
Chapter 3
Structure-preserved Heterogeneous Graph
Representation

Abstract Heterogeneous graph (HG) contains various types of nodes or links, which
are highly-correlated and present intricate structures due to different links. These
structures reflect the crucial factors of topology. Therefore encoding meaningful
structures is a basic requirement to obtain node representations with high-quality.
So far, some representative structures have been studied in an HG, from one-hop
edges to high-order local structures, such as meta-paths and network schema. In
this chapter, we will introduce several works focusing on structure preservation.
By capturing respective structures, they successfully depict the rich semantics and
complex heterogeneity, and effectively support downstream tasks.

3.1 Introduction

One basic requirement of graph representation learning is to preserve the graph
structure properly. A lot of early works focus on the structural preservation of homo-
geneous graph representation learning, which focus on how to maintain the second-
order [43], higher-order [3], and community structure [48] in homogeneous graphs,
and therefore have achieved good results in downstream tasks such as node classi-
fication and link prediction. Compared with homogeneous graphs, there are more
challenges in maintaining structural information for heterogeneous graphs (HGs),
because the latter contain multiple types of nodes and multiple relations among
nodes.

Traditional heterogeneous graph modeling often uses meta-paths [38] to measure
the structural similarity of nodes. However, these meta-path based methods cannot
calculate the similarity of nodes without meta-path connections, which greatly lim-
its the application scenarios of these methods. Inspired by homogeneous graph rep-
resentation learning methods, many heterogeneous graph representation learning
methods have recently been proposed, and the latent heterogeneous network em-
beddings have been further applied to various network mining tasks, such as node
classication [18], clustering [40, 41], and similarity search [39, 59]. In contrast to

1



2

conventional meta-path based methods [38], the advantage of latent-space repre-
sentation learning lies in its ability to model structural similarities between nodes
without connected meta-paths.

In this chapter, we will introduce several representative works which preserve
structural information in node representations. In Section 3.2 and 3.3, we will
first introduce a Heterogeneous graph Embedding based Recommendation model
(named HERec) [35] and a Neural network based Aspect-level Collaborative
Filtering model (named NeuACF) [11], which combine meta-path with two classic
homogeneous graph representation learning methods separately, that is, skip-gram
algorithm and attention-based deep neural network. In Section 3.4, we will intro-
duce a Relation-structure aware Heterogeneous Information Network Embedding
model (named RHINE) [23], which divides the relations in heterogeneous graphs
into two categories based on mathematical analysis, thereby modeling the struc-
tural information in the heterogeneous graphs in a more fine-grained manner. In
Section 3.5, We will introduce a novel Network Schema preserving Heterogeneous
graph Embedding method (named NSHE) [62], which uses the network schema,
that is, the meta template of the heterogeneous graph, to model the structure in-
formation more completely, and get rid of the dependence on the hand-designed
meta-paths.

3.2 Meta-path based Random Walk

3.2.1 Overview

In a graph, there exist many kinds of structures to depict the different relations
between nodes, where neighborhood structure, describing the local structure of a
node, is an important one. How to appropriately reserve the neighborhood structure
in node representations is a fundamental problem. To solve the problem, a typical
technique usually used is random walk, which is a process that starts from a target
node and randomly chooses a neighbor of the last node as the current one [10, 28].
By exploiting this mechanism, multiple random sequences for nodes are generated,
and each describes a local structure over original graph. We can view each sequence
as a sentence, and nodes in the sequence as words. In this way, word2vec-based
framework proposed in natural language processing (NLP) is adopted to learn node
representations, which captures the proximity between neighbor nodes in a window
with fixed size.

However, these works focus on representation learning for homogeneous graph,
only considering singular type of nodes and relationships. In the field of HG, it is
a challenge to effectively combine random walk strategy with complex heterogene-
ity to capture the local semantic structure. To tackle the challenge, HG Embedding
based Recommendation (named HERec) [35] designs a novel mechanism to per-



3

form random walk along meta-paths, also called meta-path based random walk,
considering that meta-paths are sufficient to depict rich semantics.

Different from random walk in homogeneous graph, HERec constrains gener-
ated node sequence aligned with predefined metapath. For example, for a meta-path
Author-Paper-Author (APA), if type of the last selected node i is A, then HERec
chooses a neighbor of i with type P. The objective of HERec is to simultaneously
learn representations of multiple types of nodes and preserve both the structures
semantics of a given HG. Due to its effectiveness, HERec, combined with classic
matrix factorization framework, is also applied in recommender systems. A basic
recommender system usually consists users and items, and aims to help users dis-
cover latent items of interest. By the designed framework, HERec effectively ex-
tracts semantic and local information from interactions between users and items,
and gives a good performance in downstream tasks.

...

e(1)

e(l)

e(V)

(a) An Example of HG

(b1) Meta-path based 
random walk

...

(c) Recommendation(b) HG Embedding

(b2) Transform and fuse

+

Fig. 3.1 The schematic illustration of the proposed HERec approach.

3.2.2 The HERec Model

3.2.2.1 Model Framework

In this section, we provide more details about HERec here. Specifically, HERec is
designed for the HG in a recommender system, which consists of two major com-
ponents. The first part is to learn user/item embeddings from HG, namely HG em-
bedding (Fig. 3.1b). The second part is to involve the learnt embeddings into classic
matrix factorization framework, namely recommendation (Fig. 3.1c). Next, we will
present detailed illustration of HERec.



4

3.2.2.2 Heterogeneous Graph Embedding

Given an HG G = {V,E}, the goal is to learn a low-dimensional embedding eeev ∈Rd

for each node v ∈ V , which is much easier to be used and integrated in subsequent
procedures, compared with meta-path based similarity. Inspired by deepwalk [28],
a well-known embedding method for homogeneous graph, HERec designs a novel
random walk mechanism over HG to learn embeddings.

Meta-path based Random Walk To capture the complex heterogeneity, meta-
path is usually adopted to characterize the semantic patterns for HGs [38]. There-
fore, HERec also employs a meta-path based random walk method to generate node

sequences. Giving a heterogeneous graph G = {V,E} and a meta-path ρ : A1
R1−→

·· ·At
Rt−→ At+1 · · ·

Rl−→ Al+1, the walk path is generated according to the following
distribution:

P(nt+1 = x|nt = v,ρ) (3.1)

=

{
1

|N At+1 (v)| , (v,x) ∈ E and φ(x) = At+1;

0, otherwise,

where nt is the t-th node in the walk, the type of v is At , φ(·) is the object type
mapping function, and N (At+1)(v) is the first-order neighbor set for node v with
the type of At+1. A walk will follow the pattern of a meta-path repetitively until it
reaches the pre-defined length.

Example 1 We still take Fig. 3.1a as an example, which represents a movie recom-
mender system. Given a meta-path UMU, we can generate two sample walks (i.e.
node sequences) by starting with the user Tom: (1) TomUser → The TerminatorMovie
→MaryUser, and (2) TomUser → AvaterMovie→ BobUser → The TerminatorMovie→
MaryUser. Similarly, given the meta-path UMDMU, we can also generate another
node sequence: TomUser → The TerminatorMovie → CameronDirector → AvaterMovie
→MaryUser. It is intuitive to see that these meta-paths can lead to meaningful node
sequences corresponding to different semantic relations.

Type Constraint and Filtering Consider that in recommendation, only user and
item should be more emphasized than other types of nodes. So, only meta-paths
starting with user type or item type are selected. To further strengthen user and item,
other types of nodes that are different from the starting type will be filtered out from
the generated node sequences. In this way, the final sequences only contain one type
of nodes (i.e. user of item). Here are two advantages. First, there is only one type,
which relaxes the challenging goal of representing all the heterogeneous objects in
a unified space. Second, given a fixed-length window, a node is able to utilize more
homogeneous neighbors that are more likely to be relevant than others with different
types.



5

u2

u1

u3

u4

u5

m1

m2

m3

d1

d3

u1 u2 u3m1 m2

d2

m1 d2 m2 d3 m3

u1 u2 u3 u4m2 u4

m1 m2 m3

User Movie Director

m1u1 d2 m2 u3

...

...

... ...

u1 u3

...

...

UMDMU

UMU

MDM

Filtering

Fig. 3.2 An illustrative example of the proposed meta-path based random walk. First perform
random walks guided by some selected meta-paths, and then filter out nodes of types that are
different from the starting type.

Example 2 As shown in Fig. 3.2, only the meta-paths starting from user type or
item type are derived, such as UMU, UMDMU and MUM. Take the meta-path
of UMU as an instance. We can generate a sampled sequence “u1 → m1 → u2 →
m2 → u3 → m2 → u4” according to Eq. 3.1. And then, we remove the movies and
finally obtain a homogeneous node sequence “u1→ u2→ u3→ u4”.

After this step, the next focus will be how to learn effective embeddings for nodes
in sequences.

Optimization Objective Given a processed node sequence, HERec defines the
neighborhood for node u based on co-occurrence in a fixed-length window in the
sequence, denotes as Nu. Following node2vec [10], the final embeddings of nodes
are learnt by optimizing the following objective:

max
f

∑
u∈V

logPr(Nu| f (u)), (3.2)

where f : V → Rd is a function mapping each node to d-dimensional embedding
space. Pr(Nu| f (u)) measures probability of u’s neighbors given u’s embedding. The
embedding mapping function f (·) is trained by utilizing stochastic gradient descent
(SGD). A major difference between previous method [7] and HERec lies in the
construction of Nu, where HERec selects homogeneous neighbors using meta-path
based random walks.

Embedding Fusion For one meta-path l and corresponding node sequence, after
optimizing via Eq. 3.2, given a node v ∈ V , we can obtain its embedding eee(l)v based
on meta-path l. In a similar way, we can obtain a set of embeddings {eee(l)v }|P |l=1, where
P denotes the set of meta-paths. Then, we propose to use a general function g(·),
which aims to fuse the learnt node embeddings to get eee(U)

u and eee(I)i for users and
items, respectively:



6

eee(U)
u ← g({eee(l)u }), (3.3)

eee(I)i ← g({eee(l)i }).

There are three fusion functions that can be used to fuse these embeddings. We
discuss the cases for users below. The functions for items are similar and can be
derived accordingly.

• Simple linear fusion. We simply average the results from different meta-paths
after transforming the embeddings with MLP.

g({eee(l)u }) =
1
|P|

|P |
∑
l=1

(M(l)eee(l)u +bbb(l)), (3.4)

where M(l) ∈ RD×d and bbb(l) ∈ RD are the transformation matrix and bias vector
w.r.t. the l-th meta-path.

• Personalized linear fusion. We further assign each user with a weight vector on
the meta-paths, representing the user’s personalized preference for each meta-
path.

g({eee(l)u }) =
|P |
∑
l=1

w(l)
u (M(l)eee(l)u +bbb(l)), (3.5)

where w(l)
u is the learnt preference weight of user u over the l-th meta-path.

• Personalized non-linear fusion. Moreover, we use non-linear function to enhance
the fusion ability.

g({eee(l)u }) = σ

( |P |
∑
l=1

w(l)
u σ
(
M(l)eee(l)u +bbb(l)

))
, (3.6)

where σ(·) is a non-linear function, i.e., sigmoid function or others.

Among the three fusion strategies, HERec demonstrates that personalization and
non-linearity are essential for boosting the results. The parameters involved in g(·)
are optimized together with the recommendation model, which is introduced in the
next section.

3.2.2.3 Integrating Matrix Factorization with Fused HG Embedding for
Recommendation

Rating predictor is a component used to predict the ratings of the users on the items.
In MF, the rating ru,i of a user u on an item i is simply defined as follows:

r̂u,i = x>u ·yi, (3.7)



7

where xu ∈ RD and yi ∈ RD denote the latent factors corresponding to user u and
item i by factorizing the user-item rating matrix. Since we have also obtained the
embeddings for user u and item i, we can further incorporate them into the rating
predictor as below:

r̂u,i = x>u ·yi +α · eee(U)
u
>
· γ(I)i +β · γ(U)

u
> · eee(I)i , (3.8)

where γ
(U)
u and γ

(I)
i are user-specific and item-specific latent factors to pair with the

HG embeddings eee(I)i and eee(U)
u respectively, and α and β are the tuning parameters

to integrate the three terms.
The overall objective is formulated as follows:

£ = ∑
〈u,i,ru,i〉∈R

(ru,i− r̂u,i)
2 +λ ∑

u
(‖xu‖2 +‖yi‖2

+‖γγγ(U)
u ‖2 +‖γγγ(I)i ‖2 +‖ΘΘΘ (U)‖2 +‖ΘΘΘ (I)‖2), (3.9)

where r̂u,i is the predicted rating using Eq. 3.8 by HERec, λ is the regularization
parameter, and ΘΘΘ

(U) and ΘΘΘ
(I) are the parameters of the function g(·) for users and

items respectively. SGD is utilized to efficiently train HERec.

3.2.3 Experiments

3.2.3.1 Experimental Settings

Datasets Three real datasets are used to perform downstream tasks, consisting of
Douban Movie dataset 1 from the movie domain, Douban Book dataset 2 from the
book domain, and Yelp dataset 3 from the business domain. The detailed descrip-
tions of the three datasets are shown in Table 3.1. It should be pointed out that these
three datasets also have different rating sparsity degrees: the Yelp dataset is very
sparse, while the Douban Movie dataset is much denser.

Baselines To demonstrate the effectiveness, HERec is compared with three cat-
egories of baselines: classic MF based rating prediction methods { PMF [27],
SoMF [24] }, and HG based recommendation methods { FMHIN [30], HeteMF [58],
SemRec [37] and DSR [63] }. Moreover, there are two variants of HERec: HERecdw
and HERecmp, where the difference is the way of random walk during generat-
ing node sequences. The former adopts deepwalk [28] to obtain node embeddings,

1 http://movie.douban.com
2 http://book.douban.com
3 http://www.yelp.com/dataset-challenge



8

Table 3.1 Statistics of the three datasets.
Dataset Relations Number Number Number Ave. degrees Ave. degrees Meta-paths(Density) (A-B) of A of B of (A-B) of A of B

Douban Movie

User-Movie 13,367 12,677 1,068,278 79.9 84.3

(0.63%)

User-User 2,440 2,294 4,085 1.7 1.8 UMU, MUM
User-Group 13,337 2,753 570,047 42.7 207.1 UMDMU, MDM

Movie-Director 10,179 2,449 11,276 1.1 4.6 UMAMU, MAM
Movie-Actor 11,718 6,311 33,587 2.9 5.3 UMTMU, MTM
Movie-Type 12,678 38 27,668 2.2 728.1

Douban Book

User-Book 13,024 22,347 792,026 60.8 35.4 UBU, BUB

(0.27%)

User-User 12,748 12,748 169,150 13.3 13.3 UBPBU, BPBBook-Author 21,907 10,805 21,905 1.0 2.0 UBYBU, BYBBook-Publisher 21,773 1,815 21,773 1.0 11.9 UBABUBook-Year 21,192 64 21,192 1.0 331.1

Yelp

User-Business 16,239 14,284 198,397 12.2 13.9

(0.08%)

User-User 10,580 10,580 158,590 15.0 15.0 UBU, BUB
User-Compliment 14,411 11 76,875 5.3 6988.6 UBCiBU, BCiB

Business-City 14,267 47 14,267 1.0 303.6 UBCaBU, BCaB
Business-Category 14,180 511 40,009 2.8 78.3

which ignores the heterogeneity of nodes. The later employs metapath2vec++ [7] to
generate node embeddings, which does not filter out different types of nodes.

3.2.3.2 Effectiveness Experiments

In this experiment, we set different training ratios for each dataset, and use MAE
and RMSE as metrics to evaluate the performance. We set the embedding dimension
as 64 and randomly run experiments 10 times and report the average results shown
in Table 3.2. Notice that, HERec adopts the personalized non-linear fusion function
here.

From the results, we can draw the following conclusions: (1) HERec is consis-
tently better than other baselines because it provides better information extraction
(a new HGs embedding model) and utilization (an extended MF model). (2) HG
based methods, especially FMHIN , perform better than traditional MF based meth-
ods, which indicates the usefulness of the heterogeneous information. (3) On one
hand, compared with HERecmp, HERecdw performs much worse, which indicates
HG embedding methods are important to HG based recommendation again. On the
other hand, HERec outperforms HERecmp, which demonstrates that it is more ef-
fective to perform task-specific HG embedding for improving the recommendation
performance (e.g. only focus on user and item).

3.2.3.3 Cold-start Prediction

Now, we check the performances of all the methods in cold-start prediction settings,
where there are fewer rating records but heterogeneous context information is avail-
able. First according to the counts of users’ rating records, they are devided into



9

Table 3.2 Results of effectiveness experiments on three datasets. A smaller MAE or RMSE value
indicates a better performance. For easier interpretation, the improvement of each method w.r.t. the
PMF model is also reported. A larger improvement ratio indicates a better performance.

Dataset Training Metrics PMF SoMF FMHIN HeteMF SemRec DSR HERecdw HERecmp HERec

Douban

80%

MAE 0.5741 0.5817 0.5696 0.5750 0.5695 0.5681 0.5703 0.5515 0.5519
Improve -1.32% +0.78% -0.16% +0.80% +1.04% +0.66% +3.93% +3.86%

Movie

RMSE 0.7641 0.7680 0.7248 0.7556 0.7399 0.7225 0.7446 0.7121 0.7053
Improve -0.07% +5.55% +1.53% +3.58% +5.85% +2.97% +7.20% +8.09%

60%

MAE 0.5867 0.5991 0.5769 0.5894 0.5738 0.5831 0.5838 0.5611 0.5587
Improve -2.11% +1.67% -0.46% +2.19% +0.61% +0.49% +4.36% +4.77%
RMSE 0.7891 0.7950 0.7842 0.7785 0.7551 0.7408 0.7670 0.7264 0.7148

Improve -0.75% +0.62% +1.34% +4.30% +6.12% +2.80% +7.94% +9.41%

40%

MAE 0.6078 0.6328 0.5871 0.6165 0.5945 0.6170 0.6073 0.5747 0.5699
Improve -4.11% +3.40% -1.43% +2.18% -1.51% +0.08% +5.44% +6.23%
RMSE 0.8321 0.8479 0.7563 0.8221 0.7836 0.7850 0.8057 0.7429 0.7315

Improve -1.89% +9.10% +1.20% +5.82% +5.66% +3.17% +10.71% +12.09%

20%

MAE 0.7247 0.6979 0.6080 0.6896 0.6392 0.6584 0.6699 0.6063 0.5900
Improve +3.69% +16.10% +4.84% +11.79% +9.14% +7.56% +16.33% +18.59%
RMSE 0.9440 0.9852 0.7878 0.9357 0.8599 0.8345 0.9076 0.7877 0.7660

Improve -4.36% +16.55% +0.88% +8.91% +11.60% +3.86% +16.56% +18.86%

Douban

80%

MAE 0.5774 0.5756 0.5716 0.5740 0.5675 0.5740 0.5875 0.5591 0.5502
Improve +0.31% +1.00% +0.59% +1.71% +0.59% -1.75% +3.17% +4.71%

Book

RMSE 0.7414 0.7302 0.7199 0.7360 0.7283 0.7206 0.7450 0.7081 0.6811
Improve +1.55% +2.94% +0.77% +1.81% +2.84% -0.44% +4.53% +8.17%

60%

MAE 0.6065 0.5903 0.5812 0.5823 0.5833 0.6020 0.6203 0.5666 0.5600
Improve +2.67% +4.17% +3.99% +3.83% +0.74% -2.28% +6.58% +7.67%
RMSE 0.7908 0.7518 0.7319 0.7466 0.7505 0.7552 0.7905 0.7318 0.7123

Improve +4.93% +7.45% +5.59% +5.10% +4.50% +0.04% +7.46% +9.93%

40%

MAE 0.6800 0.6161 0.6028 0.5982 0.6025 0.6271 0.6976 0.5954 0.5774
Improve +9.40% +11.35% +12.03% +11.40% +7.78% -2.59% +12.44% +15.09%
RMSE 0.9203 0.7936 0.7617 0.7779 0.7751 0.7730 0.9022 0.7703 0.7400

Improve +13.77% +17.23% +15.47% +15.78% +16.01% +1.97% +16.30% +19.59%

20%

MAE 1.0344 0.6327 0.6396 0.6311 0.6481 0.6300 1.0166 0.6785 0.6450
Improve +38.83% +38.17% +38.99% +37.35% +39.10% +1.72% +34.41% +37.65%
RMSE 1.4414 0.8236 0.8188 0.8304 0.8350 0.8200 1.3205 0.8869 0.8581

Improve +42.86% +43.19% +42.39% +42.07% +43.11% +8.39% +38.47% +40.47%

Yelp

90%

MAE 1.0412 1.0095 0.9013 0.9487 0.9043 0.9054 1.0388 0.8822 0.8395
Improve +3.04% +13.44% +8.88% +13.15% +13.04% +0.23% +15.27% +19.37%
RMSE 1.4268 1.3392 1.1417 1.2549 1.1637 1.1186 1.3581 1.1309 1.0907

Improve +6.14% +19.98% +12.05% +18.44% +21.60% +4.81% +20.74% +23.56%

80%

MAE 1.0791 1.0373 0.9038 0.9654 0.9176 0.9098 1.0750 0.8953 0.8475
Improve +3.87% +16.25% +10.54% +14.97% +15.69% +0.38% +17.03% +21.46%
RMSE 1.4816 1.3782 1.1497 1.2799 1.1771 1.1208 1.4075 1.1516 1.1117

Improve +6.98% +22.40% +13.61% +20.55% +24.35% +5.00% +22.27% +24.97%

70%

MAE 1.1170 1.0694 0.9108 0.9975 0.9407 0.9429 1.1196 0.9043 0.8580
Improve +4.26% +18.46% +10.70% +15.78% +15.59% -0.23% +19.04% +23.19%
RMSE 1.5387 1.4201 1.1651 1.3229 1.2108 1.1582 1.4632 1.1639 1.1256

Improve +7.71% +24.28% +14.02% +21.31% +24.73% +4.91% +24.36% +26.85%

60%

MAE 1.1778 1.1135 0.9435 1.0368 0.9637 1.0043 1.1691 0.9257 0.8759
Improve +5.46% +19.89% +11.97% +18.18% +14.73% +0.74% +21.40% +25.63%
RMSE 1.6167 1.4748 1.2039 1.3713 1.2380 1.2257 1.5182 1.1887 1.1488

Improve +8.78% +25.53% +15.18% +23.42% +24.19% +6.09% +26.47% +28.94%

three groups, i.e. (0,5], (5,15] and (15,30]. It is easy to see that the case for the first
group is the most difficult, since users from this group have fewest rating records.
Here, HERec is only compared with HG based recommendation, including SoMF,
HeteMF, SemRec, DSR and FMHIN , and the results are shown in Fig. 3.3, which
reports the improvement ratios w.r.t. PMF. Overall, all the comparison methods are
better than PMF (i.e., show positive y-axis values). Moreover, HERec performs the



10

(0,5] (5,15] (15,30] All
#Rating of Users

0

20%

40%

60%

R
M

S
E

 Im
p

ro
vm

en
t

SoMF

HeteMF

SemRec

DSR

FM
HIN

HERec

(0,5] (5,15] (15,30] All
#Rating of Users

0

20%

40%

60%

M
A

E
 Im

p
ro

ve
m

en
t

SoMF

HeteMF

SemRec

DSR

FM
HIN

HERec

(a) Douban Movie

(0,5] (5,15] (15,30] All
#Rating of Users

0

20%

40%

60%

R
M

S
E

 Im
p

ro
ve

m
en

t

SoMF

HeteMF

SemRec

DSR

FM
HIN

HERec

(0,5] (5,15] (15,30] All
#Rating of Users

0

20%

40%

60%

M
A

E
 Im

p
ro

ve
m

en
t

SoMF

HeteMF

SemRec

DSR

FM
HIN

HERec

(b) Douban Book

(0,5] (5,15] (15,30] All
#Rating of Users

0

20%

40%

R
M

S
E

 Im
p

ro
ve

m
en

t

SoMF

HeteMF

SemRec

DSR

FM
HIN

HERec

(0,5] (5,15] (15,30] All
#Rating of Users

0

20%

40%

M
A

E
 Im

p
ro

ve
m

en
t

SoMF

HeteMF

SemRec

DSR

FM
HIN

HERec

(c) Yelp

Fig. 3.3 Performance comparison of different methods for cold-start prediction on three datasets.
y-axis denotes the improvement ratio over PMF.

best among all the methods, and the improvement over PMF becomes more signif-
icant for users with fewer rating records. The results indicate that HG based infor-
mation is effective to improve the recommendation performance, and HERec can
effectively utilize HG information in a more principled way.

The more detailed method description and experiment validation can be seen in
[35].

3.3 Meta-path based Decomposition

3.3.1 Overview

In the last section, an HG embedding method exploiting meta-path based random
walk is introduced, which generates node sequences that follow the given meta-
paths for optimizing the similarity between nodes. However, an observation is that
the properties of an object in an HG may stem from different aspects due to the
rich type information, which poses a challenge for heterogeneous graph representa-
tion. How to effectively extract and fuse different semantic aspect-level information
plays an important role in HG representation, which isn’t considered thoroughly in
previous random walk-based methods [35, 7, 9].

To this end, meta-path based decomposition based techniques aim to decompose
HG into several sub-graphs according to different meta-paths, each representing a
specific semantic aspect, and preserve the proximity of nodes in each sub-graph.
NeuACF (Neural network based Aspect-level Collaborative Filtering) [11, 34] is a
piece of representative work which exploits decomposition-based HG representation



11

to learn the aspect-level representations and effectively fuse them for recommenda-
tion.

u1

u2

u3

i1

i2

i3

b1

b2

users items brands

u4

Fig. 3.4 A toy example of an HG with different aspect-level information.

Fig. 3.4 illustrates an HG composed of 3 types of nodes, which are User, Item
and Brand; and 2 types of relations, which are User-Item purchase relation and
Item-Brand indicating which brand a given item belongs to. Given such an HG,
we target to learn the representations of the users and items, and make item recom-
mendation for the users. In this HG, there exist purchase-aspect and brand-aspect
information which should be both effectively captured. We can learn the represen-
tations of user nodes from the aspect of purchase history with the User-Item-User
path. Meanwhile, we can also learn the representations from the aspect of brand
preference with the User-Item-Brand-Item-User path. Furthermore, a delicate deep
network is designed to learn different aspect-level representations and an attention
mechanism is utilized to effectively fuse them for top-N recommendation. Compar-
ing to the above method NeuACF, we further propose NeuACF++ to fuse aspect
information with self-attention mechanism which considers different aspect-level
representations and learns the attention values simultaneously. More details about
NeuACF and NeuACF++ are given in the following subsections.

3.3.2 The NeuACF Model

3.3.2.1 Model Framework

The basic idea of NeuACF is to extract different aspect-level representations for
users and items, and then learn and fuse these representations with deep neural net-
work. The model contains three major steps, the architecture of which is illustrated
in Fig. 3.5. First, an HG is constructed based on the rich user-item interaction infor-
mation, and the aspect-level similarity matrices are computed under different meta-
paths of HG which reflect different aspect-level features of users and items. Next, a
deep neural network is designed to learn the aspect-level representations separately
by taking these similarity matrices as inputs. Finally, the aspect-level representations



12

Aspect-level
Similarity Matrices

MLP Layers

Aspect-level 
Latent Factors

Loss Function

Fused Latent Factors

𝑦"#$

𝑈& 𝑉(

𝑼𝑰𝑩𝑰𝑼 𝑰𝑩𝑰

× ×Attention Layer

Brand Aspect

𝒖&

𝒖&-

× ×

𝑼𝑰𝑼

𝒖&.
𝑤&- 𝑤&.

𝒗(

𝑰𝑼𝑰
History Aspect

𝑈& 𝑉(

𝒗(- 𝒗(.
𝑤(- 𝑤(.

Fig. 3.5 The architecture of the NeuACF model.

are combined with an attention component to obtain the overall representations for
users and items. Moreover, we also employ self-attention mechanism to fuse aspect-
level representations more effectively, extending the model as NeuACF++, which is
introduced in Section 3.3.2.5. Next we elaborate on the three steps.

3.3.2.2 Aspect-level Similarity Matrix Extraction

We employ HG to organize objects and relations, due to its power of information
fusion and semantics representation [37]. Furthermore, we utilize meta-path to de-
compose the HG and extract different aspect-level features of users and items.

Given a specific meta-path, similarity matrix is employed to extract the aspect-
level features. The popular PathSim [38] is employed to calculate aspect-level simi-
larity matrices under different meta-paths in experiments. For example, the similar-
ity matrices of user-user and item-item are computed based on the meta-path UIBIU
and IBI for the brand-aspect features.

The computation of similarity matrix based on meta path is of great importance
in the proposed model, so how to compute similarity matrix quickly is an impor-
tant problem in the method. In real-world applications, the complexity of similarity
matrix computation is not high because the similarity matrix is usually very sparse
for most meta paths. Based on this fact, there are several acceleration computation
methods proposed by previous works [36, 38] for similarity matrix computation, for
example, PathSim-pruning [38], dynamic programming strategy and Monte Carlo
(MC) strategy [36]. Moreover, there are also many new methods for similarity ma-
trix computation, for example, BLPMC [52], PRSim [50]. In addition, the similar-
ity matrix can be computed offline in advance in our model. The similarity matrix



13

is computed with training data, so we can prepare the similarity matrix before the
training processing.

3.3.2.3 Learning Aspect-level Representations

With the computed user-user and item-item similarity matrices of different aspects,
their representations are next learned. A deep neural network is designed to learn
their corresponding aspect-level representations separately. Concretely, as shown in
Fig. 3.5, for each user in each aspect, the user’s similarity vector is extracted from
the aspect-specific similarity matrix. Then we take the similarity vector as the input
of the MLP and MLP learns the aspect-level representation as the output. The item
representations of each aspect can be learned similarly.

Taking the similarity matrix SSSB ∈ RN×N of users under the meta-path UIBIU as
an example, user Ui is represented as an N-dimensional vector SSSB

i∗, which means the
similarities between Ui and all the other users. Here N means the total number of
users in the dataset.

The MLP projects the initial similarity vector SSSB
i∗ of user Ui to a low-dimensional

aspect-level representation. In each layer of MLP, the input vector is mapped into
another vector in a new space. Formally, given the initial input vector SSSB

i∗, and the
l-th hidden layer HHH l , the final aspect-level representation uuuB

i can be learned through
the following multi-layer mapping functions.

From the learning framework in Fig. 3.5, one can see that for each aspect-level
similarity matrix of both users and items there is a corresponding MLP learning
component described above to learn the aspect-level representations. Since there
are various meta-paths connecting users and items, different aspect-level represen-
tations can be learned.

3.3.2.4 Attention based Aspect-level Representations Fusion

After the aspect-level representations are learned separately for users and items,
next we need to integrate them together to obtain aggregated representations. A
straightforward way is to concatenate all the aspect-level representations to form a
higher-dimensional vector. Another intuitive way is to average all the representa-
tions. The issue is that both methods do not distinguish their different importance
because not all the aspects contribute to the model performance equally, which will
be showed in the experiment part.

Therefore, the attention mechanism is chosen to fuse these aspect-level repre-
sentations. Attention mechanism has shown the effectiveness in various machine
learning tasks such as image captioning and machine translation [53, 57, 1]. The
advantage of attention mechanism is that it can learn to assign attentive values (nor-
malized by sum to 1) for all the aspect-level representations: higher (lower) values
indicate that the corresponding features are more informative (less informative) for
recommendation. Specifically, given the user’s brand-aspect representations uuuB

i , a



14

two-layer network is used to compute the attention score sssB
i by Eq. 3.10,

sssB
i =WWW T

2 f
(
WWW T

1 ·uuuB
i +bbb111

)
+bbb222, (3.10)

where WWW ∗ and bbb∗ are the weight matrices and the biases, respectively, and we use
the ReLU , i.e., f (x) = max(0,x) as the activation function.

The final attention values for the aspect-level representations are obtained by
normalizing the above attentive scores with the Softmax function given in Eq. 3.11,
which can be interpreted as the contributions of different aspects B to the aggregated
latent factor of user Ui,

wwwB
i =

exp(sssB
i )

∑
L
A=1 exp(sssA

i )
, (3.11)

where L is the total number of all the aspects.
After obtaining all the attention weights wwwB

i of all the aspect-level representations
for user Ui, the aggregated representation uuui can be calculated by Eq. 3.12,

uuui =
L

∑
B=1

wwwB
i ·uuuB

i . (3.12)

This attention method is adopted by NeuACF in the experiments.

3.3.2.5 NeuACF++: Self-Attention based Aspect-level Representations Fusion

Recently, self-attention mechanism has received considerable research interests. For
example, Vaswani et al. [46] and Devlin et al. [6] utilize self-attention to learn the
relationship between two sequences. Learning dependencies and relationships be-
tween aspect-level representations is the most important part in our model, and self-
attention has ability to model the relationships between the different aspect-level
representations. Therefore, we extend the standard attention mechanism of NeuACF
to self-attention, and call the extension version of the model NeuACF++. Next, the
self-attention mechanism employed in NeuACF++ will be introduced.

Different from standard attention mechanism, self-attention mainly focuses on
the co-learning attentions of two sequences. The vanilla attention mechanism mainly
considers computing the attention values based on the user or item representations
of one aspect, while self-attention mechanism is able to learn the attention values
from different aspects simultaneously. For example, the Brand-level representation
of users have strong relationship to the Brand-level representation of items, and the
self-attention mechanism can learn this relationship and promote the model perfor-
mance. So the learned values are able to capture more information on the multi-
aspects.

Specifically, we firstly compute the affinity scores between all aspect-level rep-
resentations. For a user Ui, the affinity score of two different aspect-level represen-
tations uuuB

i and uuuC
i can be calculated by their inner product:



15

MB,C
i = (uuuB

i )
T ·uuuC

i . (3.13)

The matrix MMMi = [MB,C
i ] ∈ RL×L is also called the self-attention matrix, where

L is the total number of aspects. There is an affinity matrix MMMi for each user. Basi-
cally, the matrix MMMiii characterizes the similarity of aspect-level representations for
a specific user Ui, which reflects the correlation between two aspects when recom-
mending for this user. When the aspect B is equal to aspect C, MB,C

i will get a high
value due to the inner product operator, so a zero mask is added to avoid a high
matching score between identical vectors.

The aspect-level representations learned from self-attention mechanism are not
independent. Users can make a trade-off between those aspects. The affinity matrix
measures the importance of different aspect-level representations, so the representa-
tion of aspect B for the specific user i is computed based on the self-attention matrix
as:

gggB
i =

L

∑
C=1

exp(MMMB,C
i )

∑
L
A=1 exp(MMMB,A

i )
uuuC

i . (3.14)

Then for all the aspects, we can obtain the final representation of users or items
as:

uuui =
L

∑
B=1

gggB
i . (3.15)

The self-attention mechanism can learn self-attentive representations from differ-
ent aspect-level information effectively. In order to distinguish with the above atten-
tion method NeuACF, the self-attention mechanism is implemented as NeuACF++
in the experiments.

3.3.2.6 Objective Function

We model the top-N recommendation as a classification problem which predicts the
probability of interaction between users and items in the future. In order to ensure
that the output value is a probability, we need to constrain the predicted score ŷi j in
the range of [0,1], where we use a Logistic function as the activation function for
the output layer. The probability of the interaction between the user Ui and item I j
is calculated according to Eq. 3.16,

ŷi j = sigmod(uuui · vvv j) =
1

1+ e−uuui·vvv j
, (3.16)

where uuui and vvv j are the aggregated representations of user Ui and item I j respec-
tively.

Over all the training set, according to the above settings, the likelihood function
is:

p(Y,Y−|Θ) = ∏
i, j∈Y

ŷi j ∏
i,k∈Y−

(1− ŷik), (3.17)



16

where Y and Y− are the positive and negative instances sets, respectively. The neg-
ative instance set Y− is sampled from unobserved data for training. Θ is the param-
eters set.

Since the ground truth yi j is in the set {0,1}, Eq. 3.17 can be rewritten as:

p(Y,Y−|Θ) = ∏
i, j∈Y∪Y−

(ŷi j)
yi j(1− ŷi j)

(1−yi j). (3.18)

Then we can take the negative logarithm of the likelihood function to get the
point-wise loss function in Eq. 3.19:

Loss =− ∑
i, j∈Y∪Y−

(yi jlogŷi j +(1− yi j)log(1− ŷi j)) , (3.19)

This is the overall objective function of the model, and it can be optimized by
stochastic gradient descent or its variants [19].

3.3.3 Experiments

3.3.3.1 Experimental Settings

Datasets The proposed model is evaluated over the publicly available MovieLens
dataset [12] and Amazon dataset [13, 25]. We use the origin Movielens dataset for
the experiment. For Amazon dataset, we remove the users who bought less than 10
items.

Evaluation Metrics We adopt the leave-one-out method [14] for evaluation. The
latest rated item of each user is held out for testing, and the remaining data for
training. Following previous work [14], we randomly select 99 items that are not
rated by the users as negative samples and rank the 100 sampled items for the users.
For a fair comparison with the baseline methods, we use the same negative sample
set for each (user, item) pair in the test set for all the methods. We evaluate the
model performance through the Hit Ratio (HR) and the Normalized Discounted
Cumulative Gain (NDCG) defined in Eq. 3.20,

HR =
#hits

#users
,NDCG =

1
#users

#users

∑
i=1

1
log2(pi +1)

, (3.20)

where #hits is the number of users whose test item appears in the recommended list
and pi is the position of the test item in the list for the i-th hit. In the experiments,
we truncate the ranked list at K ∈ [5,10,15,20] for both metrics.

Baselines Besides two basic methods (i.e., ItemPop and ItemKNN [32]), the
baselines include two MF methods (MF [21] and eALS [15]), one pairwise rank-



17

ing method (BPR [31]), and two neural network based methods (DMF [55] and
NeuMF [14]). In addition, we use SVDhin to leverage the heterogeneous informa-
tion for recomendation, and also adopt two recent HG based methods (FMG [61]
and HeteRS [29]) as baselines.

3.3.3.2 Performance Analysis

Table 3.3 HR@K and NDCG@K comparisons of different methods.

Datasets Metrics ItemPop ItemKNN MF eALS BPR DMF NeuMF SVDhin HeteRS FMG NeuACF NeuACF++

ML100K

HR@5 0.2831 0.4072 0.4634 0.4698 0.4984 0.3483 0.4942 0.4655 0.3747 0.4602 0.5097 0.5111
NDCG@5 0.1892 0.2667 0.3021 0.3201 0.3315 0.2287 0.3357 0.3012 0.2831 0.3014 0.3505 0.3519
HR@10 0.3998 0.5891 0.6437 0.6638 0.6914 0.4994 0.6766 0.6554 0.5337 0.6373 0.6846 0.6915

NDCG@10 0.2264 0.3283 0.3605 0.3819 0.3933 0.2769 0.3945 0.3988 0.3338 0.3588 0.4068 0.4092
HR@15 0.5366 0.7094 0.7338 0.7529 0.7741 0.5873 0.7635 0.7432 0.6524 0.7338 0.7813 0.7832

NDCG@15 0.2624 0.3576 0.3843 0.4056 0.4149 0.3002 0.4175 0.4043 0.3652 0.3844 0.4318 0.4324
HR@20 0.6225 0.7656 0.8144 0.8155 0.8388 0.6519 0.8324 0.8043 0.7224 0.8006 0.8464 0.8441

NDCG@20 0.2826 0.3708 0.4034 0.4204 0.4302 0.3151 0.4338 0.3944 0.3818 0.4002 0.4469 0.4469

ML1M

HR@5 0.3088 0.4437 0.5111 0.5353 0.5414 0.4892 0.5485 0.4765 0.3997 0.4732 0.5630 0.5584
NDCG@5 0.2033 0.3012 0.3463 0.3670 0.3756 0.3314 0.3865 0.3098 0.2895 0.3183 0.3944 0.3923
HR@10 0.4553 0.6171 0.6896 0.7055 0.7161 0.6652 0.7177 0.6456 0.5758 0.6528 0.7202 0.7222

NDCG@10 0.2505 0.3572 0.4040 0.4220 0.4321 0.3877 0.4415 0.3665 0.3461 0.3767 0.4453 0.4454
HR@15 0.5568 0.7118 0.7783 0.7914 0.7988 0.7649 0.7982 0.7689 0.6846 0.7536 0.8018 0.8030

NDCG@15 0.2773 0.3822 0.4275 0.4448 0.4541 0.4143 0.4628 0.4003 0.3749 0.4034 0.4667 0.4658
HR@20 0.6409 0.7773 0.8425 0.8409 0.8545 0.8305 0.8586 0.8234 0.7682 0.8169 0.8540 0.8601

NDCG@20 0.2971 0.3977 0.4427 0.4565 0.4673 0.4296 0.4771 0.4456 0.3947 0.4184 0.4789 0.4790

Amazon

HR@5 0.2412 0.1897 0.3027 0.3063 0.3296 0.2693 0.3117 0.3055 0.2766 0.3216 0.3268 0.3429
NDCG@5 0.1642 0.1279 0.2068 0.2049 0.2254 0.1848 0.2141 0.1922 0.1800 0.2168 0.2232 0.2308
HR@10 0.3576 0.3126 0.4278 0.4287 0.4657 0.3715 0.4309 0.4123 0.4207 0.4539 0.4686 0.4933

NDCG@10 0.2016 0.1672 0.2471 0.2441 0.2693 0.2179 0.2524 0.2346 0.2267 0.2595 0.2683 0.2792
HR@15 0.4408 0.3901 0.5054 0.5065 0.5467 0.4328 0.5258 0.5056 0.5136 0.5430 0.5591 0.5948

NDCG@15 0.2236 0.1877 0.2676 0.2647 0.2908 0.2332 0.2774 0.2768 0.2513 0.2831 0.2924 0.3060
HR@20 0.4997 0.4431 0.5680 0.5702 0.6141 0.4850 0.5897 0.5607 0.5852 0.6076 0.6257 0.6702

NDCG@20 0.2375 0.2002 0.2824 0.2797 0.3067 0.2458 0.2925 0.2876 0.2683 0.2983 0.3080 0.3236

The proposed methods are applied to recommendation task. Table 3.3 shows
the experiment results of different methods. The proposed methods are marked as
NeuACF which implements the attention method in Section 3.3.2.4 and NeuACF++
which implements the self-attention mechanism in Section 3.3.2.5, respectively.
One can draw the following conclusions.

Firstly, NeuACF and NeuACF++ achieve all the best performance over all the
datasets and criteria. The improvement of the two models comparing to these base-
lines is significant. This indicates that the aspect level information is useful for
the downstream task. Besides, NeuACF++ outperforms the NeuACF method in
most circumstances. Particularly, the performance of NeuACF++ is significantly
improved in Amazon dataset (about +2% at HR and +1% at NDCG). This demon-
strates the effectiveness of the self-attention mechanism. Since the affinity matrix
evaluates the similarity score of different aspects, we can extract the valuable infor-
mation from the aspect representations.

Secondly, NeuMF, as one neural network based method, also performs well on
most conditions, while both NeuACF and NeuACF++ outperform NeuMF in almost
all the cases. The reason is probably that multiple aspects of representations learned



18

(a) An example of HG

a1

a3

Author (A) Paper (P) Conf. (C)

a2

a4

p1

p3

p4

p5

p2
c1

c2

Term (T)

t1

t2

t3

t4

(c) Our Model

Affiliation Relations

…
A P C

P C

Interaction Relations

…

A P

A P T

(b) Conventional Models

Relations

A P C

A P

…
A P T

P C

Fig. 3.6 The illustration of HGs and the comparison between conventional methods and our
method (non-differentiated relations v.s. differentiated relations).

by NeuACF and NeuACF++ provide more features of users and items. Although
FMG also utilizes the same features as NeuACF and NeuACF++, the better perfor-
mance of NeuACF and NeuACF++ implies that the deep neural network and the
attention mechanisms in NeuACF and NeuACF++ may have the better ability to
learn representations of users and items than the “shallow” model in FMG.

The more detailed method description and experiment validation can be seen in
[11] and [34].

3.4 Relation Structure Awareness

3.4.1 Overview

To model the heterogeneity of networks, several attempts have been done on HGs
embedding. Representative methods include random walk based methods [33, 7, 9],
decomposion based methods [42, 54, 35], and neural network based methods [4,
60, 47, 11]. Although these methods consider the heterogeneity of networks, they
usually have an assumption that one single model can handle all relations and nodes,
through keeping the representations of two nodes close to each other, as illustrated
in Fig. 3.6b.

However, various relations in HGs have significantly different structural charac-
teristics, which should be handled with different models. Let us see a toy example



19

in Fig. 3.6a. The relations in the network include atomic relations (e.g., AP and PC)
and composite relations (e.g., APA and APC). Intuitively, AP relation and PC rela-
tion reveal rather different structures. That is, some authors write some papers in the
AP relation, which shows a peer-to-peer structure. While that many papers are pub-
lished in one conference in the PC relation reveals the structure of one-centered-by-
another. Similarly, APA and APC indicate peer-to-peer and one-centered-by-another
structures respectively. The intuitive examples clearly illustrate that relations in HGs
indeed have different structural characteristics.

In this section, we present a novel model for HGs embedding, named Relation
structure-aware Heterogeneous Information Network Embedding (RHINE) [23]. In
specific, we first explore the structural characteristics of relations in HGs with thor-
ough mathematical analysis, and present two structure-related measures which can
consistently distinguish the various relations into two categories: Affiliation Rela-
tions (ARs) with one-centered-by-another structures and Interaction Relations (IRs)
with peer-to-peer structures, as shown in Fig. 3.6c. In order to capture the distinctive
structural characteristics of the relations, we then propose two specifically designed
models. For ARs where the nodes share similar properties [56], we calculate Eu-
clidean distance as the proximity between nodes, so as to make the nodes directly
close in the low-dimensional space. On the other hand, for IRs which bridge two
compatible nodes, we model them as translations between the nodes. Since the two
models are consistent in terms of mathematical form, they can be optimized in a
unified and elegant way.

Table 3.4 Statistics of the three datasets. tu denotes the type of node u, 〈u,r,v〉 is a node-relation
triple.

Datasets Nodes Number of Relations Number of Avg. Degree Avg. Degree Measures Relation
Nodes (tu ∼ tv) Relations of tu of tv D(r) S(r) Category

DBLP

Term (T)
Paper (P)

Author (A)
Conference (C)

8,811
14,376
14,475

20

PC
APC
AP
PT

APT

14,376
24,495
41,794
88,683
260,605

1.0
2.9
2.8
6.2
18.0

718.8
2089.7

2.9
10.7
29.6

718.8
720.6

1.0
1.7
1.6

0.05
0.085
0.0002
0.0007
0.002

AR
AR
IR
IR
IR

Yelp

User (U)
Service (S)

Business (B)
Star Level (L)

Reservation (R)

1,286
2

2,614
9
2

BR
BS
BL
UB

BUB

2,614
2,614
2,614
30,838
528,332

1.0
1.0
1.0
23.9
405.3

1307.0
1307.0
290.4
11.8
405.3

1307.0
1307.0
290.4

2.0
1.0

0.5
0.5
0.1

0.009
0.07

AR
AR
AR
IR
IR

AMiner

Paper (P)
Author (A)

Reference (R)
Conference (C)

127,623
164,472
147,251

101

PC
APC
AP
PR

APR

127,623
232,659
355,072
392,519

1,084,287

1.0
2.2
2.2
3.1
7.1

1263.6
3515.6

2.8
2.7
7.9

1264.6
1598.0

1.3
1.1
1.1

0.01
0.01

0.00002
0.00002
0.00004

AR
AR
IR
IR
IR



20

3.4.2 Preliminary

In this section, we first describe three real-world HGs and analyze the structural
characteristics of relations in the HGs. Then we present two structure-related mea-
sures which can consistently distinguish various relations quantitatively.

Before analyzing the structural characteristics of relations, we first introduce
three datasets used in this section, including DBLP1, Yelp2 and AMiner3 [44]. The
statistics of these datasets are illustrated in Table 3.4. In order to explore the struc-
tural characteristics of relations, we present mathematical analysis on the above
datasets.

Since the degree of nodes can well reflect the structures of networks [51], we
define a degree-based measure D(r) to explore the distinction of various relations
in an HG. Specifically, we compare the average degrees of two types of nodes con-
nected with the relation r, via dividing the larger one by the smaller one (D(r)≥ 1).
Formally, given a relation r with nodes u and v (i.e., node relation triple 〈u,r,v〉), tu
and tv are the node types of u and v, we define D(r) as follows:

D(r) =
max [d̄tu , d̄tv ]

min [d̄tu , d̄tv ]
, (3.21)

where d̄tu and d̄tv are the average degrees of nodes of the types tu and tv respectively.
A large value of D(r) indicates quite inequivalent structural roles of two types of

nodes connected via the relation r (one-centered-by-another), while a small value of
D(r) means compatible structural roles (peer-to-peer). In other words, relations with
a large value of D(r) show much stronger affiliation relationships. Nodes connected
via such relations share much more similar properties [8]. While relations with a
small value of D(r) implicate much stronger interaction relationships. Therefore,
we call the two categories of relations as Affiliation Relations (ARs) and Interaction
Relations (IRs), respectively.

In order to better understand the structural difference between various relations,
we take the DBLP network as an example. As shown in Table 3.4, for the relation
PC with D(PC) = 718.8, the average degree of nodes with type P is 1.0 while that
of nodes with type C is 718.8. It shows that papers and conferences are structurally
inequivalent. Papers are centered by conferences. While D(AP) = 1.1 indicates that
authors and papers are compatible and peer-to-peer in structure. This is consistent
with our common sense. Semantically, the relation PC means that ‘papers are pub-
lished in conferences’, indicating an affiliation relationship. Differently, AP means
that ‘authors write papers’, which explicitly describes an interaction relationship.

In fact, we can also define some other measures to capture the structural dif-
ference. For example, we compare the relations in terms of sparsity, which can be
defined as:

1 https://dblp.uni-trier.de
2 https://www.yelp.com/dataset/
3 https://www.aminer.cn/citation



21

S(r) =
Nr

Ntu ×Ntv
, (3.22)

where Nr represents the number of relation instances following r. Ntu and Ntv mean
the number of nodes with type tu and tv, respectively. The measure can also con-
sistently distinguish the relations into two categories: ARs and IRs. The detailed
statistics of all the relations in the three HGs are shown in Table 3.4.

Evidently, Affiliation Relations and Interaction Relations exhibit rather distinct
characteristics: (1) ARs indicate one-centered-by-another structures, where the av-
erage degrees of the types of end nodes are extremely different. They imply an af-
filiation relationship between nodes. (2) IRs describe peer-to-peer structures, where
the average degrees of the types of end nodes are compatible. They suggest an in-
teraction relationship between nodes.

3.4.3 The RHINE Model

3.4.3.1 Basic Idea

Through our exploration with thorough mathematical analysis, we find that the het-
erogeneous relations can be typically divided into ARs and IRs with different struc-
tural characteristics. In order to exploit their distinct characteristics, we need to
specifically design different while appropriate models for the different categories
of relations.

For ARs, we propose to take Euclidean distance as a metric to measure the prox-
imity of the connected nodes in the low-dimensional space. There are two motiva-
tions behind this: (1) First of all, ARs show affiliation structures between nodes,
which indicate that nodes connected via such relations share similar properties.
[8, 56]. Hence, nodes connected via ARs could be directly close to each other in the
vector space, which is also consistent with the optimization of Euclidean distance
[5]. (2) Additionally, one goal of HG embedding is to preserve the high-order prox-
imity. Euclidean distance can ensure that both first-order and second-order proxim-
ities are preserved as it meets the condition of the triangle inequality [16].

Different from ARs, IRs indicate strong interaction relationships between com-
patible nodes, which themselves contain important structural information of two
nodes. Thus, we propose to explicitly model an IR as a translation between nodes
in the low-dimensional vector space. Additionally, the translation based distance is
consistent with the Euclidean distance in the mathematical form [2]. Therefore, they
can be smoothly combined in a unified and elegant manner.

3.4.3.2 Different Models for ARs and IRs

In this subsection, we introduce two different models exploited in RHINE for ARs
and IRs, respectively.



22

Euclidean Distance for Affiliation Relations Nodes connected via ARs share
similar properties [8], therefore nodes could be directly close to each other in the
vector space. We take the Euclidean distance as the proximity measure of two nodes
connected by an AR.

Formally, given an affiliation node-relation triple 〈p,s,q〉 ∈ PAR where s ∈ RAR is
the relation between p and q with weight wpq, the distance between p and q in the
latent vector space is calculated as follows:

f (p,q) = wpq||Xp−Xq||22, (3.23)

in which Xp ∈ Rd and Xq ∈ Rd are the embedding vectors of p and q, respectively.
As f (p,q) quantifies the distance between p and q in the low-dimensional vector
space, we aim to minimize f (p,q) to ensure that nodes connected by an AR are
close to each other. Hence, we define the margin-based loss [2] function as follows:

LEuAR = ∑
s∈RAR

∑
〈p,s,q〉∈PAR

∑
〈p′,s,q′〉∈P′AR

max[0,γ + f (p,q)− f (p′,q′)],
(3.24)

where γ > 0 is a margin hyperparameter. PAR is the set of positive affiliation node-
relation triples, while P′AR is the set of negative affiliation node-relation triples.

Translation-based Distance for Interaction Relations Interaction Relations demon-
strate strong interactions between nodes with compatible structural roles. Thus, dif-
ferent from ARs, we explicitly model IRs as translations between nodes.

Formally, given an interaction node-relation triple 〈u,r,v〉 where r ∈ RIR with
weight wuv, we define the score function as:

g(u,v) = wuv||Xu +Yr−Xv||, (3.25)

where Xu and Xv are the node embeddings of u and v respectively, and Yr is the
embedding of the relation r. Intuitively, this score function penalizes deviation of
(Xu +Yr) from the vector Xv.

For each interaction node-relation triple 〈u,r,v〉 ∈ PIR, we define the margin-
based loss function as follows:

LTrIR = ∑
r∈RIR

∑
〈u,r,v〉∈PIR

∑
〈u′,r,v′〉∈P′IR

max[0,γ +g(u,v)−g(u′,v′)]
(3.26)

where PIR is the set of positive interaction node-relation triples, while P′IR is the set
of negative interaction node-relation triples.



23

3.4.3.3 A Unified Model for HG Embedding

Finally, we combine the two models for different categories of relations by mini-
mizing the following loss function:

L = LEuAR +LTrIR (3.27)

= ∑
s∈RAR

∑
〈p,s,q〉∈PAR

∑
〈p′,s,q′〉∈P′AR

max[0,γ + f (p,q)− f (p′,q′)]

+ ∑
r∈RIR

∑
〈u,r,v〉∈PIR

∑
〈u′,r,v′〉∈P′IR

max[0,γ +g(u,v)−g(u′,v′)]

Sampling Strategy As shown in Table 3.4, the distributions of ARs and IRs are
quite unbalanced. What’s more, the proportion of relations are unbalanced within
ARs and IRs. Traditional edge sampling may suffer from under-sampling for rela-
tions with a small amount or over-sampling for relations with a large amount. To
address the problems, we draw positive samples according to their probability dis-
tributions. As for negative samples, we follow previous work [2] to construct a set
of negative node-relation triples P′(u,r,v) = {(u′,r,v)|u′ ∈ V}∪{(u,r,v′)|v′ ∈ V} for
the positive node-relation triple (u,r,v), where either the head or tail is replaced by
a random node, but not both at the same time.

3.4.4 Experiments

3.4.4.1 Experimental Settings

Datasets As described in Subsection 3.4.2, we conduct experiments on three
datasets, including DBLP, Yelp and AMiner. The statistics of them are summarized
in Table 3.4.

Baselines We compare our proposed model RHINE with six state-of-the-art net-
work embedding methods: two classic homogeneous graph embedding methods
DeepWalk [28], LINE [43], and four heterogeneous graph embedding methods
PTE [42], ESim [33], HIN2Vec [9] and Metapath2vec [7].

Evaluation Metrics We use different evaluation metrics on the following tasks:

• Node Clustering The experiments leverage K-means to cluster the nodes and
evaluate the results in terms of normalized mutual information (NMI).

• Link Prediction We model the link prediction problem as a binary classification
problem that aims to predict whether a link exists, and use Area Under Curve
(AUC) and F1 score as evaluation metrics.



24

• Multi-Class Classification In this task, we employ the same labeled data used
in the node clustering task. We use Micro-F1 and Macro-F1 scores as the metrics
for evaluation.

Parameter Settings For a fair comparison, we set the embedding dimension d =
100 and the size of negative samples k = 3 for all models. For DeepWalk, HIN2Vec
and metapath2vec, we set the number of walks per node w = 10, the walk length
l = 100 and the window size τ = 5. For our model RHINE, the margin γ is set to 1.

3.4.4.2 Node Clustering

Table 3.5 Performance Evaluation of Node Clustering.

Methods DBLP Yelp AMiner

DeepWalk 0.3884 0.3043 0.5427
LINE-1st 0.2775 0.3103 0.3736
LINE-2nd 0.4675 0.3593 0.3862

PTE 0.3101 0.3527 0.4089
ESim 0.3449 0.2214 0.3409

HIN2Vec 0.4256 0.3657 0.3948
metapath2vec 0.6065 0.3507 0.5586

RHINE 0.7204 0.3882 0.6024

Table 3.6 Performance Evaluation of Link Prediction.

Methods DBLP (A-A) DBLP (A-C) Yelp (U-B) AMiner (A-A) AMiner (A-C)

AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

DeepWalk 0.9131 0.8246 0.7634 0.7047 0.8476 0.6397 0.9122 0.8471 0.7701 0.7112
LINE-1st 0.8264 0.7233 0.5335 0.6436 0.5084 0.4379 0.6665 0.6274 0.7574 0.6983
LINE-2nd 0.7448 0.6741 0.8340 0.7396 0.7509 0.6809 0.5808 0.4682 0.7899 0.7177

PTE 0.8853 0.8331 0.8843 0.7720 0.8061 0.7043 0.8119 0.7319 0.8442 0.7587
ESim 0.9077 0.8129 0.7736 0.6795 0.6160 0.4051 0.8970 0.8245 0.8089 0.7392

HIN2Vec 0.9160 0.8475 0.8966 0.7892 0.8653 0.7709 0.9141 0.8566 0.8099 0.7282
metapath2vec 0.9153 0.8431 0.8987 0.8012 0.7818 0.5391 0.9111 0.8530 0.8902 0.8125

RHINE 0.9315 0.8664 0.9148 0.8478 0.8762 0.7912 0.9316 0.8664 0.9173 0.8262

As shown in Table 3.5, our model RHINE significantly outperforms all the com-
pared methods. (1) Compared with the best competitors, the clustering performance
of our model RHINE improves by 18.79%, 6.15% and 7.84% on DBLP, Yelp and
AMiner, respectively. It demonstrates the effectiveness of our model RHINE by dis-
tinguishing the various relations with different structural characteristics in HGs. In
addition, it also validates that we utilize appropriate models for different categories



25

of relations. (2) In all baseline methods, homogeneous network embedding models
achieve the lowest performance, because they ignore the heterogeneity of relations
and nodes. (3) RHINE significantly outperforms existing HGs embedding models
(i.e., ESim, HIN2Vec and metapath2vec) on all datasets. We believe the reason is
that our proposed RHINE with appropriate models for different categories of rela-
tions can better capture the structural and semantic information of HGs.

3.4.4.3 Link Prediction

The results of link prediction task are reported in Table 3.6 with respect to AUC
and F1 score. It is clear that our model performs better than all baseline methods
on three datasets. The reason behind the improvement is that our model based on
Euclidean distance modeling relations can capture both the first-order and second-
order proximities. In addition, our model RHINE distinguishes multiple types of
relations into two categories in terms of their structural characteristics, and thus
can learn better embeddings of nodes, which are beneficial for predicting complex
relationships between two nodes.

3.4.4.4 Multi-Class Classification

We summarize the results of classification in Table 3.7. As we can observe, (1)
RHINE achieves better performance than all baseline methods on all datasets except
Aminer. It improves the performance of node classification by about 4% on both
DBLP and Yelp averagely. In terms of AMiner, the RHINE performs slightly worse
than ESim, HIN2vec and metapath2vec. This may be caused by over-capturing the
information of relations PR and APR (R represents references). Since an author may
write a paper referring to various fields, these relations may introduce some noise.
(2) Although ESim and HIN2Vec can model multiple types of relations in HGs, they
fail to perform well in most cases. Our model RHINE achieves good performance
due to the respect of distinct characteristics of various relations.

The more detailed method description and experiment validation can be seen in
[23].

3.5 Network Schema Preservation

3.5.1 Overview

Despite the success of meta-path guided HG embedding methods, the selection of
meta-paths still remains an open yet challenging problem [38]. The design of meta-
path schemes significantly relies on domain knowledge. Manually selecting meta-



26

Table 3.7 Performance Evaluation of Multi-class Classification.

Methods DBLP Yelp AMiner

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

DeepWalk 0.7475 0.7500 0.6723 0.7012 0.9386 0.9512
LINE-1st 0.8091 0.8250 0.4872 0.6639 0.9494 0.9569
LINE-2nd 0.7559 0.7500 0.5304 0.7377 0.9468 0.9491

PTE 0.8852 0.8750 0.5389 0.7342 0.9791 0.9847
ESim 0.8867 0.8750 0.6836 0.7399 0.9910 0.9948

HIN2Vec 0.8631 0.8500 0.6075 0.7361 0.9962 0.9965
metapath2vec 0.8976 0.9000 0.5337 0.7208 0.9934 0.9936

RHINE 0.9344 0.9250 0.7132 0.7572 0.9884 0.9807

ABCABC

V1 V2

P1 P3P2

A1 A2 A3 T2T1

Venue Paper Author Term

ABC

P3

V2

T2A3
ABC

P1

V1

T1A1

A-P-A A-P-V-P-A

(a) An example of HG

ABC

(b) Meta-paths

(c) Network schema (d) Schema instance

ABC
Write
Publish
Contain

Fig. 3.7 A toy example of an HG on bibliographic data.

paths based on prior knowledge may work for a simple HG, while it is difficult
to determine meta-paths for a complex HG. Furthermore, different meta-paths will
result in different embeddings from different points of view, which leads to another
challenging problem, i.e., how to effectively fuse different embeddings to generate
uniform embeddings. Some existing works [35, 49, 22] use label information to
guide the embedding fusion; unfortunately, this is not applicable in unsupervised
scenarios.

To tackle the above challenges, we observe that the network schema [38], as a
uniform blueprint of HG, comprehensively retains node types and their relations
in an HG. Since network schema is a meta template for HG, guided by it, we can
extract subgraphs (i.e., schema instances) from the HG. An example is shown in
Fig. 3.7c and Fig. 3.7d, from which we can see that the schema instance depicts the
high-order structure information of these four nodes, besides the first-order struc-
ture information of two nodes (i.e., pairwise structure or meta-path based structure
as shown in Fig. 3.7b). Moreover, the schema instance also contains rich semantics,
i.e., a schema instance (shown in Fig. 3.7d) naturally describes the overall informa-



27

tion, such as the author, the term, and the venue of a paper, as well as their relations.
More importantly, different from meta-paths, a network schema is a unique struc-
ture for an HG, and thus we do not need domain knowledge to make a choice.
These benefits of network schema motivate us to study network schema preserving
HG embedding. However, it is a non-trivial task. First, how to effectively preserve
the network schema structure? Moreover, how to capture the heterogeneity of nodes
and links inside network schema?

In this section, we introduce a novel Network Schema preserving Heterogeneous
graph Embedding model named NSHE. Based on node embedding generated by
heterogeneous graph convolutional network, NSHE optimizes the embedding via
node pairs and schema instances sampled from the HG. Particularly, in the network
schema preserving component, we propose a network schema sampling method,
which generates sub-graphs (i.e., schema instances) naturally preserving schema
structure. Furthermore, for each schema instance, a multi-task learning model is
built to predict each node in the instance with other nodes, which tackles the chal-
lenge of heterogeneity.

3.5.2 The NSHE Model

3.5.2.1 Model Framework

Consider an HG G = {V,E} composed of a node set V and an edge set E , along with
the node type mapping function φ : V → A, and the edge type mapping function
ϕ : E → R, where A and R denotes the node and edge types, |A|+ |R| > 2. The
task is to learn the representation of nodes Z ∈ R|V |×d , where d is the dimension of
representation.

Fig. 3.8 illustrates the framework of the proposed NSHE. NSHE preserves the
pairwise and schema proximity concurrently. First, to fully exploit complex network
structure and heterogeneous node feature together, we propose to learn node embed-
ding via heterogeneous node aggregation. Second, we preserve the pairwise struc-
ture and the schema structure simultaneously. While directly performing random
walk cannot generate the desired schema structure, we propose to sample schema
instances and preserve the proximity inside instances. Moreover, as different types
of nodes in the instances carry different context, a multi-task learning model is de-
signed to in turn predict a target node with other context nodes to handle heterogene-
ity inside schema instances. Finally, NSHE iteratively updates node embeddings via
optimizing the aggregation of the pairwise and schema preserving loss.

3.5.2.2 Preserving Pairwise Proximity

Despite that we need to capture the network schema structure in HG embedding,
the pairwise proximity between nodes [43], as one of the most direct expressions of



28

Input

…

ABC

…

Proj

ABC

P1

V1

T1A1

CE

Preserving Pairwise Proximity

Preserving Network Schema Proximity

Schema Instance

Classifier 1

Aggr.

Schema Instance 
Sampling

Proj

ABC

Context

Target

ABC

CE

Context

Target

…

Multi-task Learning

Classifier n

…

Schema
Loss

Pairwise Loss

Overall 
Loss

Feature Proj. Node Emb.

ABC

+
+

…

the proximity via network schema, we preserve the schema
structure via predicting whether S 2 S exists in the network.
Moreover, to avoid trivial solutions, we generate Ms negative
network schema instance(s) for each S via probability distri-
bution [Mikolov et al., 2013a].

Schema Preserving with Multi-task Learning
Classifiers are proved to be effective in preserving the high-
order proximity between entities.[Fu et al., 2017; Tu et al.,
2018] However, simply predict Sx whether exists in the HIN
neglects the heterogeneity of the network schema. There-
fore, we design multi-task classifiers to perform heteroge-
neous network schema preservation.

The basic idea is to separate each schema instance into
two parts, namely target node and context nodes, and predict
whether the two parts can form a network schema instance
together. To illustrate, we take the toy example shown in Fig-
ure 1 as an example. In this case, we preserve the schema
structure via training 4 tasks, namely prediction of author,
paper, conference, and term via its context. Take prediction
of schema instance with target type author as an example, the
task is to predict whether an author (target) has written a pa-
per given term and conference.

In this way, each node plays two roles: target node and
context node. We use the node embedding as the target node
embedding and define the context embedding ct

x of each con-
text node with type t in the schema instance as:

ct
x = CEt(zt

x), t 6= ⌧, (6)

where CEt is the context encoder for type t, each context
encoder is a fully connected layer of MLP. We concatenate
all the encoded context from multiple types and obtain the
context embedding for schema instance Sx, denoted as cSx :

cSx = c0
xk...kct

xk...kcT
x , t 6= ⌧, (7)

where k is the concatenation operator. Finally, we obtain the
schema instance embedding zSx via concatenation of the con-
text embedding and the target node embedding:

zSx
= cSx

kz⌧x . (8)

After obtaining the embedding for schema instances, we pre-
dict the probability of Sx with target type ⌧ being a positive
instance via multiple classifiers:

ySx = MLP⌧ (zSx), (9)

where MLP⌧ is the classifier for schema instances with target
type ⌧ . In this way, the heterogeneity of network schema
are preserved. The overall loss of preserving the proximity
defined by network schema, denoted as Ls can be obtained:

Ls = � 1

|S|
X

Sx2S
(RSx log ySx + (1�RSx) log (1� ySx)) ,

(10)
where RSx

= 1 if Sx is a positive network schema instance,
otherwise RSx

= 0.

4.4 Optimization Objective
To preserve both the pair-wise proximity and the hihg-order
schema proximity of HINs, NSHE calculate the overall loss
L by aggregating the loss of preserving pairwise proximity
Lp and the loss of preserving schema proximity Ls :

L = �Ls + Lp, (11)

where � is a balancing coefficient to balance the significance
between different terms of proximities on different tasks and
datasets.

5 Experiments
In this section, we empirically compare NSHE and the base-
lines on node classification and node clustering tasks.

5.1 Datasets
• DBLP1: We extract a subset of DBLP which contains

9556 papers (P), 2000 authors (A), and 20 conferences
(C). The authors and papers are divided into four areas:
database, data mining, machine learning, information re-
trieval.

• IMDB2: Here we extract a subset of IMDB which con-
tains 3676 movies (M), 4353 actors (A), and 1678 direc-
tors (D). Movies are divided into three classes, namely
Action, Comedy, and Drama according to their genre.

• ACM3: Following [Wang et al., 2019], We extract pa-
pers published in KDD, SIGMOD, SIGCOMM, Mo-
biCOMM, and VLDB and divide the papers into three
classes (Database, Wireless Communication, Data Min-
ing). Then we construct an HIN that contains 4019 pa-
pers (P), 7167 authors (A), and 60 conferences subjects
(S). Papers are labeled according to the conference they
published. Paper features correspond to elements of a
bag-of-words represented of keywords.

5.2 Baselines
• DeepWalk [Perozzi et al., 2014]: performs a random

walk on networks and then learns representation of
nodes via the skip-gram model.

• LINE [Tang et al., 2015]: considers rst-order and
second-order proximities in networks. In the experi-
ments, we denote the first-order or second-order prox-
imity as LINE-1st or LINE-2nd, respectively.

• Metapath2vec[Dong et al., 2017]: adopts meta-path
based random walks and heterogeneous skip-gram
model to perform node embedding. The meta-paths used
are shown in Table ??, we report the best results of the
meta-paths.

• HIN2Vec [Fu et al., 2017]: learns the latent vectors of
nodes and meta-paths in an HIN by conducting multiple
prediction training tasks jointly.

1https://dblp.uni-trier.de
2https://www.kaggle.com/carolzhangdc/imdb-5000-movie-

dataset
3https://http://dl.acm.org/

the proximity via network schema, we preserve the schema
structure via predicting whether S 2 S exists in the network.
Moreover, to avoid trivial solutions, we generate Ms negative
network schema instance(s) for each S via probability distri-
bution [Mikolov et al., 2013a].

Schema Preserving with Multi-task Learning
Classifiers are proved to be effective in preserving the high-
order proximity between entities.[Fu et al., 2017; Tu et al.,
2018] However, simply predict Sx whether exists in the HIN
neglects the heterogeneity of the network schema. There-
fore, we design multi-task classifiers to perform heteroge-
neous network schema preservation.

The basic idea is to separate each schema instance into
two parts, namely target node and context nodes, and predict
whether the two parts can form a network schema instance
together. To illustrate, we take the toy example shown in Fig-
ure 1 as an example. In this case, we preserve the schema
structure via training 4 tasks, namely prediction of author,
paper, conference, and term via its context. Take prediction
of schema instance with target type author as an example, the
task is to predict whether an author (target) has written a pa-
per given term and conference.

In this way, each node plays two roles: target node and
context node. We use the node embedding as the target node
embedding and define the context embedding ct

x of each con-
text node with type t in the schema instance as:

ct
x = CEt(zt

x), t 6= ⌧, (6)

where CEt is the context encoder for type t, each context
encoder is a fully connected layer of MLP. We concatenate
all the encoded context from multiple types and obtain the
context embedding for schema instance Sx, denoted as cSx :

cSx = c0
xk...kct

xk...kcT
x , t 6= ⌧, (7)

where k is the concatenation operator. Finally, we obtain the
schema instance embedding zSx via concatenation of the con-
text embedding and the target node embedding:

zSx
= cSx

kz⌧x . (8)

After obtaining the embedding for schema instances, we pre-
dict the probability of Sx with target type ⌧ being a positive
instance via multiple classifiers:

ySx = MLP⌧ (zSx), (9)

where MLP⌧ is the classifier for schema instances with target
type ⌧ . In this way, the heterogeneity of network schema
are preserved. The overall loss of preserving the proximity
defined by network schema, denoted as Ls can be obtained:

Ls = � 1

|S|
X

Sx2S
(RSx log ySx + (1�RSx) log (1� ySx)) ,

(10)
where RSx

= 1 if Sx is a positive network schema instance,
otherwise RSx

= 0.

4.4 Optimization Objective
To preserve both the pair-wise proximity and the hihg-order
schema proximity of HINs, NSHE calculate the overall loss
L by aggregating the loss of preserving pairwise proximity
Lp and the loss of preserving schema proximity Ls :

L = �Ls + Lp, (11)

where � is a balancing coefficient to balance the significance
between different terms of proximities on different tasks and
datasets.

5 Experiments
In this section, we empirically compare NSHE and the base-
lines on node classification and node clustering tasks.

5.1 Datasets
• DBLP1: We extract a subset of DBLP which contains

9556 papers (P), 2000 authors (A), and 20 conferences
(C). The authors and papers are divided into four areas:
database, data mining, machine learning, information re-
trieval.

• IMDB2: Here we extract a subset of IMDB which con-
tains 3676 movies (M), 4353 actors (A), and 1678 direc-
tors (D). Movies are divided into three classes, namely
Action, Comedy, and Drama according to their genre.

• ACM3: Following [Wang et al., 2019], We extract pa-
pers published in KDD, SIGMOD, SIGCOMM, Mo-
biCOMM, and VLDB and divide the papers into three
classes (Database, Wireless Communication, Data Min-
ing). Then we construct an HIN that contains 4019 pa-
pers (P), 7167 authors (A), and 60 conferences subjects
(S). Papers are labeled according to the conference they
published. Paper features correspond to elements of a
bag-of-words represented of keywords.

5.2 Baselines
• DeepWalk [Perozzi et al., 2014]: performs a random

walk on networks and then learns representation of
nodes via the skip-gram model.

• LINE [Tang et al., 2015]: considers rst-order and
second-order proximities in networks. In the experi-
ments, we denote the first-order or second-order prox-
imity as LINE-1st or LINE-2nd, respectively.

• Metapath2vec[Dong et al., 2017]: adopts meta-path
based random walks and heterogeneous skip-gram
model to perform node embedding. The meta-paths used
are shown in Table ??, we report the best results of the
meta-paths.

• HIN2Vec [Fu et al., 2017]: learns the latent vectors of
nodes and meta-paths in an HIN by conducting multiple
prediction training tasks jointly.

1https://dblp.uni-trier.de
2https://www.kaggle.com/carolzhangdc/imdb-5000-movie-

dataset
3https://http://dl.acm.org/

the proximity via network schema, we preserve the schema
structure via predicting whether S 2 S exists in the network.
Moreover, to avoid trivial solutions, we generate Ms negative
network schema instance(s) for each S via probability distri-
bution [Mikolov et al., 2013a].

Schema Preserving with Multi-task Learning
Classifiers are proved to be effective in preserving the high-
order proximity between entities.[Fu et al., 2017; Tu et al.,
2018] However, simply predict Sx whether exists in the HIN
neglects the heterogeneity of the network schema. There-
fore, we design multi-task classifiers to perform heteroge-
neous network schema preservation.

The basic idea is to separate each schema instance into
two parts, namely target node and context nodes, and predict
whether the two parts can form a network schema instance
together. To illustrate, we take the toy example shown in Fig-
ure 1 as an example. In this case, we preserve the schema
structure via training 4 tasks, namely prediction of author,
paper, conference, and term via its context. Take prediction
of schema instance with target type author as an example, the
task is to predict whether an author (target) has written a pa-
per given term and conference.

In this way, each node plays two roles: target node and
context node. We use the node embedding as the target node
embedding and define the context embedding ct

x of each con-
text node with type t in the schema instance as:

ct
x = CEt(zt

x), t 6= ⌧, (6)

where CEt is the context encoder for type t, each context
encoder is a fully connected layer of MLP. We concatenate
all the encoded context from multiple types and obtain the
context embedding for schema instance Sx, denoted as cSx :

cSx = c0
xk...kct

xk...kcT
x , t 6= ⌧, (7)

where k is the concatenation operator. Finally, we obtain the
schema instance embedding zSx via concatenation of the con-
text embedding and the target node embedding:

zSx
= cSx

kz⌧x . (8)

After obtaining the embedding for schema instances, we pre-
dict the probability of Sx with target type ⌧ being a positive
instance via multiple classifiers:

ySx = MLP⌧ (zSx), (9)

where MLP⌧ is the classifier for schema instances with target
type ⌧ . In this way, the heterogeneity of network schema
are preserved. The overall loss of preserving the proximity
defined by network schema, denoted as Ls can be obtained:

Ls = � 1

|S|
X

Sx2S
(RSx log ySx + (1�RSx) log (1� ySx)) ,

(10)
where RSx

= 1 if Sx is a positive network schema instance,
otherwise RSx

= 0.

4.4 Optimization Objective
To preserve both the pair-wise proximity and the hihg-order
schema proximity of HINs, NSHE calculate the overall loss
L by aggregating the loss of preserving pairwise proximity
Lp and the loss of preserving schema proximity Ls :

L = �Ls + Lp, (11)

where � is a balancing coefficient to balance the significance
between different terms of proximities on different tasks and
datasets.

5 Experiments
In this section, we empirically compare NSHE and the base-
lines on node classification and node clustering tasks.

5.1 Datasets
• DBLP1: We extract a subset of DBLP which contains

9556 papers (P), 2000 authors (A), and 20 conferences
(C). The authors and papers are divided into four areas:
database, data mining, machine learning, information re-
trieval.

• IMDB2: Here we extract a subset of IMDB which con-
tains 3676 movies (M), 4353 actors (A), and 1678 direc-
tors (D). Movies are divided into three classes, namely
Action, Comedy, and Drama according to their genre.

• ACM3: Following [Wang et al., 2019], We extract pa-
pers published in KDD, SIGMOD, SIGCOMM, Mo-
biCOMM, and VLDB and divide the papers into three
classes (Database, Wireless Communication, Data Min-
ing). Then we construct an HIN that contains 4019 pa-
pers (P), 7167 authors (A), and 60 conferences subjects
(S). Papers are labeled according to the conference they
published. Paper features correspond to elements of a
bag-of-words represented of keywords.

5.2 Baselines
• DeepWalk [Perozzi et al., 2014]: performs a random

walk on networks and then learns representation of
nodes via the skip-gram model.

• LINE [Tang et al., 2015]: considers rst-order and
second-order proximities in networks. In the experi-
ments, we denote the first-order or second-order prox-
imity as LINE-1st or LINE-2nd, respectively.

• Metapath2vec[Dong et al., 2017]: adopts meta-path
based random walks and heterogeneous skip-gram
model to perform node embedding. The meta-paths used
are shown in Table ??, we report the best results of the
meta-paths.

• HIN2Vec [Fu et al., 2017]: learns the latent vectors of
nodes and meta-paths in an HIN by conducting multiple
prediction training tasks jointly.

1https://dblp.uni-trier.de
2https://www.kaggle.com/carolzhangdc/imdb-5000-movie-

dataset
3https://http://dl.acm.org/

Network Schema

HG

Edge Sampler

Figure 2: Overview of the NSHE Model.

possess features like “Title” and “Keywords”, whilst the au-
thor nodes possess the “Author ID” feature. To handle the
heterogeneity of different node feature, for each node vi with
feature fi, we use a type-specific mapping matrix to map the
heterogeneous feature to a common space:

f 0i = �(fi ⇤W (vi) + b (vi)), (1)

where �(vi) stands for the type of node vi. After obtaining
the feature f 0i in the common space, we use a L-layer graph
convolutional network [Kipf and Welling, 2017] to generate
the node embeddings. The node embedding of each node is
an aggregation of the representation of its neighbors:

H(l+1) = �
⇣
D� 1

2 (A + IN )D� 1
2 · H(l) · W (l)

⌘
, (2)

where A is the adjacency matrix, which Ai,j = 1 if (vi, vj) 2
E, D is the degree matrix, i.e. Dii =

P
j Aij , IN is the

identity matrix of RN⇥N . Here, we use the mapped feature
as the input of GCN, i.e. h0

i = f 0i , and use the output of the L-
layer graph convolutional networks as the node embedding,
i.e. Z = H(L).

In the following sections, we will show how to optimize the
node embedding matrix Z 2 RN⇥d to preserve the pairwise
and the high-order proximities in the HINs.

3.2 Pairwise Proximity Preserving
The pairwise proximity [Tang et al., 2015], i.e. the first-order
proximity has been proven to be effective in graph representa-
tion learning [Cui et al., 2019]. To better capture the structure
of graph, we preserve the pairwise proximity between nodes.
The objective to preserve the pairwise proximity with param-
eters ⇥ can be described as:

Lp = arg max
⇥

Y

vi2V

Y

vj2Nvi

p (vj |vi;⇥) , (3)

where Nvi
is the first-order neighbors of the node vi, which

Nv = {vj |(vi, vj) 2 E}. The conditional probability

p (vj |vi;⇥) is defined as a softmax function:

p (vj |vi;⇥) =
exp

�
zvj

· zviP
vk2V exp {zvk

· zvi
} , (4)

where zvi
and zvj

denotes the embedding of node vi and vj

generated by the NSHE model with parameters ⇥, respec-
tively. To calculate p (vj |vi;⇥) efficiently, we leverage the
negative sampling method [Mikolov et al., 2013b] and opti-
mize Equation3 with the logarithm of p (vj |vi;⇥), therefore:

Lp =
X

(vi,vj)2E

log �
�
zvj

· zvi

�

+

MeX

m=1

X

(vi,v0
j)/2E

Evj0⇠Pn(v) log �
⇣
�zvj0 · zvi

⌘
,

(5)

where �(x) = 1/(1 + exp(�x)), Pn (v) is the noisy distri-
bution, Me is the negative edge sampling rate.

3.3 Network Schema Preserving

Though first-order proximity is important in networks, first-
order proximity alone is not sucient for preserving the net-
work structures [Tang et al., 2015]. Unlike most previous
HIN embedding methods which adopt meta-paths to preserve
high-order proximity in HINs, which suffer from the conun-
drums of meta-path selection and fusion, we propose to pre-
serve the high-order proximity based on network schema.

A direct approach to preserve network schema structure is
to perform random walk on HIN using network schema and
apply Skip-Gram afterwards. However, as stated in Section
1, though the network schema for each network is unique, the
number of different types of nodes are imbalanced. Directly
perform random walk with network schema will lead to bias
on node types with more edges.

Network Schema Instance Sampling
To tackle the bias of different types of nodes described above
, we propose to sample network schema instance and preserve
the high-order proximity of the network schema instances in-
stead. We define a schema instance as follows:

Given an HIN G = (V, E), with network schema TG =
(A, R). A network schema instance S is the smallest sub-
graph of an HIN, which contains all the node types and edge
types defined by TG, if existing.

We propose the following network schema instance sam-
pling strategy: Starting from a set with one node, we keep
adding nodes with different type that connects with the
node(s) in current node set until all types of nodes are gath-
ered. The obtained node set is a schema instance. We de-
fine all the schema instances sampled from network as S . To
capture the proximity via network schema, we preserve the
schema structure via predicting whether S 2 S exists in the
network. Moreover, to avoid trivial solutions, we generate
Ms negative network schema instance(s) for each S via prob-
ability distribution [Mikolov et al., 2013a].

Figure 2: Overview of the NSHE Model.

possess features like “Title” and “Keywords”, whilst the au-
thor nodes possess the “Author ID” feature. To handle the
heterogeneity of different node feature, for each node vi with
feature fi, we use a type-specific mapping matrix to map the
heterogeneous feature to a common space:

f 0i = �(fi ⇤W (vi) + b (vi)), (1)

where �(vi) stands for the type of node vi. After obtaining
the feature f 0i in the common space, we use a L-layer graph
convolutional network [Kipf and Welling, 2017] to generate
the node embeddings. The node embedding of each node is
an aggregation of the representation of its neighbors:

H(l+1) = �
⇣
D� 1

2 (A + IN )D� 1
2 · H(l) · W (l)

⌘
, (2)

where A is the adjacency matrix, which Ai,j = 1 if (vi, vj) 2
E, D is the degree matrix, i.e. Dii =

P
j Aij , IN is the

identity matrix of RN⇥N . Here, we use the mapped feature
as the input of GCN, i.e. h0

i = f 0i , and use the output of the L-
layer graph convolutional networks as the node embedding,
i.e. Z = H(L).

In the following sections, we will show how to optimize the
node embedding matrix Z 2 RN⇥d to preserve the pairwise
and the high-order proximities in the HINs.

3.2 Pairwise Proximity Preserving
The pairwise proximity [Tang et al., 2015], i.e. the first-order
proximity has been proven to be effective in graph representa-
tion learning [Cui et al., 2019]. To better capture the structure
of graph, we preserve the pairwise proximity between nodes.
The objective to preserve the pairwise proximity with param-
eters ⇥ can be described as:

Lp = arg max
⇥

Y

vi2V

Y

vj2Nvi

p (vj |vi;⇥) , (3)

where Nvi
is the first-order neighbors of the node vi, which

Nv = {vj |(vi, vj) 2 E}. The conditional probability

p (vj |vi;⇥) is defined as a softmax function:

p (vj |vi;⇥) =
exp

�
zvj

· zviP
vk2V exp {zvk

· zvi
} , (4)

where zvi
and zvj

denotes the embedding of node vi and vj

generated by the NSHE model with parameters ⇥, respec-
tively. To calculate p (vj |vi;⇥) efficiently, we leverage the
negative sampling method [Mikolov et al., 2013b] and opti-
mize Equation3 with the logarithm of p (vj |vi;⇥), therefore:

Lp =
X

(vi,vj)2E

log �
�
zvj

· zvi

�

+

MeX

m=1

X

(vi,v0
j)/2E

Evj0⇠Pn(v) log �
⇣
�zvj0 · zvi

⌘
,

(5)

where �(x) = 1/(1 + exp(�x)), Pn (v) is the noisy distri-
bution, Me is the negative edge sampling rate.

3.3 Network Schema Preserving

Though first-order proximity is important in networks, first-
order proximity alone is not sucient for preserving the net-
work structures [Tang et al., 2015]. Unlike most previous
HIN embedding methods which adopt meta-paths to preserve
high-order proximity in HINs, which suffer from the conun-
drums of meta-path selection and fusion, we propose to pre-
serve the high-order proximity based on network schema.

A direct approach to preserve network schema structure is
to perform random walk on HIN using network schema and
apply Skip-Gram afterwards. However, as stated in Section
1, though the network schema for each network is unique, the
number of different types of nodes are imbalanced. Directly
perform random walk with network schema will lead to bias
on node types with more edges.

Network Schema Instance Sampling
To tackle the bias of different types of nodes described above
, we propose to sample network schema instance and preserve
the high-order proximity of the network schema instances in-
stead. We define a schema instance as follows:

Given an HIN G = (V, E), with network schema TG =
(A, R). A network schema instance S is the smallest sub-
graph of an HIN, which contains all the node types and edge
types defined by TG, if existing.

We propose the following network schema instance sam-
pling strategy: Starting from a set with one node, we keep
adding nodes with different type that connects with the
node(s) in current node set until all types of nodes are gath-
ered. The obtained node set is a schema instance. We de-
fine all the schema instances sampled from network as S . To
capture the proximity via network schema, we preserve the
schema structure via predicting whether S 2 S exists in the
network. Moreover, to avoid trivial solutions, we generate
Ms negative network schema instance(s) for each S via prob-
ability distribution [Mikolov et al., 2013a].

3 The Proposed Method
As illustrated in Figure 2, on the shoulder of heterogeneous
graph convolution networks, NSHE preserves the pairwise
and schema proximity concurrently. First, to exploit complex
network structure and heterogeneous node features together,
we propose a heterogeneous convolutional network and per-
form node embedding. Second, we preserve the pairwise
structure and the schema structure simultaneously. While
directly perform random walk cannot generate the desired
schema structure, we propose to sample schema instances and
preserve the proximity inside instances. Moreover, as differ-
ent types of nodes in the instances carry different context,
a multi-task learning model is designed to handle the hetero-
geneity inside schema instances. Finally, NSHE updates node
embeddings via optimizing the aggregation of the pairwise
and schema preserving loss.

3.1 Node Embedding with Heterogeneous GCN
In an HIN, the node features of different types of nodes can
be different. For example, in a publication HIN, paper nodes
possess features like “Title” and “Keywords”, whilst the au-
thor nodes possess the “Author ID” feature. To handle the
heterogeneity of different node feature, for each node vi with
feature fi, we use a type-specific mapping matrix to map the
heterogeneous feature to a common space:

f 0i = �(fi ⇤W (vi) + b (vi)), (1)

where �(vi) stands for the type of node vi. After obtaining
the feature f 0i in the common space, we use a L-layer graph
convolutional network [Kipf and Welling, 2017] to generate
the node embeddings. The node embedding of each node is
an aggregation of the representation of its neighbors:

H(l+1) = �
⇣
D� 1

2 (A + IN)D� 1
2 · H(l) · W(l)

⌘
, (2)

where A is the adjacency matrix, which Ai,j = 1 if (vi, vj) 2
E, D is the degree matrix, i.e. Dii =

P
j Aij , IN is the

identity matrix of RN⇥N . Here, we use the mapped feature
as the input of GCN, i.e. h0

i = f 0i , and use the output of the L-
layer graph convolutional networks as the node embedding,
i.e. Z = H(L).

In the following sections, we will show how to optimize the
node embedding matrix Z 2 RN⇥d to preserve the pairwise
and the high-order proximities in the HINs.

3.2 Pairwise Proximity Preserving
The pairwise proximity [Tang et al., 2015], i.e. the first-order
proximity has been proven to be effective in graph representa-
tion learning [Cui et al., 2019]. To better capture the structure
of graph, we preserve the pairwise proximity between nodes.
The objective to preserve the pairwise proximity with param-
eters ⇥ can be described as:

Lp = arg max
⇥

Y

vi2V

Y

vj2Nvi

p (vj |vi;⇥) , (3)

where Nvi
is the first-order neighbors of the node vi, which

Nv = {vj |(vi, vj) 2 E}. The conditional probability

p (vj |vi;⇥) is defined as a softmax function:

p (vj |vi;⇥) =
exp

�
zvj

· zviP
vk2V exp {zvk

· zvi
} , (4)

where zvi
and zvj

denotes the embedding of node vi and vj

generated by the NSHE model with parameters ⇥, respec-
tively. To calculate p (vj |vi;⇥) efficiently, we leverage the
negative sampling method [Mikolov et al., 2013b] and opti-
mize Equation3 with the logarithm of p (vj |vi;⇥), therefore:

Lp =
X

(vi,vj)2E

log �
�
zvj

· zvi

�

+

MeX

m=1

X

(vi,v0
j)/2E

Evj0⇠Pn(v) log �
⇣
�zvj0 · zvi

⌘
,

(5)

where �(x) = 1/(1 + exp(�x)), Pn (v) is the noisy distri-
bution, Me is the negative edge sampling rate.

3.3 Network Schema Preserving
Network schema is the blue print of HIN [Sun et al., 2011].
Given an HIN G = (V, E), a network schema TG = (A, R)
preserves all the node types A and relation types R inside
G. As preserving meta-path based proximities requires do-
main knowledge and supervision information, we propose to
preserve the network schema instead for two obvious advan-
tages: (1) Preserving the network schema naturally preserves
all the relations and node types together. (2) There exists only
one schema for each network, no prior knowledge or super-
vision is required.

However, simply applying the widely adopted framework
in HIN, i.e. random walk based Skip-Gram, cannot capture
the schema structure. Above all, there is no guarantee that
all types of node and relationships appears in the window of
context in the Skip-Gram model. Therefore, there may well
be some absence of types and cannot form a schema struc-
ture inside the window. What’s worse, due to the ubiquitous
imbalance of node types and edge types in HIN, the node
sequence generated will be biased towards types that appears
more, which will harm the representation ability of other node
types. To illustrate, for a publication HIN, each paper node
is connected to one conference, several authors and dozens of
terms.

To preserve the schema structure fully and uniformly, in-
stead of performing random walk on HINs, we propose to
sample a network schema instance defined as follows: A net-
work schema instance S is the smallest sub-graph of an HIN,
which contains all the node types and edge types defined by
the network schema TG, if existing. By this definition, each
network schema instance is composed of all the node types
A and relation types R defined by the schema uniformly, i.e.
one node for each type. To illustrate, Figure 1 (d) shows two
instances sampled from the given HIN.

The sampling of the network schema instances is quite
easy: Starting from a set S with one node, we keep adding
nodes that satatisfies: (1)its type is different from S (2) it

ABCABC

V1 V2

P1 P3P2

A1 A2 A3 T2T1

Fig. 3.8 Overview of the NSHE model.

an HG, still needs to be preserved. It demonstrates that two nodes with a link, re-
gardless of their types, should be similar. Specifically, considering the heterogeneity
of different node feature, for each node vi with feature fi and type φ(vi), we use a
type-specific mapping matrix Wφ(vi) to map the heterogeneous feature to a common
space:

f′i = σ(Wφ(vi) · fi +bφ(vi)), (3.28)

where σ(·) denotes an activation function, and bφ(vi) stands for the bias vector of
type φ(vi). Based on Equation (3.28), all the nodes with different types are mapped
to the common space, and we denote their mapped features as H = [f′i]. Then, we
use a L-layer graph convolutional network to generate the node embeddings [20] as:

H(l+1) = σ

(
D−

1
2 (A+ I|V |)D−

1
2 H(l)W(l)

)
, (3.29)

where A is the adjacency matrix, and Ai, j = 1 if (vi,v j) ∈ E, otherwise Ai, j = 0.
D is a diagonal matrix, where Dii = ∑ j Ai j. I|V | is the identity matrix of R|V |×|V |.
For the first layer, we denote H(0) = H and use the output of the L-layer graph
convolutional networks as the node embedding, i.e., Z = H(L), where the i-th row of
Z is the embedding zvi of node vi.

The objective of preserving the pairwise proximity with parameters Θ can be
described as:

Op = argmax
Θ

∏
vi∈V

∏
v j∈Nvi

p(v j|vi;Θ) , (3.30)



29

where Nvi = {v j|(vi,v j) ∈ E}. The conditional probability p(v j|vi;Θ) is defined as
a softmax function:

p(v j|vi;Θ) =
exp(zv j · zvi)

∑vk∈V exp(zvk · zvi)
. (3.31)

To calculate p(v j|vi;Θ) efficiently, we leverage the negative sampling method [26]
and optimize Θ with the logarithm of Equation (3.30), therefore the pairwise loss
Lp can be calculate by:

Lp =
1
|E| ∑

(vi,v j)∈E

[
− logδ (zv j · zvi)

−
Me

∑
m=1

Ev j′∼Pn(v) logδ (−zv j′ · zvi)
]
.

(3.32)

where δ (x) = 1/(1+ exp(−x)), Pn (v) is the noisy distribution, and Me is the neg-
ative edge sampling rate. Through minimizing Lp, NSHE preserves the pairwise
proximity.

3.5.2.3 Preserving Network Schema Proximity

Network Schema Instance Sampling Network schema is the blueprint of an HG
[38]. Given an HG G = (V,E), a network schema TG = (A,R) preserves all the
node typesA and relation typesR inside G. Network schema proximity implies that
all the nodes with different types in a network schema structure should be similar.
However, as we mentioned before, the nodes in a network schema structure are
usually biased, i.e., the number of nodes of a certain type is larger than those of other
types. For example, in Fig. 3.7a, a paper has multiple authors, but only one venue.
To alleviate such bias, we propose to sample a network schema instance defined as
follows: A network schema instance S is the smallest sub-graph of an HG, which
contains all the node types and edge types defined by the network schema TG, if
existing. By this definition, each network schema instance is composed of all the
node types A and relation types R defined by the schema, i.e., one node for each
type. To illustrate, Fig. 3.7d shows two instances sampled from the given HG. The
sampling process is as follows: Starting from a set S with one node, we keep adding
a new node to S until |S|= |A|, where the new node satisfies: (1) its type is different
from the node types in S; (2) it connects with the node(s) in S.

Schema Preserving with Multi-task Learning Now, we aim to preserve the net-
work schema proximity by predicting whether a network schema instance exists in
an HG. To this end, assume we have a network schema instance S = {A1,P1,V1,T1}
as shown in Fig. 3.8, we can predict whether A1 exists given the set {P1,V1,T1}, or
whether P1 exists given the set {A1,V1,T1}, and so on. These two predictions are



30

different, because of the node heterogeneity. Considering this, we are motivated to
design a multi-task learning model to handle the heterogeneity within schema.

Without loss of generality, assume we have the schema instance S = {vi,v j,vk},
if we aim to predict whether vi exists given {v j,vk}, we call vi the target node and
{v j,vk} the context nodes. Therefore, each node will have two roles: one is as the
target node and the other is as the context node, as well as two embeddings: target
embedding and context embedding. To fully consider the heterogeneity, each node
type φ(vi) is associated with an encoder CEφ(vi) to learn the context embeddings for
the context nodes:

cv j = CEφ(v j)(zv j),cvk = CEφ(vk)(zvk), (3.33)

where each CE stands for a fully connected layer of neural network. Then for the tar-
get node vi, we concatenate its target embedding zvi with the context embeddings to
obtain the schema instance embedding with target node vi denoted as zvi

S as follows:

zvi
S = zvi‖cv j‖cvk . (3.34)

After obtaining the embedding zvi
S , we predict the probability of S with target node

vi, denoted as yvi
S , whether exists in the network:

yvi
S = MLPφ(vi)

(
zvi

S

)
, (3.35)

where MLPφ(vi) is the classifier for schema instances with target node type as φ(vi).
Similarly, when we treat v j and vk as the target nodes, respectively, y

v j
S and yvk

S can
also be obtained following the steps introduced above. Note that, here we take the
schema instance with three nodes as an example to explain our method. However, it
is easy to extend the model to schema instance with more nodes, since the process
is the same.

The schema proximity loss Ls can be obtained by predicting the multi-tasks of
the schema instances S sampled from HG. Additionally, to avoid trivial solutions,
we also draw Ms negative examples of target type for each schema instance via
replacing the target node with another node in the same type. The loss of preserving
network schema can be described as:

Ls =−
1

|A||S| ∑
S∈S

∑
vi∈S

(
Rvi

S logyvi
S +

(
1−Rvi

S

)
log
(
1− yvi

S

))
, (3.36)

where Rvi
S = 1 if Svi is a positive network schema instance, otherwise Rvi

S = 0. By
minimizing Ls, the schema structure is preserved.



31

3.5.2.4 Optimization Objective

To preserve both the pairwise proximity and the network schema proximity of HGs,
NSHE optimizes the overall loss L by aggregating the loss of preserving pairwise
proximity Lp and preserving schema proximity Ls :

L= Lp +βLs, (3.37)

where β is a balancing coefficient. At last, we adopt the Adam [19] algorithm to
minimize the objective in Equation (3.37).

3.5.3 Experiments

3.5.3.1 Experimental Settings

Datasets In order to demonstrate the effectiveness of the proposed model, we
conduct extensive experiments on three HGs datasets, including textbfDBLP [23],
IMDB [49] and ACM [49].

Baselines We compare NSHE with seven state-of-the-art embedding methods in-
cluding two homogeneous network embedding methods, i.e., DeepWalk [28] and
LINE [43] and five heterogeneous networks embedding methods, i.e., Metap-
ath2Vec [7], HIN2Vec [9], HERec [35], DHNE [45] and HeGAN [17].

Parameter Settings Here, we briefly introduce the experimental settings. For our
proposed model, the feature dimension in common space and the embedding di-
mension d is set as 128. The negative schema instance sample rate Ms in Section
3.5.2.3 is set as 4. We perform neighborhood aggregation via an one-layer-GCN,
i.e., L = 1, and use two-layer-MLPs for schema instance classification. For mod-
els that use meta-paths in modeling, we choose the popular meta-paths adopted in
previous methods and report the best result. For models that require node feature,
we apply DeepWalk [28] to generate node feature. The code and dataset is pub-
licly available on Github4. The more detailed method description and experiment
validation can be seen in [62].

3.5.3.2 Node Classification

In this section, we evaluate the performance of node embedding with node classifi-
cation tasks. After learning the node embeddings, we train a logistic classifier with

4 https://github.com/Andy-Border/NSHE



32

DBLP-P DBLP-A IMDB ACM
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 90.12 89.45 89.44 88.48 56.52 55.24 82.17 81.82
LINE-1st 81.43 80.74 82.32 80.20 43.75 39.87 82.46 82.35
LINE-2nd 84.76 83.45 88.76 87.35 40.54 33.06 82.21 81.32
DHNE 85.71 84.67 73.30 67.61 38.99 30.53 65.27 62.31
Metapath2Vec 92.86 92.44 89.36 87.95 51.90 50.21 83.61 82.77
HIN2Vec 83.81 83.85 90.30 89.46 48.02 46.24 54.30 48.59
HERec 90.47 87.50 86.21 84.55 54.48 53.46 81.89 81.74
HeGAN 88.79 83.81 90.48 89.27 58.56 57.12 83.09 82.94
NSHE 95.24 94.76 93.10 92.37 59.21 58.35 84.12 83.27

Table 3.8 Performance evaluation of multi-class classification.

DBLP-P DBLP-A IMDB ACM
DeepWalk 46.75 66.25 0.41 48.81
LINE-1st 42.18 29.98 0.03 37.75
LINE-2nd 46.83 61.11 0.03 41.80
DHNE 35.33 21.00 0.05 20.25
Metapath2Vec 56.89 68.74 0.09 42.71
HIN2Vec 30.47 65.79 0.04 42.28
HERec 39.46 24.09 0.51 40.70
HeGAN 60.78 68.95 6.56 43.35
NSHE 65.54 69.52 7.58 44.32

Table 3.9 Performance evaluation of node clustering.

80% of the labeled nodes and use the remaining data for testing. We use Micro-
F1 and Macro-F1 scores as the metrics for evaluation. The results are shown in
Table 3.8, from which we have the following observations: (1) Generally speak-
ing, HG embedding methods perform better than homogeneous network embedding
methods, which proves the benefits of considering heterogeneity. (2) Though NSHE
does not utilize any prior knowledge, it consistently outperforms the baselines. It
demonstrates the effectiveness of our proposed method in classification tasks.

3.5.3.3 Node Clustering

We further conduct clustering tasks to evaluate the embeddings learned by NSHE.
Here we utilize the K-Means model to perform node clustering and set the number of
clusters for K-Means as the number of classes. The performance in terms of NMI is
shown in Table 3.9. Similarly, the proposed method NSHE significantly outperforms
others in most cases, which further demonstrates the effectiveness of NSHE.

The more detailed method description and experiment validation can be seen in
[62].



33

3.6 Conclusions

The structures of heterogeneous graphs are complex and contain rich semantic in-
formation. In this chapter, we introduce four heterogeneous graph embedding meth-
ods with structure preservation. Specifically, we first introduce a meta-path based
random walk method, which generates meaningful node sequences for network em-
bedding. Then, we introduce a meta-path based collaborative filtering framework,
which uses an attention mechanism to learn aspect-level network embedding. Be-
sides, we introduce a relation-structure aware method, which distinguishes the var-
ious relations into two categories for fine-grained modelling. Finally, we introduce
a meta-path independent method, which preserves network schema in network em-
bedding. The experiments not only verify the effectiveness of these methods, but
also demonstrate the important role of structural information in the embedding of
heterogeneous graphs.

Some interesting future works are to explore other possible methods of distin-
guishing relations, paths, or network schema to better capture the structural infor-
mation of heterogeneous graphs, and design more effective graph representation
learning methods without the need to manually design meta-paths.

References

1. BAHDANAU, D., CHO, K., AND BENGIO, Y. Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014).

2. BORDES, A., USUNIER, N., GARCIA-DURAN, A., WESTON, J., AND YAKHNENKO, O.
Translating embeddings for modeling multi-relational data. In Proceedings of NIPS (2013),
pp. 2787–2795.

3. CAO, S., LU, W., AND XU, Q. Grarep: Learning graph representations with global structural
information. In CIKM (2015), pp. 891–900.

4. CHANG, S., HAN, W., TANG, J., QI, G.-J., AGGARWAL, C. C., AND HUANG, T. S. Het-
erogeneous network embedding via deep architectures. In Proceedings of SIGKDD (2015),
ACM, pp. 119–128.

5. DANIELSSON, P.-E. Euclidean distance mapping. Computer Graphics and image processing
14, 3 (1980), 227–248.

6. DEVLIN, J., CHANG, M.-W., LEE, K., AND TOUTANOVA, K. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).

7. DONG, Y., CHAWLA, N. V., AND SWAMI, A. metapath2vec: Scalable representation learning
for heterogeneous networks. In KDD (2017), pp. 135–144.

8. FAUST, K. Centrality in affiliation networks. Social networks 19, 2 (1997), 157–191.
9. FU, T.-Y., LEE, W.-C., AND LEI, Z. Hin2vec: Explore meta-paths in heterogeneous infor-

mation networks for representation learning. In CIKM (2017), pp. 1797–1806.
10. GROVER, A., AND LESKOVEC, J. node2vec: Scalable feature learning for networks. In

Proceedings of SIGKDD (2016), ACM, pp. 855–864.
11. HAN, X., SHI, C., WANG, S., PHILIP, S. Y., AND SONG, L. Aspect-level deep collaborative

filtering via heterogeneous information networks. In IJCAI (2018), pp. 3393–3399.
12. HARPER, F. M., AND KONSTAN, J. A. The movielens datasets: History and context. ACM

Transactions on Interactive Intelligent Systems (TiiS) 5, 4 (2016), 19.
13. HE, R., AND MCAULEY, J. Ups and downs: Modeling the visual evolution of fashion trends

with one-class collaborative filtering. In WWW (2016), pp. 507–517.



34

14. HE, X., LIAO, L., ZHANG, H., NIE, L., HU, X., AND CHUA, T.-S. Neural collaborative
filtering. In WWW (2017), pp. 173–182.

15. HE, X., ZHANG, H., KAN, M.-Y., AND CHUA, T.-S. Fast matrix factorization for online
recommendation with implicit feedback. In SIGIR (2016), pp. 549–558.

16. HSIEH, C.-K., YANG, L., CUI, Y., LIN, T.-Y., BELONGIE, S., AND ESTRIN, D. Collabo-
rative metric learning. In Proceedings of WWW (2017), pp. 193–201.

17. HU, B., FANG, Y., AND SHI, C. Adversarial learning on heterogeneous information net-
works. In KDD (2019), pp. 120–129.

18. JI, M., HAN, J., AND DANILEVSKY, M. Ranking-based classification of heterogeneous in-
formation networks. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining (2011), pp. 1298–1306.

19. KINGMA, D. P., AND BA, J. Adam: A method for stochastic optimization. In ICLR (Poster)
(2015).

20. KIPF, T. N., AND WELLING, M. Semi-supervised classification with graph convolutional
networks. In ICLR (2017).

21. KOREN, Y., BELL, R., AND VOLINSKY, C. Matrix factorization techniques for recommender
systems. Computer 42, 8 (2009).

22. LINMEI, H., YANG, T., SHI, C., JI, H., AND LI, X. Heterogeneous graph attention networks
for semi-supervised short text classification. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP) (2019), pp. 4823–4832.

23. LU, Y., SHI, C., HU, L., AND LIU, Z. Relation structure-aware heterogeneous information
network embedding. In AAAI (2019), pp. 4456–4463.

24. MA, H., ZHOU, D., LIU, C., LYU, M. R., AND KING, I. Recommender systems with social
regularization. In Proceedings of the fourth ACM international conference on Web search and
data mining (2011), pp. 287–296.

25. MCAULEY, J., TARGETT, C., SHI, Q., AND VAN DEN HENGEL, A. Image-based recom-
mendations on styles and substitutes. In SIGIR (2015), pp. 43–52.

26. MIKOLOV, T., SUTSKEVER, I., CHEN, K., CORRADO, G. S., AND DEAN, J. Distributed
representations of words and phrases and their compositionality. In NIPS (2013), pp. 3111–
3119.

27. MNIH, A., AND SALAKHUTDINOV, R. R. Probabilistic matrix factorization. Advances in
neural information processing systems 20 (2007), 1257–1264.

28. PEROZZI, B., AL-RFOU, R., AND SKIENA, S. Deepwalk: Online learning of social repre-
sentations. In KDD (2014), pp. 701–710.

29. PHAM, T.-A. N., LI, X., CONG, G., AND ZHANG, Z. A general recommendation model
for heterogeneous networks. IEEE Transactions on Knowledge and Data Engineering 28, 12
(2016), 3140–3153.

30. RENDLE, S. Factorization machines with libfm. ACM Transactions on Intelligent Systems
and Technology (TIST) 3, 3 (2012), 1–22.

31. RENDLE, S., FREUDENTHALER, C., GANTNER, Z., AND SCHMIDT-THIEME, L. Bpr:
Bayesian personalized ranking from implicit feedback. In UAI (2009), pp. 452–461.

32. SARWAR, B., KARYPIS, G., KONSTAN, J., AND RIEDL, J. Item-based collaborative filtering
recommendation algorithms. In WWW (2001), pp. 285–295.

33. SHANG, J., QU, M., LIU, J., KAPLAN, L. M., HAN, J., AND PENG, J. Meta-path guided
embedding for similarity search in large-scale heterogeneous information networks. arXiv
preprint arXiv:1610.09769 (2016).

34. SHI, C., HAN, X., LI, S., WANG, X., WANG, S., DU, J., AND YU, P. Deep collaborative
filtering with multi-aspect information in heterogeneous networks. IEEE Transactions on
Knowledge and Data Engineering (2019).

35. SHI, C., HU, B., ZHAO, W. X., AND YU, P. S. Heterogeneous information network embed-
ding for recommendation. IEEE Trans. Knowl. Data Eng. 31, 2 (2019), 357–370.

36. SHI, C., KONG, X., HUANG, Y., PHILIP, S. Y., AND WU, B. Hetesim: A general framework
for relevance measure in heterogeneous networks. IEEE Transactions on Knowledge and Data
Engineering 26, 10 (2014), 2479–2492.



35

37. SHI, C., ZHANG, Z., LUO, P., YU, P. S., YUE, Y., AND WU, B. Semantic path based
personalized recommendation on weighted heterogeneous information networks. In CIKM
(2015), ACM, pp. 453–462.

38. SUN, Y., HAN, J., YAN, X., YU, P. S., AND WU, T. Pathsim: Meta path-based top-k sim-
ilarity search in heterogeneous information networks. Proceedings of the VLDB Endowment
4, 11 (2011), 992–1003.

39. SUN, Y., HAN, J., YAN, X., YU, P. S., AND WU, T. Pathsim: Meta path-based top-k sim-
ilarity search in heterogeneous information networks. Proceedings of the VLDB Endowment
4, 11 (2011), 992–1003.

40. SUN, Y., NORICK, B., HAN, J., YAN, X., PHILIP, S. Y., AND YU, X. Integrating meta-path
selection with user-guided object clustering in heterogeneous information networks. In KDD
(2012).

41. SUN, Y., YU, Y., AND HAN, J. Ranking-based clustering of heterogeneous information
networks with star network schema. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining (2009), pp. 797–806.

42. TANG, J., QU, M., AND MEI, Q. Pte: Predictive text embedding through large-scale hetero-
geneous text networks. In Proceedings of SIGKDD (2015), ACM, pp. 1165–1174.

43. TANG, J., QU, M., WANG, M., ZHANG, M., YAN, J., AND MEI, Q. Line: Large-scale
information network embedding. In WWW (2015), pp. 1067–1077.

44. TANG, J., ZHANG, J., YAO, L., LI, J., ZHANG, L., AND SU, Z. Arnetminer: extraction and
mining of academic social networks. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining (2008), ACM, pp. 990–998.

45. TU, K., CUI, P., WANG, X., WANG, F., AND ZHU, W. Structural deep embedding for hyper-
networks. In AAAI (2018), pp. 426–433.

46. VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES, L., GOMEZ, A. N.,
KAISER, Ł., AND POLOSUKHIN, I. Attention is all you need. In NIPS (2017), pp. 5998–
6008.

47. WANG, H., ZHANG, F., HOU, M., XIE, X., GUO, M., AND LIU, Q. Shine: signed heteroge-
neous information network embedding for sentiment link prediction. In WSDM (2018), ACM,
pp. 592–600.

48. WANG, X., CUI, P., WANG, J., PEI, J., ZHU, W., AND YANG, S. Community preserving
network embedding. In Thirty-first AAAI conference on artificial intelligence (2017).

49. WANG, X., JI, H., SHI, C., WANG, B., YE, Y., CUI, P., AND YU, P. S. Heterogeneous
graph attention network. In WWW (2019), pp. 2022–2032.

50. WANG, Y., CHEN, L., CHE, Y., AND LUO, Q. Accelerating pairwise simrank estimation over
static and dynamic graphs. The VLDB Journal—The International Journal on Very Large Data
Bases 28, 1 (2019), 99–122.

51. WASSERMAN, S., AND FAUST, K. Social network analysis: Methods and applications, vol. 8.
Cambridge university press, 1994.

52. WEI, Z., HE, X., XIAO, X., WANG, S., LIU, Y., DU, X., AND WEN, J.-R. Prsim: Sublin-
ear time simrank computation on large power-law graphs. arXiv preprint arXiv:1905.02354
(2019).

53. XU, K., BA, J., KIROS, R., CHO, K., COURVILLE, A., SALAKHUDINOV, R., ZEMEL, R.,
AND BENGIO, Y. Show, attend and tell: Neural image caption generation with visual attention.
In ICML (2015), pp. 2048–2057.

54. XU, L., WEI, X., CAO, J., AND YU, P. S. Embedding of embedding (eoe): Joint embedding
for coupled heterogeneous networks. In Proceedings of WSDM (2017), ACM, pp. 741–749.

55. XUE, H., DAI, X., ZHANG, J., HUANG, S., AND CHEN, J. Deep matrix factorization models
for recommender systems. In IJCAI (2017), pp. 3203–3209.

56. YANG, J., AND LESKOVEC, J. Community-affiliation graph model for overlapping network
community detection. In Proceedings of ICDM (2012), IEEE, pp. 1170–1175.

57. YOU, Q., JIN, H., WANG, Z., FANG, C., AND LUO, J. Image captioning with semantic
attention. In CVPR (2016), pp. 4651–4659.

58. YU, X., REN, X., GU, Q., SUN, Y., AND HAN, J. Collaborative filtering with entity simi-
larity regularization in heterogeneous information networks. IJCAI HINA 27 (2013).



36

59. ZHANG, J., TANG, J., MA, C., TONG, H., JING, Y., AND LI, J. Panther: Fast top-k similarity
search on large networks. In Proceedings of the 21th ACM SIGKDD international conference
on knowledge discovery and data mining (2015), pp. 1445–1454.

60. ZHANG, J., XIA, C., ZHANG, C., CUI, L., FU, Y., AND PHILIP, S. Y. Bl-mne: Emerging
heterogeneous social network embedding through broad learning with aligned autoencoder.
In Proceedings of ICDM (2017), IEEE, pp. 605–614.

61. ZHAO, H., YAO, Q., LI, J., SONG, Y., AND LEE, D. Meta-graph based recommendation
fusion over heterogeneous information networks. In KDD (2017), pp. 635–644.

62. ZHAO, J., WANG, X., SHI, C., LIU, Z., AND YE, Y. Network schema preserving hetero-
geneous information network embedding. In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI 2020 (2020), IJCAI, ijcai.org, pp. 1366–
1372.

63. ZHENG, J., LIU, J., SHI, C., ZHUANG, F., LI, J., AND WU, B. Recommendation in hetero-
geneous information network via dual similarity regularization. International Journal of Data
Science and Analytics 3, 1 (2017), 35–48.


	3 Structure-preserved Heterogeneous Graph Representation
	3.1 Introduction
	3.2 Meta-path based Random Walk
	3.2.1 Overview
	3.2.2 The HERec Model
	3.2.3 Experiments

	3.3 Meta-path based Decomposition
	3.3.1 Overview
	3.3.2  The NeuACF Model
	3.3.3 Experiments

	3.4 Relation Structure Awareness
	3.4.1 Overview
	3.4.2 Preliminary
	3.4.3 The RHINE Model
	3.4.4 Experiments

	3.5 Network Schema Preservation
	3.5.1 Overview
	3.5.2 The NSHE Model
	3.5.3 Experiments

	3.6 Conclusions
	References


