the HIN. It does not consider the user’s fine-
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(a) ML100K (b) Yelp

Figure 3: Effect of the number of message passing layers.

(a) ML100K (b) Yelp

Figure 4: Effect of the balance coefficient λ.

grained static interest modeling (i.e., without element-
wise attention) and dynamic interests (i.e., without
sequence-aware self-attention). SHCF-D considers the
user’s dynamic interests while ignores the fine-grained
static interest modeling. SHCF-S only consider the
user’s fine-grained static interests.

We can see from Table 3 that SHCF-DS which re-
moves both fine-grained static interest and dynamic in-
terest modeling performs worst among all the models on
all the datasets. SHCF-D and SHCF-S improve SHCF
w/o DS, demonstrating the effectiveness of considering
the user’s dynamic interests or fine-grained static in-
terests. Finally, SHCF significantly outperforms all the
variants by considering both the user’s dynamic inter-
ests and fine-grained static interests.

4.4 Parameter Analysis of SHCF In this section,
we investigate the sensitivity of some important param-
eters of our model on dataset ML100K and Yelp.

Effect of the number of message passing layers.
We first test the impact of different number of message
passing layers on the recommendation performance.
The results are shown in Fig. 3. As we can see, on
both datasets, our model performs best with 4 layers.
We think the reason may be that when SHCF has a less
number of layers, it could not capture the higher-order
collaborative relationships, and when the layer number
gets larger, it may cause the oversmoothing problem
and bring massive noise to the model, thus decreasing
the recommendation performance.

Effect of the balance coefficient λ. As presented in
Eq. (3.11), we model user embedding by combining his

dynamic interests and static interests with a balance
coefficient λ. The higher the value of λ, the more
attention we paid to the user’s dynamic interests. In this
part, we study the performance with different values of λ
from 0 to 1. As shown in Fig. 4, for both of the datasets,
the performance of our model first rises with the growth
of λ and then drops, which illustrates that a balance
of the user’s dynamic interests and static interests is
important to the recommendation performance. On
ML100K, our model achieves the best performance
when λ is 0.5, which views the user’s dynamic interests
as equally important as static interests. While on Yelp,
due to the short range of user’s interaction sequence,
a smaller λ (0.2) achieves the best performance, which
shows the dynamic interests contribute less than the
static interests.

5 Conclusion

In this paper, we propose a novel sequence-aware hetero-
geneous graph neural collaborative filtering model for
recommendation, which takes full advantage of both the
sequential pattern of user-item interactions and high-
order heterogeneous collaborative signals. Particularly,
we first construct an HIN that enriches user-item in-
teractions with additional item attributes. And then
novel message passing layers are designed for learning
user and item embeddings on the HIN. For user em-
bedding, we capture a user’s fine-grained preferences on
different aspects of an item with an element-wise atten-
tion mechanism. We also consider the user’s dynamic
interests over time by aggregating the item interaction
sequence with a sequence-aware self-attention mecha-
nism. For item embedding, when aggregating its neigh-
boring information, we consider the importance of dif-
ferent neighboring nodes of different types via dual-level
attention. Extensive experimental results demonstrated
that our proposed model consistently outperforms the
state-of-the-art methods across either dense datasets or
sparse datasets.
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