
Chapter 4
Attribute-assisted Heterogeneous Graph
Representation

Abstract The previous heterogeneous graph representation methods mainly focus
on preserving the complex interactions and rich semantics into node representation.
As a matter of fact, diverse types of nodes in heterogeneous graph are assisted with
different attributes, providing valuable side information for depicting the character-
istics of nodes. Integrating attribution information is also desired for heterogeneous
graph representation in a real world application. Fortunately, heterogeneous graph
neural networks naturally provide an alternative way to achieve this, meanwhile,
have powerful representation ability. In this chapter, we introduce three attribute-
assisted heterogeneous graph representation models including heterogeneous graph
attention network (HAN), heterogeneous graph propagation network (HPN), and
heterogeneous graph structure learning (HGSL), which simultaneously utilize both
complex structural information and rich attribute information to learn node repre-
sentation.

4.1 Introduction

Besides complex structures and rich semantics, real-world heterogeneous graphs
(HGs) are usually associated with diverse types of attributes, called attribute-assisted
HGs, providing valuable side information for depicting the characteristics of nodes.
For example, in the ACM graph, the user’s attribute mainly consists of name, age,
and gender, while the paper’s attribute usually involves a set of keywords. Ignoring
such attributes may lead to sub-optimal heterogeneous graph representation. How
to integrate attribution information into node representation is a realistic demand of
real-world HG representation.

Heterogeneous graph neural network (HGNN), as a powerful deep learning based
technology, naturally provides an elegant way to achieve this. Specifically, HGNN
takes node attributes to initial node representation, and then aggregates diverse
types of neighbors to update node representation, which simultaneously utilizes
both complex structural information and rich attribute information to learn node

1

2

representations. In this chapter, we introduce three attribute-assisted heterogeneous
graph representation models including Heterogeneous graph Attention Network
(named HAN), Heterogeneous graph Propagation Network (named HPN), and
Heterogeneous Graph Structure Learning (named HGSL). HAN is a classical
HGNN which leverages both node- and semantic-level attention to learn node rep-
resentation in a hierarchical manner. To alleviate the deep degradation phenomenon
(a.k.a, semantic confusion), HPN improves the aggregating process of HGNN via
emphasizing the characteristic of each node. After that, to further discover and
learn graph structures, HGSL jointly learns the heterogeneous graph and the GNN
parameters for downstream tasks.

4.2 Heterogeneous Graph Attention Network

4.2.1 Overview

A recent research trend in deep learning is the attention mechanism, which deals
with variable sized data and encourages the model to focus on the most salient parts
of data. It has demonstrated the effectiveness in deep neural network framework
and is widely applied to various applications, such as text analysis (1), knowledge
graph (28), and image processing (37). Graph Attention Network (GAT) (33), a
novel convolution-style graph neural network, leverages attention mechanism for the
homogeneous graph which includes only one type of nodes or links.

Despite the success of attention mechanism in deep learning, it has not been
considered in the graph neural network framework for heterogeneous graph. As a
matter of fact, the real-world graph usually comes with multi-types of nodes and
edges, which we uniformly call heterogeneous graph. Because the heterogeneous
graph contains more comprehensive information and rich semantics, it has been
widely used in many data mining tasks. Meta-path (31) is a widely used structure to
capture the semantics. As can be seen in Fig. 4.1, depending on the meta-paths, the
relation between nodes in the heterogeneous graph can have different semantics. Due
to the complexity of heterogeneous graph, traditional graph neural network cannot
be directly applied to heterogeneous graph.

Based on the above analysis, when designing graph neural network architecture
with attention mechanism for heterogeneous graph, we need to address the following
new requirements. (1) Heterogeneity of graph. The heterogeneity is an intrinsic prop-
erty of heterogeneous graph, i.e., various types of nodes and edges. How to handle
such complex structural information and preserve the diverse feature information
simultaneously is an urgent problem that needs to be solved. (2) Semantic-level
attention. Different meaningful and complex semantic information are involved in
heterogeneous graph, which is usually reflected by meta-paths (31). Different meta-
paths in heterogeneous graph may extract diverse semantic information. How to
select the most meaningful meta-paths and fuse the semantic information for the

3

Actor

Movie

Director

a1

a3

a2

m1

m3

m2

d2

d1

(b) Heterogeneous Graph(a) Node Type

(c) Meta-path

Movie-Actor-Moive

Movie-Director-Moive

(d) Meta-path based Neighbors

m1

m2

m1

m3

Fig. 4.1 An illustrative example of a heterogenous graph (IMDB). (a) Three types of nodes
(i.e., actor, movie, director). (b) A heterogenous graph IMDB consists three types of nodes and
two types of connections. (c) Two meta-paths involved in IMDB (i.e., Moive-Actor-Moive and
Movie-Director-Movie). (d) Moive <1 and its meta-path based neighbors (i.e., <1, <2 and <3).

specific task is an open problem (23; 2; 29). (3) Node-level attention. In a heteroge-
neous graph, nodes can be connected via various types of relation, e.g., meta-path.
Given a meta-path, each node has lots of meta-path based neighbors. How to distin-
guish the subtle difference of their neighbors and select some informative neighbors
is required. For each node, node-level attention aims to learn the importance of
meta-path based neighbors and assigns different attention values to them. Therefore,
how to design a model which can discover the subtle differences of neighbors and
learn their weights properly will be desired.

In this section, we introduce a novel Heterogeneous graph Attention Network,
named HAN, which considers both node-level and semantic-level attentions. In
particular, given the node features as input, we use the type-specific transformation
matrix to project different types of node features into the same space. Then the
node-level attention is able to learn the attention values between the nodes and
their meta-path based neighbors, while the semantic-level attention aims to learn
the attention values of different meta-paths for the specific task in the heterogeneous
graph. Based on the learned attention values in terms of the two levels, our model can
get the optimal combination of neighbors and multiple meta-paths in a hierarchical
manner, which enables the learned node representations to better capture the complex
structure and rich semantic information in a heterogeneous graph. After that, the
overall model can be optimized via backpropagation in an end-to-end manner.

4

4.2.2 The HAN Method

In this section, we provide more details about HAN. Specifically, this model follows
a hierarchical attention structure: node-level attention → semantic-level attention.
Fig. 4.2 presents the whole framework of HAN. First, we propose a node-level
attention to learn the weight of meta-path based neighbors and aggregate them to get
the semantic-specific node representation. After that, HAN can tell the difference of
meta-paths via semantic-level attention and get the optimal weighted combination
of the semantic-specific node representation for the specific task.

Meta-path

Meta-path

Semantic

Attention

Node

Attention

MLP

(a) Node-Level Attention (b) Semantic-Level Attention (c) Prediction

Node

Attention

..
.

P
r
o
j

P
r
o
j

P
r
o
j

P
r
o
j

..
.

...

Fig. 4.2 The overall framework of the proposed HAN. (a) All types of nodes are projected into a
unified feature space and the weight of meta-path based node pair can be learned via node-level
attention. (b) Joint learning the weight of each meta-path and fuse the semantic-specific node
representation via semantic-level attention. (c) Calculate the loss and end-to-end optimization for
the proposed HAN.

4.2.2.1 Node-level Attention

Before aggregating the information from meta-path neighbors for each node, we
should notice that the meta-path based neighbors of each node play a different role
and show different importance in learning node representation for the specific task.
Here we introduce node-level attention can learn the importance of meta-path based
neighbors for each node in a heterogeneous graph and aggregate the representation
of these meaningful neighbors to form a node representation.

Due to the heterogeneity of nodes, different types of nodes have different feature
spaces. Therefore, for each type of nodes (e.g., node with type q8), we design the

5

type-specific transformation matrix "q8 to project the features of different types
of nodes into the same feature space. Unlike (9), the type-specific transformation
matrix is based on node-type rather than edge-type. The projection process can be
shown as follows:

ℎ′8 = "q8 · ℎ8 , (4.1)

where ℎ8 and ℎ′8 are the original and projected feature of node 8, respectively. By
type-specific projection operation, the node-level attention can handle arbitrary types
of nodes.

After that, we leverage self-attention (32) to learn the weight among various
kinds of nodes. Given a node pair (8, 9) which are connected via meta-path Φ, the
node-level attention 4Φ

8 9
can learn the importance 4Φ

8 9
which means how important

node 9 will be for node 8. The importance of meta-path based node pair (8, 9) can be
formulated as follows:

4Φ8 9 = 0CC=>34 (ℎ′8 , ℎ′9 ;Φ). (4.2)

Here 0CC=>34 denotes the deep neural network which performs the node-level at-
tention. Given meta-path Φ, 0CC=>34 is shared for all meta-path based node pairs.
It is because there are some similar connection patterns under one meta-path. The
above Eq. (4.2) shows that given meta-path Φ, the weight of meta-path based node
pair (8, 9) depends on their features. Please note that, 4Φ

8 9
is asymmetric, i.e., the

importance of node 8 to node 9 and the importance of node 9 to node 8 can be
quite difference. It shows node-level attention can preserve the asymmetry which is
a critical property of heterogenous graph.

Then we inject the structural information into the model via masked attention
which means we only calculate the 4Φ

8 9
for nodes 9 ∈ NΦ

8
, where NΦ

8
denotes the

meta-path based neighbors of node 8 (include itself). After obtaining the importance
between meta-path based node pairs, we normalize them to get the weight coefficient
UΦ
8 9
via softmax function:

UΦ8 9 = B> 5 C<0G 9 (4Φ8 9) =
exp

(
f(0T

Φ
· [ℎ′

8
‖ℎ′

9
])

)∑
:∈NΦ

8
exp

(
f(0T

Φ
· [ℎ′

8
‖ℎ′
:
])

) , (4.3)

where f denotes the activation function, ‖ denotes the concatenate operation and
0Φ is the node-level attention vector for meta-path Φ. As we can see from Eq. (4.3),
the weight coefficient of (8, 9) depends on their features. Also please note that the
weight coefficient UΦ

8 9
is asymmetric which means they make different contribution

to each other. Not only because the concatenate order in the numerator, but also
because they have different neighbors so the normalize term (denominator) will be
quite difference.

Then, the meta-path based representation of node 8 can be aggregated by the
neighbor’s projected features with the corresponding coefficients as follows:

IΦ8 = f

(∑
9∈NΦ

8

UΦ8 9 · ℎ′9
)
, (4.4)

6

where IΦ
8

is the learned representation of node 8 for the meta-path Φ. To better
understand the aggregating process of node-level, we also give a brief explanation
in Fig. 4.3 (a). Every node representation is aggregated by its neighors. Since the
attention weight UΦ

8 9
is generated for single meta-path, it is semantic-specific and

able to caputre one kind of semantic information.
Since heterogeneous graph present the scale-free property, the variance of graph

data is quite high. To tackle the above challenge, we extend node-level attention to
multihead attention so that the training process is more stable. Specifically, we repeat
the node-level attention for times and concatenate the learned representations as
the semantic-specific representation:

IΦ8 =

‖
:=1
f

(∑
9∈NΦ

8

UΦ8 9 · ℎ′9
)
. (4.5)

Given the meta-path set {Φ0,Φ1, . . . ,Φ%}, after feeding node features into node-
level attention, we can obtain % groups of semantic-specific node representations,
denoted as

{
/Φ0 , /Φ1 , . . . , /Φ%

}
.

(a) Node-level Aggregating

(b) Semantic-level Aggregating

Fig. 4.3 Explanation of aggregating process in both node-level and semantic-level.

4.2.2.2 Semantic-level Attention

Generally, every node in a heterogeneous graph contains multiple types of semantic
information and semantic-specific node representation can only reflect node from
one aspect. To learn a more comprehensive node representation, we need to fuse
multiple semantics which can be revealed by meta-paths. To address the challenge

7

of meta-path selection and semantic fusion in a heterogeneous graph, we propose
a novel semantic-level attention to automatically learn the importance of different
meta-paths and fuse them for the specific task. Taking % groups of semantic-specific
node representations learned from node-level attention as input, the learned weights
of each meta-path (VΦ0 , VΦ1 , . . . , VΦ%) can be shown as follows:

(VΦ0 , VΦ1 , . . . , VΦ%) = 0CCB4< (/Φ0 , /Φ1 , . . . , /Φ%). (4.6)

Here 0CCB4< denotes the deep neural network which performs the semantic-level
attention. It shows that the semantic-level attention can capture various types of
semantic information behind a heterogeneous graph.

To learn the importance of each meta-path, we first transform semantic-specific
representation through a nonlinear transformation (e.g., one-layer MLP). Then we
measure the importance of the semantic-specific representation as the similarity of
transformed representation with a semantic-level attention vector @. Furthermore, we
average the importance of all the semantic-specific node representation which can be
explained as the importance of each meta-path. The importance of each meta-path,
denoted as FΦ8 , is shown as follows:

FΦ8 =
1
|V |

∑
8∈V

@T · tanh(, · IΦ8 + 1), (4.7)

where, is the weight matrix, 1 is the bias vector, @ is the semantic-level attention
vector. Note that for the meaningful comparation, all above parameters are shared for
all meta-paths and semantic-specific representation. After obtaining the importance
of each meta-path, we normalize them via softmax function. The weight of meta-
pathΦ8 , denoted as VΦ8 , can be obtained by normalizing the above importance of all
meta-paths using softmax function,

VΦ8 =
exp(FΦ8)∑%
8=1 exp(FΦ8)

, (4.8)

which can be interpreted as the contribution of the meta-path Φ8 for specific task.
Obviously, the higher VΦ8 , the more important meta-path Φ8 is. Note that for dif-
ferent tasks, meta-path Φ8 may has different weights. With the learned weights as
coefficients, we can fuse these semantic-specific representations to obtain the final
representation / as follows:

/ =

%∑
8=1

VΦ8 · /Φ8 . (4.9)

To better understand the aggregating process of semantic-level, we also give a brief
explanation in Fig. 4.3 (b). The final representation is aggregated by all semantic-
specific representation. Then we can apply the final representation to specific tasks
and design different loss fuction. For semi-supervised node classification, we can
minimize the Cross-Entropy over all labeled node between the ground-truth and the

8

prediction:
! = −

∑
;∈Y!

. ; ln(� · / ;), (4.10)

where � is the parameter of the classifier, Y! is the set of node indices that have
labels, . ; and / ; are the labels and representations of labeled nodes. With the guide
of labeled data, we can optimize the proposed model via back propagation and learn
the representations of nodes.

Table 4.1 Qantitative results (%) on the node classification task.
Datasets Metrics Training DeepWalk ESim mp2vec HERec GCN GAT HAN=3 HANB4< HAN

ACM

Macro-F1

20% 77.25 77.32 65.09 66.17 86.81 86.23 88.15 89.04 89.40
40% 80.47 80.12 69.93 70.89 87.68 87.04 88.41 89.41 89.79
60% 82.55 82.44 71.47 72.38 88.10 87.56 87.91 90.00 89.51
80% 84.17 83.00 73.81 73.92 88.29 87.33 88.48 90.17 90.63

Micro-F1

20% 76.92 76.89 65.00 66.03 86.77 86.01 87.99 88.85 89.22
40% 79.99 79.70 69.75 70.73 87.64 86.79 88.31 89.27 89.64
60% 82.11 82.02 71.29 72.24 88.12 87.40 87.68 89.85 89.33
80% 83.88 82.89 73.69 73.84 88.35 87.11 88.26 89.95 90.54

DBLP

Macro-F1

20% 77.43 91.64 90.16 91.68 90.79 90.97 91.17 92.03 92.24
40% 81.02 92.04 90.82 92.16 91.48 91.20 91.46 92.08 92.40
60% 83.67 92.44 91.32 92.80 91.89 90.80 91.78 92.38 92.80
80% 84.81 92.53 91.89 92.34 92.38 91.73 91.80 92.53 93.08

Micro-F1

20% 79.37 92.73 91.53 92.69 91.71 91.96 92.05 92.99 93.11
40% 82.73 93.07 92.03 93.18 92.31 92.16 92.38 93.00 93.30
60% 85.27 93.39 92.48 93.70 92.62 91.84 92.69 93.31 93.70
80% 86.26 93.44 92.80 93.27 93.09 92.55 92.69 93.29 93.99

IMDB

Macro-F1

20% 40.72 32.10 41.16 41.65 45.73 49.44 49.78 50.87 50.00
40% 45.19 31.94 44.22 43.86 48.01 50.64 52.11 50.85 52.71
60% 48.13 31.68 45.11 46.27 49.15 51.90 51.73 52.09 54.24
80% 50.35 32.06 45.15 47.64 51.81 52.99 52.66 51.60 54.38

Micro-F1

20% 46.38 35.28 45.65 45.81 49.78 55.28 54.17 55.01 55.73
40% 49.99 35.47 48.24 47.59 51.71 55.91 56.39 55.15 57.97
60% 52.21 35.64 49.09 49.88 52.29 56.44 56.09 56.66 58.32
80% 54.33 35.59 48.81 50.99 54.61 56.97 56.38 56.49 58.51

4.2.3 Experiments

4.2.3.1 Experimental Settings

Datasets The experiments are conducted on three heterogeneous graphs including
DBLP1, ACM2, and IMDB3.

1 https://dblp.uni-trier.de
2 http://dl.acm.org/
3 https://www.kaggle.com/carolzhangdc/imdb-5000-moviedataset

9

Baselines We compare with some state-of-art baselines, include the (heteroge-
neous) graph representation methods (i.e., DeepWalk (26), ESim (29), metapath2vec
(4), and HERec (30)) and graph neural network based methods (i.e., GCN (20) and
GAT (33)), to verfify the effectiveness of the proposed HAN. To verify the effective-
ness of our node-level attention and semantic-level attention, respectively, we also
test two variants of HAN (i.e., HAN=3 and HANB4<).

Implementation Details For the proposed HAN, we randomly initialize param-
eters and optimize the model with Adam (19). For the proposed HAN, we set the
learning rate to 0.005, the regularization parameter to 0.001, the dimension of the
semantic-level attention vector @ to 128, the number of attention head to 8, the
dropout of attention to 0.6. And we use early stopping with a patience of 100, i.e. we
stop training if the validation loss does not decrease for 100 consecutive epochs. To
make our experiments repeatable, we make our dataset and codes publicly available
at website4.

4.2.3.2 Classification

Here we employ KNN classifier with : = 5 to perform node classification. Since the
variance of graph-structured data can be quite high, we repeat the process for 10
times and report the averaged Macro-F1 and Micro-F1 in Table 4.1.

Based on Table 4.1, we can see that HAN achieves the best performance. For
traditional heterogeneous graph representation method, ESim which can leverage
multiple meta-paths performs better than metapath2vec. Generally, graph neural
network based methods which combine the structure and feature information, e.g.,
GCN and GAT, usually perform better. To go deep into these methods, compared
to simply average over node neighbors, e.g., GCN and HAN=3 , GAT and HAN
can weigh the information properly and improve the performance of the learned
representation. Compared to GAT, the proposed HAN, which designs for hetero-
geneous graph, captures the rich semantics successfully and shows its superiority.
Also, without node-level attention (HAN=3) or semantic-level attention (HANB4<),
the performance becomes worse than HAN, which indicates the importance of mod-
eling the attention mechanism on both of the nodes and semantics. Note that in ACM
and IMDB, HAN improves classification results more significantly than in DBLP.
Mainly because APCPA is the much more important than the rest meta-paths.

Through the above analysis, we can find that the proposed HAN achieves the best
performance on all datasets. The results demonstrate that it is quite important to
capture the importance of nodes and meta-paths in heterogeneous graph analysis.

4 https://github.com/Jhy1993/HAN

10

P831

P133 P2384P699 P2328P831 P1973

(a) Meta-path based neighbors of P831

P831 P699 P133 P2384 P2328 P1973

0.14

0.15

0.16

0.17

0.18

0.19

(b) Attention values of P831’s neighbors

Fig. 4.4 Meta-path based neighbors of node P831 and corresponding attention values (Different
colors mean different classes, e.g., green means Data Mining, blue means Database, orange means
Wireless Communication).

APA APTPA

0

0.2

0.4

0.6

0.8

APCPA

DBLP

NMI Attention Value

(a) NMI values on DBLP

PAP PSP

0

0.2

0.4

0.6

0.8

ACM

NMI Attention Value

(b) NMI values on ACM

Fig. 4.5 Performance of single meta-path and corresponding attention value.

4.2.3.3 Analysis of Hierarchical Attention Mechanism

A salient property of HAN is the incorporation of the hierarchical mechanism, which
takes the importance of node neighbors andmeta-paths into consideration in learning
representative representation. Recall that we have learned the node-level attention
weight UΦ

8 9
and the semantic-level attention weight VΦ8 . To better understand the

importance of the neighbors and meta-paths, we provide a detailed analysis on the
hierarchical attention mechanism.

Analysis of node-level attention.As mentioned before, given a specific task, our
model can learn the attention values between nodes and its neighbors in a meta-path.
Some important neighbors which are useful for the specific task tend to have larger

11

attention values. Here we take the paper P831 5 in ACM dataset as an illustrative
example. Given a meta-path Paper-Author-Paper which describes the co-author of
different papers, we enumerate the meta-path based neighbors of paper P831 and
their attention values are shown in Fig. 4.4. From Fig. 4.4(a), we can see that P831
connects to P699 6 and P133 7, which all belong to Data Mining; conects to P2384
8 and P2328 9 while P2384 and P2328 both belong to Database; connects to P1973
10 while P1973 belongs to Wireless Communication. From Fig. 4.4(b), we can see
that paper P831 gets the highest attention value from node-level attention which
means the node itself plays the most important role in learning its representation. It
is reasonable because all information supported by neighbors are usually viewed as
a kind of supplementary information. Beyond itself, P699 and P133 get the second
and third largest attention values. This is because P699 and P133 also belong toData
Mining and they can make significant contribution to identify the class of P831. The
rest neighbors get minor attention values that because they do not belong to Data
Mining and cannot make important contribution to identify the P831’s class. Based
on the above analysis, we can see that the node-level attention can tell the difference
among neighbors and assigns higher weights to some meaningful neighbors.

Analysis of semantic-level attention. As mentioned before, the proposed HAN
can learn the importance of meta-paths for the specific task. To verify the ability
of semantic-level attention, taking DBLP and ACM as examples, we report the
clustering results (NMI) of single meta-path and corresponding attention values in
Fig. 4.5. Obviously, there is a positive correlation between the performance of a
single meta-path and its attention value. For DBLP, HAN gives APCPA the largest
weight, which means that HAN considers the APCPA as the most critical meta-
path in identifying the author’s research area. It makes sense because the author’s
research area and the conferences they submitted are highly correlated. For example,
some natural language processing researchers mainly submit their papers to ACL or
EMNLP, whereas some data mining researchers may submit their papers to KDD
or WWW. Meanwhile, it is difficult for APA to identify the author’s research area
well. If we treat these meta-paths equally, e.g., HANB4<, the performance will drop
significantly. Based on the attention values of each meta-path, we can find that the
meta-path APCPA is much more useful than APA and APTPA. So even the proposed
HAN can fuse them, APCPA still plays a leading role in identifying the author’s
research area while APA and APTPA do not. It also explains why the performance

5 Xintao Wu, Daniel Barbara, Yong Ye. Screening and Interpreting Multi-item Associations Based
on Log-linear Modeling, KDD’03
6 Xintao Wu, Jianpin Fan, Kalpathi Subramanian. B-EM: a classifier incorporating bootstrap with
EM approach for data mining, KDD’02
7 Daniel Barbara, Carlotta Domeniconi, James P. Rogers. Detecting outliers using transduction and
statistical testing, KDD’06
8 Walid G. Aref, Daniel Barbara, Padmavathi Vallabhaneni. The Handwritten Trie: Indexing Elec-
tronic Ink, SIGMOD’95
9 Daniel Barbara, Tomasz Imielinski. Sleepers and Workaholics: Caching Strategies in Mobile
Environments, VLDB’95
10 Hector Garcia-Holina, Daniel Barbara. The cost of data replication, SIGCOMM’81

12

of HAN in DBLP may not be as significant as in ACM and IMDB. We get the
similar conclusions on ACM. For ACM, the results show that HAN gives the most
considerable weight to PAP. Since the performance of PAP is slightly better than
PSP, soHANB4< can achieve good performance by simple average operation.We can
see that semantic-level attention can reveal the difference between these meta-paths
and weights them adequately.

The detailed method description and validation experiments can been seen in
(35).

4.3 Heterogeneous Graph Propagation Network

4.3.1 Overview

Recently, several HGNNs (35; 13; 38; 13) have been proposed to better analyze
heterogeneous graphs, which usually follow two step aggregating process in a hier-
archical manner: aggregate neighbors via single meta-path in node-level and then
aggregate rich semantics via multiple meta-paths in semantic-level. When applying
HGNNs in practice, we find an important phenomenon, called semantic confusion.
Similar to over-smoothing in homogeneous GNNs (18), semantic confusion means
HGNNs inject confused semantics extracted viamultiple meta-paths into node repre-
sentation, which makes the learned node representation indistinguishable and leads
to worse performance with more hidden layers. Fig. 4.6 shows the clustering per-
formance of HAN on ACM academic graph (35). It clearly displays that with the
growth of model depth, the performance of HGNNs is getting worse and worse.

Semantic confusion makes HGNNs hard to become a really deep model, which
severely limits their representation capabilities and hurts the performance of down-
stream tasks. Alleviating the semantic confusion phenomenon to build a more pow-
erful deeper HGNNs is an urgent problem.

In this section, we theoretically analyze the semantic confusion in HGNNs and
prove that HGNNs and multiple meta-paths based random walk (22) are essentially
equivalent. Then we propose a novel Heterogeneous Graph Propagation Network
(HPN) to alleviate semantic confusion from the perspective of multiple meta-paths
based randomwalk, which mainly consists of two parts: semantic propagation mech-
anism and semantic fusion mechanism. Besides aggregating information from meta-
path based neighbors, the semantic propagationmechanism also absorbs node’s local
semantics with a proper weight. So even with more hidden layers, semantic prop-
agation mechanism can capture the characteristics of each node rather than inject
confused semantics into node representation and thus alleviates semantic confusion.
The semantic fusion mechanism aims to learn the importance of meta-paths and
fuses them for comprehensive node representation.

13

HAN

N
M
I

0.5

0.6

0.7

1-layer 2-layer 3-layer 4-layer5-layer

(a) Cluster results of HAN with 1, 2, 3,
4, 5 layers.

(b) Paper representation via 1-layer
HAN

(c) Paper representation via 2-layer
HAN

(d) Paper representation via 3-layer
HAN

(e) Paper representation via 4-layer
HAN

Fig. 4.6 The clustering results and visualization of paper representations via HAN with different
layers. Each point denotes one paper and corresponding color indicates the label (i.e., research
areas). With the growth of model depth, semantic confusion happens which means the learned
node representations become indistinguishable. For example, the paper representations belonging
to different research areas which are learned via 1-layer HAN located in different positions, while
the paper representations learned via 4-layer HAN mixed together.

4.3.2 Semantic Confusion Analysis

We first give a brief review of HGNNs, and then prove that HGNNs and multiple
meta-paths based random walk are essentially equivalent. Lastly, we explain why
semantic confusion happens from the perspective of limit distribution of multiple
meta-paths based random walk.

14

4.3.2.1 Heterogeneous Graph Neural Network

As shown in Fig. 4.3, HGNNs (e.g., HAN) aggregate information from multiple
meta-paths and update node representation in both node-level and semantic-level.
Specially, as shown in Fig. 4.3(a), given a meta-path Φ1 and node 8, node-level
attention in HAN aggregates the meta-path Φ1 based neighbors {1,2,3,4} with
attentions {UΦ1

81 , U
Φ1
82 , U

Φ1
83 , U

Φ1
84 } to learn the semantic-specific node representation

I
Φ1
8

for node 8. Given one meta-path Φ, the node-level aggregating is defined as:

/Φ,0 = -,
/Φ,1 = f

(
UUUΦ,0 · /Φ,0

)
,

· · ·,
/Φ = /Φ,: = f

(
UUUΦ,:−1 · /Φ,:−1) , (4.1)

where - denotes node featurematrix, where the i-th row corresponds to the i-th node.
And f is an activate function, the element UΦ,:

8 9
of UUUΦ,: denotes the learned attention

weight between meta-path based node pair (8, 9) via node-level attention by the k-th
layer. Note that UUUΦ,: is a (row-normalized) probability matrix and /Φ,: denotes
the learned representation matrix by the k-th layer, where the i-th row corresponds
to the i-th node. As shown in Fig. 4.3(b), given a node 8 and a set of meta-paths
{Φ1,Φ2, · · · ,Φ%}, semantic-level aggregating in HAN fuses % semantic-specific
node representations

{
I
Φ1
8
, · · · , IΦ%

8

}
with attentions

{
VΦ1 , · · · , VΦ%

}
to get the final

representation I8 for node 8. The semantic-level aggregating is shown as follows:

/ =

%∑
?=1

VΦ? · /Φ? , (4.2)

where / denotes the final node representation.

4.3.2.2 Relationship between HGNNs andMultiple Meta-paths based Random
Walk

As a classical heterogeneous graph algorithm, multiple meta-paths based random
walk (22) mainly contains: single meta-path based random walk and multiple meta-
path combinations. Given a meta-path Φ, we have the meta-path based probability
matrix "Φ whose element "Φ

8 9
denotes the transition probability from node 8 to 9

via meta-pathΦ. Then, the k-step single meta-path based random walk is defined as:

cccΦ,: = "Φ · cccΦ,:−1, (4.3)

where cccΦ,: denotes the distribution of k-step single meta-path based random walk.
Considering a set ofmeta-paths {Φ1,Φ2, · · · ,Φ%} and theirweights

{
FΦ1 ,FΦ2 , · · · ,FΦ%

}
,

the k-step multiple meta-paths based random walk is defined as:

15

ccc: =

%∑
?=1

FΦ? · cccΦ? ,: , (4.4)

where ccc: denotes the distribution of k-step multiple meta-paths based random walk.
For k-step single meta-path based random walk:

Theorem 1. Assuming a heterogeneous graph is aperiodic and irreducible, if we
take the limit : →∞, then k-step meta-path based random walk will converge to a
meta-path specific limit distribution cccΦ,lim which is independent of nodes:

cccΦ,lim = "Φ · cccΦ,lim. (4.5)

Different nodes connected via some relationships will influence each other and
(18) demonstrates the influence distribution between two nodes is proportional to
random walk distribution, shown as the following theorem:

Theorem 2 ((18)). For the aggregation models (e.g., graph neural networks) on
homogeneous graph, if the graph is aperiodic and irreducible, then the influence
distribution �8 of node 8 is equivalent, in expectation, to the k-step random walk
distribution.

By Theorems 1 and 2, we conclude the influence distribution revealed by single
meta-path based random walk is independent of nodes. Comparing Eq. 4.1 with Eq.
4.3, we find they both propagate and aggregate information via meta-path Φ. The
difference is that UUUΦ,: is a parameter matrix learned via node-level attention, while
"Φ is a predefined matrix. Since "Φ and UUUΦ,: are both probability matrix, they
are actually meta-path related Markov Chain. So we find that node-level aggregation
in HGNNs is essentially equivalent to meta-path based random walk if activate
function is a linear function. So, if we stack infinite layers in node-level aggregating,
the learned node representations /Φ will only be influenced by the meta-path Φ
and therefore are independent of nodes. So the learned node representations cannot
capture the characteristics of each node and therefore are indistinguishable. For
k-step multiple meta-paths based random walk, we have:

Theorem 3. Assuming k-step single meta-path based random walk is independent of
each other, if we take the limit : →∞, then the limit distribution of k-step multiple
meta-paths based random walk is a weighted combination of single meta-path based
random walk limit distribution, shown as follows:

ccclim =

%∑
?=1

FΦ? · cccΦ? ,lim. (4.6)

By Theorems 2 and 3, we conclude the influence distribution revealed by multiple
meta-paths based random walk is independent of nodes. Comparing Eq. 4.2 with
Eq. 4.4, we can see that they both combine multiple meta-paths according to their
weights. The difference is that semantic-level aggregating in HAN leverages neural
network to learn the weight of meta-path VΦ? , while multiple meta-paths based

16

random walk assigns predefined weight FΦ? to meta-path Φ? by hand. Recall that
in node-level aggregation, the node representations learned via single meta-path
cannot capture the characteristics of each node and therefore are indistinguishable.
In semantic-level aggregation, HGNNs fuse multiple node representations learned
via multiple node-level aggregations with semantic-wise weights. In summary, the
final node representations learned via node- and semantic-level only influenced by a
set of meta-paths and still remain indistinguishable, which is the critical limitation
of HGNNs and leads to semantic confusion.

4.3.3 The HPN Method

4.3.3.1 Semantic Propagation Mechanism

Given one meta-path Φ, the semantic propagation mechanism PΦ first projects
node into semantic space via semantic projection function 5Φ. Then, it aggregates
information from meta-path based neighbors via semantic aggregation function 6Φ
to learn semantic-specific node representation, shown as follows:

/Φ = PΦ (-) = 6Φ (5Φ (-)), (4.7)

where - denotes initial feature matrix and /Φ denotes semantic-specific node rep-
resentation. To handle heterogeneity graph, the semantic projection function 5Φ
projects node into semantic space, shown as follows:

�Φ = 5Φ (-) = f(- ·,Φ + 1Φ), (4.8)

where �Φ is the projected node feature matrix, ,Φ and 1Φ denote weight matrix
and bias vector for meta-path Φ, respectively. To alleviate semantic confusion, we
design semantic aggregation function 6Φ, shown as follows:

/Φ,: = 6Φ (/Φ,:−1) = (1−W) ·"Φ · /Φ,:−1 +W ·�Φ, (4.9)

where /Φ,: denotes node representation learned by k-th layer semantic propagation
mechanism and we take it as the semantic-specific node representation /Φ. Note
that �Φ reflects the characteristics of each node in meta-path Φ (also can be viewed
as /Φ,0) and "Φ · /Φ,:−1 means aggregating information from meta-path based
neighbors. Here W is a weight scalar which indicates the importance of characteristic
of node in aggregating process.

Why semantic aggregation function 6Φ works. Here we establish the relation-
ship between semantic aggregation function 6Φ and k-step meta-path based random
walk with restart. k-step meta-path based random walk with restart for node i is
defined as:

cccΦ,: (888) = (1−W) ·"Φ · cccΦ,:−1 (888) +W · 888, (4.10)

17

where 888 is a one-hot vector of node 8, W means the restart probability. For k-step
meta-path based random walk with restart:
Theorem 4. Assuming a heterogeneous graph is aperiodic and irreducible, if we
take the limit : →∞, then k-step meta-path based random walk with restart will
converge to cccΦ,lim (888) which is related to the start node 8:

cccΦ,lim (888) = W · (� − (1−W) ·"Φ)−1 · 888. (4.11)

By Theorems 2 and 4, we conclude that the influence distribution revealed by
meta-path based random walk with restart is related to nodes. Comparing Eq. 4.9 to
Eq. 4.10, we find they both emphasis node’s local semantics with a proper weight W.
By Theorem 4, we can see that the semantic aggregation function 6Φ absorbs node’s
local semantics and makes semantic-specific node representation /Φ,: distinguish
from each other even if we take the limit :→∞. So semantic propagationmechanism
can alleviate the semantic confusion.

4.3.3.2 Semantic Fusion Mechanism

Generally, every node in a heterogeneous graph contains multiple types of semantic
information and semantic-specific node representation can only reflect node fromone
aspect. To describe node more comprehensively, we leverage multiple meta-paths to
capture rich semantics and describe node from different aspects.

Given a set of meta-paths {Φ1,Φ2, · · · ,Φ%}, we have % group semantic-specific
node representations

{
/Φ1 , /Φ2 , · · · , /Φ%

}
. Then, we propose the semantic fusion

mechanismF to fuse them for the specific task. Taking % groups of semantic-specific
node representations learned from semantic propagation mechanism as input, the
final node representation / learned via semantic fusion mechanism F , shown as
follows:

/ = F (/Φ1 , /Φ2 , · · · , /Φ%). (4.12)

Intuitively, not all meta-paths should be treated equally. So semantic fusion mecha-
nism should be able to tell the difference of meta-paths and assign different weights
to them. To learn the importance of meta-paths, we project each semantic-specific
node representation into the same latent space and adopt semantic fusion vector @
to learn the importance of meta-paths. The importance of meta-path Φ? , denoted as
FΦ? , is defined as:

FΦ? =
1
|V |

∑
8∈V

@T · tanh(, · IΦ?
8
+ 1), (4.13)

where, and 1 denote weight matrix and bias vector, respectively, which are shared
for all meta-paths. Note that all parameters in semantic fusion mechanism are shared
for all nodes and semantics. After obtaining the importance of meta-paths, we
normalize them via softmax function to get the weight of each meta-path. The
weight of meta-path Φ? , denoted as VΦ? , is defined as:

18

VΦ? =
exp(FΦ?)∑%
?=1 exp(FΦ?)

. (4.14)

Obviously, the higher VΦ? , the more important meta-path Φ? is. With the learned
weights as coefficients, we can fuse % semantic-specific representations to obtain
the final representation / as follows:

/ =

%∑
?=1

VΦ? · /Φ? . (4.15)

Then we can optimize the whole model for the specific task and learn the final
node representation. Note that semantic fusion mechanism is quite flexible and be
optimized for various types of tasks. For different tasks, each semantic may make
different contribution which means VΦ? may change a lot. For semi-supervised node
classification, we calculate Cross-Entropy and update parameters in HPN:

L = −
∑
;∈Y!

.; · ln(/; ·�), (4.16)

where� is a projection matrix which projects the node representation as a node label
vector,Y! is the set of labeled nodes,.; and /; are the label vector and representation
of the labeled node ;, respectively.

For unsupervised node recommendation, we leverage BPR loss with negative
sampling (34) to update parameters in HPN:

L = −
∑
(D,E) ∈Ω

logf
(
I>D IE

)
−

∑
(D ,E′) ∈Ω−

logf
(
−I>D IE′

)
, (4.17)

where (D, E) ∈ Ω and (D, E′) ∈Ω− denote the set of observed (positive) node pairs and
the set of negative node pairs sampled from all unobserved node pairs, respectively.

4.3.4 Experiments

4.3.4.1 Experimental Settings

Datasets Three datasets including Yelp11, ACM12, and IMDB13, and MovieLens14
(ML for short) are used to evaluate the proposed model.

Baselines HPN are compared with some state-of-the-art baselines, including the
(heterogeneous) graph representation including metapath2vec (4) and HERec (30),

11 https://www.yelp.com
12 http://dl.acm.org/
13 https://www.kaggle.com/carolzhangdc/imdb-5000-moviedataset
14 https://grouplens.org/datasets/movielens/

19

and (heterogeneous) GNNs including GCN (20), GAT (33), PPNP (21), HAN (35),
MEIRec (6), MAGNN (8), and HGT (14) to verify the effectiveness of the proposed
HPN. Meanwhile, we also test two variants of HPN (i.e., HPN?A> and HPN 5 DB) to
verify the effectiveness of different parts in our model.

4.3.4.2 Clustering

Following the previous work (35), we get the learned node representations of all
models via feed forward, and then leverage classical node clustering to test their
effectivenesses. Here we utilize the -Means to perform node clustering and the
number of clusters is set to the number of classes, then select NMI and ARI to
evaluate the clustering task and report the averaged results of 10 runs in Table 4.2.

As can be seen, the proposed HPN performs significantly better than all base-
lines. It shows the importance of alleviating semantic confusion in HGNNs. We
also find that graph neural networks always perform better than graph representation
methods. Moreover, heterogeneous graph neural networks including HAN,MEIRec,
HGT,MAGNN, and HPN outperform homogeneous GNNs because they can capture
rich semantics and describe the characteristic of node more comprehensively. Note
that the performance of HPN?A> and HPN 5 DB both show different degradations,
which imply the importance of semantic propagation mechanism and semantic fu-
sion mechanism. Based on the above analysis, we can find that the proposed HPN
can propagate and fuse semantic information effectively and shows significant im-
provements.

Table 4.2 Qantitative results (%) on the node clustering task. The larger values, the better perfor-
mace.
Datasets Metrics mp2vec HERec GCN GAT PPNP MEIRec HAN HGT MG HPN?A> HPN 5 DB HPN

Yelp NMI 42.04 0.30 32.58 42.30 40.60 30.09 45.46 47.82 47.56 44.36 12.86 48.90
ARI 38.27 0.41 23.30 41.52 37.72 27.88 41.39 42.91 43.24 42.57 10.54 44.89

ACM NMI 21.22 40.70 51.40 57.29 61.68 61.56 61.56 60.89 64.12 65.60 67.55 68.21
ARI 21.00 37.13 53.01 60.43 65.15 61.46 64.39 59.85 66.29 69.30 71.53 72.33

IMDB NMI 1.20 1.20 5.45 8.45 10.20 11.32 10.87 11.59 11.79 9.45 12.01 12.31
ARI 1.70 1.65 4.40 7.46 8.20 10.40 10.01 9.92 10.32 8.02 12.32 12.55

4.3.4.3 Robustness to Model Depth

A salient property of HPN is the incorporation of the semantic propagation mecha-
nism which is able to alleivate the semantic confusion and build a deeper and more
powerful HGNN. Comparing to the previous HGNNs (e.g., HAN), the proposed
HPN can stack more layers and learn more representative node representation. To
show the superiority of semantic propagation in HPN, we test HAN and HPN with
1, 2, 3, 4, 5 layers, shown in Fig. 4.7.

20

As can be seen,with the growth ofmodel depth, the performance ofHANperforms
worse and worse on both ACM and IMDB and we believe this phenomenon is the
semantic confusion, leading to the degradation of previous heterogeneous GNNs
(e.g., HAN). Obviously, semantic confusion makes HGNNs hard to become a really
deep model, which severely limits their representation capabilities and hurts the
performance of downstream tasks (e.g., node clustering). On the other hand, with
the growth ofmodel depth, the performance of the proposedHPN is getting better and
better, indicating that semantic propagationmechanism is able to effectively alleviate
the semantic confusion. So even stacking for more layers, the node representations
learned via the proposed HPN are still distinguishable. In summary, the proposed
HPN is able to capture high-order semantics and learns more representative node
representation with deeper architecture, rather than learning indistinguishable node
representation.

HAN

HPN

N
M
I

0.5

0.6

0.7

1 2 3 4 5

(a) ACM

HAN

HPN

N
M
I

0

0.05

0.10

0.15

1 2 3 4 5

(b) IMDB

HAN

HPN

N
M
I

0.40

0.45

0.50

1 2 3 4 5

(c) Yelp

Fig. 4.7 Clustering results of HAN/HPN with 1,2,3,4,5 layers.

The detailed method description and validation experiments can been seen in
(15).

4.4 Heterogeneous Graph Structure Learning

4.4.1 Overview

Most HGNNs follow a message-passing scheme where the node representation is
learned by aggregating and transforming the representations of its original neighbors
(39; 42; 11) or metapath-based neighbors (35; 38; 14; 8), which rely on one fun-
damental assumption, i.e. the raw heterogeneous graph structure is good. However,
as heterogeneous graphs are usually extracted from complex interaction systems
by some pre-defined rules, such assumption cannot be always satisfied. One rea-
son is that, these interaction systems inevitably contain some uncertain information
or mistakes. Taking a user-item graph built from recommendation as an example,
it is well accepted that users may misclick some unwanted items, bringing noisy
information to the graph. The other reason is that, the heterogeneous graphs are

21

often extracted with data cleaning, feature extraction and feature transformation by
some pre-defined rules, which are usually independent to the downstream tasks and
lead to the gap between the extracted graph and the optimal graph structure for the
downstream tasks. Therefore, learning an optimal heterogeneous graph for GNN is
a fundamental problem.

Recently, to alleviate the limitation of GNNs and adaptively learn graph structures
for GNNs, graph structure learning (GSL) methods (7; 16; 3; 17) are proposed to
jointly learns the GNN parameters and graph structure simultaneously. However,
these methods cannot be directly applied to HGs with the following challenges: (1)
The heterogeneity of graphs. When learning a homogeneous graph with only one
type of relation, we usually only need to parameterize one adjacency matrix. How-
ever, a heterogeneous graph consists of multiple relations, each of which reflects
one aspect of the heterogeneous graph. Since treating these heterogeneous relations
uniformly will inevitably restrict the capability of graph structure learning. How to
deal with this heterogeneity is a challenging problem. (2) The complex interactions
in heterogeneous graphs. Different relations and node features have complex inter-
actions, which drives the formation of different kinds of underlying graph structure
(40). Moreover, the combination of different relations further forms a large num-
ber of high-order relationships with diverse semantics, which also implies distinct
ways of graph generation. The heterogeneous graph structure will be affected by all
these factors, therefore, these complex interactions must be thoroughly considered
in heterogeneous graph structure learning.

In this section, we introduce an interesting work that makes the first attempt
to investigate Heterogeneous Graph Structure Learning for graph neural networks,
called HGSL. In HGSL, the heterogeneous graph and the GNN parameters are
jointly learned towards better node classification performance. Particularly, in the
graph learning part, aiming to capture the heterogeneous metric of different rela-
tion generation, each relation subgraph is separately learned. Specifically, for each
relation, three types of candidate graphs, i.e. the feature similarity graph, feature
propagation graphs and semantic graphs, are generated by mining the complex cor-
relations from heterogeneous node features and graph structures. The learned graphs
are further fused to a heterogeneous graph and fed to a GNN. The graph learning
parameters and the GNN parameters are jointly optimized towards classification
objective.

4.4.2 The HGSL Method

Wefirstly introduce some basic concepts and formalize the problem of heterogeneous
graph structure learning as follows:
Definition 1. Node Relation Triple A node relation triple 〈E8 , A, E 9〉 describes that
two nodes E8 (head node) and E 9 (tail node) are connected by relation A ∈ R. We
further define the type mapping functions qℎ , qC : R→ T that map the relation to
its head node type and tail node type respectively.

22

Fig. 4.8 Overview of the HGSL framework. (a) Model framework. (b) Feature graph generator. (c)
Semantic graph generator.

Example 1. In a user-item heterogeneous graph, say A = “*�” (a user buys an item),
then we have qℎ (A) = “*B4A” and qC (A) = “�C4<”.
Definition 2. Relation Subgraph Given a heterogeneous graph � = (+,�,F), a
relation subgraph �A is a subgraph of � that contains all node-relation triples with
relation A . The adjacency matrix of �A is �A ∈ R |+qℎ (A) |× |+qC (A) | , where �A [8, 9] = 1
if 〈E8 , A, E 9〉 exists in �A , otherwise �A [8, 9] = 0.A denotes the relation subgraph set
of all the relation subgraphs in �, i.e. A = {�A , A ∈R}.
Definition 3. Heterogeneous Graph Strcture Learning (HGSL) Given a hetero-
geneous graph �, the task of heterogeneous graph structure learning is to jointly
learn a heterogeneous graph structure, i.e. a new relational subgraph set A′, and the
parameters of GNN for downstream tasks.

4.4.2.1 Model Framework

Fig. 4.8 (a) illustrates the framework of the proposed HGSL. As we can see, given
a heterogeneous graph, HGSL firstly constructs the semantic representation ma-
trices Z by metapath-based node representations from " metapaths. Afterwards,
the heterogeneous graph structure and GNN parameters are trained jointly. For the
graph learning part, HGSL takes the information from the original relation subgraph,
the node features, and the semantic representations as input and generates relation
subgraphs separately. Specifically, taking relation A1 as an example, HGSL learns a
feature graph (�40CA1 and a semantic graph ((4<A1 and fuse themwith the original graph
�A1 to obtain the learned relation subgraph �′A1 . Then, the learned subgraphs are fed
into a GNN and a regularizer to perform node classification with regularization. By

23

minimizing the regularized classification loss, HGSL optimizes the graph structure
and the GNN parameters jointly.

4.4.2.2 Feature Graph Generator

Since the original graphmay not be optimal for downstream task, a natural ideawould
be to augment the original graph structure via fully utilizing the rich information
inside heterogeneous node features. Usually, there are two factors that affect the
formation of graph structure based on features. One is the similarity between node
features, and the other is the relationship between node feature and relation in HG
(36). As shown in Fig. 4.8 (b), we first propose to generate a feature similarity graph
that captures the potential relationship generated by node features via heterogeneous
feature projection and metric learning. Then we propose to generate the feature
propagation graph, by propagating feature similarity matrices through topology
structure. Finally, the generated feature similarity graph and feature propagation
graph are aggregated to a final feature graph through a channel attention layer.

4.4.2.2.1 Feature Similarity Graph

The feature similarity graph (�(A determines the possibility of an edge with type
A ∈ R between two nodes based on node features. Specifically, for each node E8 of
type q(E8) with feature vector 58 ∈ R1×3q (E8) , we adopt a type-specific mapping layer
to project the feature 58 to a 32-dimensional common feature 5 ′

8
∈ R1×32 :

5 ′8 = f
(
58 ·,q (E8) + 1q (E8)

)
, (4.1)

wheref(·) denotes a non-linear activation function,,q (E8) ∈ R3q (E8)×32 and 1q (E8) ∈
R1×32 denote the mapping matrix and the bias vector of type q(E8), respectively.
Then, for a relation A, we performmetric learning on the common features and obtain
the learned feature similarity graph (�(A ∈ R |+qℎ (A) | |× |+qC (A) | , where the edge between
nodes E8 and E 9 is obtained by:

(�(A [8, 9] =
{
Γ�(A (5 ′8 , 5 ′9) Γ�(A (5 ′8 , 5 ′9) ≥ n�(
0 otherwise, (4.2)

where n�(∈ [0,1] is the threshold that controls the sparsity of feature similarity
graph, and larger n�(implies a more sparse feature similarity graph. Γ�(A is a
K-head weighted cosine similarity function defined as:

Γ�(A (5 ′8 , 5 ′9) =
1

 ∑
:

cos
(
F�(:,A � 5

′
8 ,F

�(
:,A � 5

′
9

)
, (4.3)

where� denotes theHadamard product, and,�(
A = [F�(

:,A
] is the learnable parameter

matrix of Γ�(A that weights the importance of different dimensions of the feature

24

vectors. By performing metric learning as in Equation 4.3 and ruling out edges
with little feature similarity by threshold n�(, HGSL learns the candidate feature
similarity graph (�(A .

4.4.2.2.2 Feature Propagation Graph

The feature propagation graph is the underlying graph structure generated by the
interaction between node features and topology structure. The key insight is that
two nodes with similar features may have similar neighbors. Therefore, the process
of generating feature propagation graph is two-fold: Firstly, generate the feature
similarity graphs, i.e. find the similar nodes; secondly, propagate the feature similarity
graph by topological structure to generate new edges, i.e. find the neighbors of the
nodes with similar features.

Specifically, for each relation A , assume that we have two types of nodes +qℎ (A)
and+qC (A) and the topology structure between them is �A ∈ R |+qℎ (A) |× |+qC (A) | . For the
nodes E8 , E 9 ∈+qℎ (A) with the same type qℎ (A), we can obtain the feature similarity:

(��A [8, 9] =
{
Γ��A (58 , 5 9) Γ��A (58 , 5 9) ≥ n�%
0 otherwise, (4.4)

where the threshold n�% controls the sparsity of feature similarity graph (��A . Γ��A
is the metric learning function in the framework of Equation 4.3 with different
parameters ,��

A . Then we can model the head feature propagation graph (�%�A ∈
R |+qℎ (A) |× |+qC (A) | using (��A and �A as follows:

(�%�A = (��A �A . (4.5)

Aswe can see, the feature similarity is propagated through the original graph topolog-
ical structure and further generates the potential feature propagation graph structure.
As for the nodes +qC (A) with the same type qC (A) , similar to Eq. 4.4, we can obtain
the corresponding feature similarity graph (�)A with parameters ,�)

A . Therefore,
the corresponding feature propagation graph (�%)A can be obtained as follows:

(�%)A = �A(
�)
A . (4.6)

Now,we have generated one feature similarity graph (�(A and two feature propagation
graphs (�%�A and (�%)A . The overall feature graph for relation A , denoted as (�40CA ∈
R |+qℎ (A) |× |+qC (A) | , can be obtained by fusing these graphs through a channel attention
layer (38):

(�40CA = Ψ�40CA ([(�(A , (�%�A , (�%)A]), (4.7)

where [(�(A , (�%�A , (�%)A] ∈ R |+qℎ (A) |× |+qC (A) |×3 is the stacked matrix of the fea-
ture candidate graphs, and Ψ�40CA denotes a channel attention layer with pa-
rameters ,�40C

Ψ,A
∈ R1×1×3 which performs 1 × 1 convolution on the input using

softmax(,�40C
Ψ,A
). In this way, HGSL balances the importance of each candidate

feature graph for each relation A by learning different weights respectively.

25

4.4.2.3 Semantic Graph Generator

The semantic graph is generated depending on the high-order topology structure in
HG, describing the multi-hop structural interactions between two nodes. Notably,
in heterogeneous graphs, these high-order relationships differ from each other with
different semantics determined by metapaths. In light of this, we propose to learn
semantic graph structures from different semantics.

Given a metapath % with the corresponding relations A1 ◦ A2 ◦ · · · ◦ A; , a straight-
forward way to generate semantic graph would be fusing the adjacency matrices, i.e.
�A1 · �A2 · · · · · �A; (38). However, this method not only costs large memory with the
computation of stacking multiple layers of adjacency matrices, but also discards the
intermediate nodes which leads to information loss (8).

Alternatively, we propose a semantic graph generator shown in Fig. 4.8 (c). The
semantic graph generator generates the potential semantic graph structure by metric
learning on trained metapath-based node representations. Specifically, for an in-
terested metapath set P = {%1, %2, ..., %" } with " metapaths, HGSL uses trained
MP2Vec (5) representations, denoted as Z = {/%1 , /%2 , · · · , /%" ∈ R |+ |×3} , to gen-
erate semantic graphs. Since the training process of semantic representations is
off-line, the computation cost and model complexity is largely reduced. Moreover,
thanks to the mechanism of heterogeneous skip-gram, the information of intermedi-
ate nodes is well preserved.

After obtaining the semantic representationsZ , for each metapath %< , we gener-
ate a candidate semantic subgraph adjacency matrix ("%A,< ∈ R |+qℎ (A) |× |+qC (A) | , where
each edge is calculated by:

("%A,< [8, 9] =
{
Γ"%A,< (I<8 , I<9) Γ"%A,< (I<8 , I<9) ≥ n"%
0 otherwise, (4.8)

where I<
8
stands for the 8 th row of /%< , and Γ"%A,< is the metric learning function with

parameters ,"%
A,< . We can see that a relation A will generate " candidate semantic

subgraphs, so the overall semantic subgraph for relation A , denoted as ((4<A , can be
obtained by aggregating them:

((4<A = Ψ"%A ([("%A,1 , (
"%
A,2 , · · · , (

"%
A,"]), (4.9)

where [("%
A,1 , (

"%
A,2 , ..., (

"%
A,"
] is the stacked matrix of " candidate semantic graphs.

Ψ"%A denotes a channel attention layer whose weight matrix,"%
Ψ,A
∈ R1×1×" repre-

sents the importance of different metapath-based candidate graphs. After we obtain
the aggregated semantic graph ((4<A , the overall generated graph structure �′A for
relation A can be obtained by aggregating the learned feature graph and semantic
graph along with the original graph structure:

�′A = ΨA ([(�40CA , ((4<A , �A]), (4.10)

where [(�40CA , ((4<A , �A] ∈ R |+qℎ (A) |× |+qC (A) |×3 is the stacked matrix of the candidate
graphs.ΨA is the channel attention layer whose weight matrix,Ψ,A ∈ R1×1×3 denotes

26

the importance of candidate graphs in fusing the overall relation subgraph �′A . With
a new relation adjacency matrix �′A for each relation A , a new heterogeneous graph
structure is generated, i.e. A′ = {�′A , A ∈R}.

4.4.2.4 Optimization

In this section, we show how HGSL jointly optimizes the graph structure A′ and
the GNN parameters for downstream task. Here we focus on GCN (20) and node
classification. Please note that, with the learned graph structure A′, our model can
be applied to other homogeneous or heterogeneous GNN methods and other tasks.
A two layer GCN with parameters \ = (,1,,2) on the learned graph structure A′,
can be described as:

5\ (-, �′) = softmax
(
�̂f

(
�̂-,1

)
,2

)
, (4.11)

where - is the original node feature matrix, i.e. - [8, :] = 5)
8

if the dimensions of
all features are identical; otherwise, we use the common feature to construct - , i.e.
- [8, :] = 5 ′)

8
. The adjacencymatrix �′ is constructed from the learned heterogeneous

graph A′ by considering all nodes as one type. �̂ = �̃−1/2 (�′ + �)�̃−1/2, where
�̃88 = 1+∑ 9 �

′
8 9
. Thus, the classification loss of GNN, i.e. L�## , on the learned

graph can be obtained by:

L�## =
∑
E8 ∈+!

ℓ (5\ (-, �′)8 , H8) , (4.12)

where 5\ (-, �′)8 is the predicted label of node E8 ∈ +! and ℓ(·, ·) measures the
difference between prediction and the true label H8 such as cross entropy.

Since graph structure learning methods enable the original GNN with stronger
ability to fit the downstream task, it would be easier for them to over-fit. Thus, we
apply regularization term LA46 to the learned graph as follows:

LA46 = U‖�′‖1. (4.13)

This term encourages the learned graph to be sparse. The overall loss L can be
obtained by:

L = L�## +LA46 . (4.14)

By minimizing L, HGSL optimizes heterogeneous graph structure and the GNN
parameters \ jointly towards better downstream task performance.

27

4.4.3 Experiments

4.4.3.1 Experimental Settings

Datasets Three datasets including Yelp15, ACM16, and DBLP17 are used to evaluate
the proposed model.

Baselines HGSL are compared with eleven state-of-the-art representation meth-
ods including four homogeneous graph representation methods, i.e., DeepWalk (27),
GCN (20), GAT (33), andGraphSAGE (10), four heterogeneous graph representation
methods, i.e., MP2Vec (5), HAN (35), HeGAN (12), and GTN (38), and three graph
structure learning related methods, i.e. LDS (7), Pro-GNN (17), and Geom-GCN
(25).

Experimental Settings For all GNN-related models, the number of layers are
set as 2 for a fair comparison. The feature dimension in common space 32 and the
representation dimension 3 for all methods are set as 16 and 64 respectively. We
choose the popular metapaths adopted in previous methods (35; 5; 24) for metapath
based models and report the best result. For our proposed model, we use 2-head
cosine similarity function defined in Equation 4.3, i.e. K=2. We set learning rate
and weight decay as 0.01 and 0.0005 respectively. Other hyper-parameters, namely
Y�(, Y�% , Y"% , and U, are tuned by grid search. The code and datasets are publicly
available on Github18.

4.4.3.2 Node Classification

In this section, the performance of HGSL on node classification task is shown.
Macro-F1 and Micro-F1 are selected as the metrics for evaluation. The mean and
standard deviation of percentage of the metric values are shown in Table 4.3, from
which we have following observations: (1)With the capability to adaptively learn the
heterogeneous graph structure, HGSL consistently outperforms all the baselines. It
demonstrates the effectiveness of our proposed model. (2) Graph structure learning
methods generally outperform the original GCN since it enables GCN to aggregate
feature from the learned structure. (3) HGNN methods, i.e. HAN, GTN, and HGSL
achieve better performance compared to GNNs since the heterogeneity is addressed.
(4) GNN-based methods mostly outperform random walk-based graph representa-
tion methods since the node features are utilized. This phenomenon becomes more
obvious when it comes to Yelp dataset, since the node features, i.e. keywords, are
helpful in classifying business categories.

15 https://www.yelp.com
16 http://dl.acm.org/
17 https://dblp.uni-trier.de
18 https://github.com/Andy-Border/HGSL

28

Table 4.3 Performance evaluation of node classification (mean in percentage± standard deviation).
DBLP ACM Yelp

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
DeepWalk 88.00 ± 0.47 89.13 ± 0.41 80.65 ± 0.60 80.32 ± 0.61 68.68 ± 0.83 73.16 ± 0.96

GCN 83.38 ± 0.67 84.40 ± 0.64 91.32 ± 0.61 91.22 ± 0.64 82.95 ± 0.43 85.22 ± 0.55
GAT 77.59 ± 0.72 78.63 ± 0.72 92.96 ± 0.28 92.86 ± 0.29 84.35 ± 0.74 86.22 ± 0.56

GraphSage 78.37 ± 1.17 79.39 ± 1.17 91.19 ± 0.36 91.12 ± 0.36 93.06 ± 0.35 92.08 ± 0.31
MP2Vec 88.86 ± 0.19 89.98 ± 0.17 78.63 ± 1.11 78.27 ± 1.14 59.47 ± 0.57 65.11 ± 0.53
HAN 90.53 ± 0.24 91.47 ± 0.22 91.67 ± 0.39 91.57 ± 0.38 88.49 ± 1.73 88.78 ± 1.40

HeGAN 87.02 ± 0.37 88.34 ± 0.38 82.04 ± 0.77 81.80 ± 0.79 62.41 ± 0.76 68.17 ± 0.79
GTN 90.42 ± 1.29 91.41 ± 1.09 91.91 ± 0.58 91.78 ± 0.59 92.84 ± 0.28 92.19 ± 0.29
LDS 75.65 ± 0.20 76.63 ± 0.18 92.14 ± 0.16 92.07 ± 0.15 85.05 ± 0.16 86.05 ± 0.50

Pro-GNN 89.20 ± 0.15 90.28 ± 0.16 91.62 ± 1.28 91.55 ± 1.31 74.12 ± 2.03 77.45 ± 2.12
Geom-GCN 79.43 ± 1.01 80.94 ± 1.06 70.20 ± 1.23 70.00 ± 1.06 84.28 ± 0.70 85.36 ± 0.60

HGSL 91.92 ± 0.11 92.77 ± 0.11 93.48 ± 0.59 93.37 ± 0.59 93.55 ± 0.52 92.76 ± 0.60

P-S P-A
Relation Subgraphs

A
tt

en
tio

n
V

al
ue

s

Feature Graph
Semantic Graph
Original Graph

(a) ACM

P-C P-A
Relation Subgraphs

A
tt

en
tio

n
V

al
ue

s

Feature Graph
Semantic Graph
Original Graph

(b) DBLP

B-S B-L B-U
Relation Subgraphs

A
tt

en
tio

n
V

al
ue

s

Feature Graph
Semantic Graph
Original Graph

(c) Yelp

Fig. 4.9 Channel attention distributions of relation subgraphs.

4.4.3.3 Importance Analysis of Candidate Graphs

In order to investigate whether HGSL can distinguish the importance of candidate
graphs, we analyze the weight distribution of the channel attention layer for fusing
each relation subgraphs, i.e. the weights of ΨA in Equation 4.10, on three datasets.
We train HGSL 20 times and set all the thresholds of HGSL as 0.2. The attention
distributions are shown in Fig. 4.9. Aswe can observe, for relation subgraphs in ACM
andDBLP, the original graph structure is themost important structure forGNN-based
classification. However, as for Yelp, the channel attention values of different relation
subgraphs differ from each other. Specifically, for B-U (business-user) and B-L
(business-rating level) relation subgraphs, the feature graphs are assigned with large
channel attention value in graph structure learning. This phenomenon implies that
the information in node features plays a more important role than that of semantic
representations which agrees with the the previously discussed experiments and
further demonstrates the capability of HGSL in adaptively learning a larger channel
attention value for more important information.

The detailed method description and validation experiments can been seen in
(41).

29

4.5 Conclusions

In attribute-assisted HG, diverse types of nodes are assisted with different attributes,
reflecting the characteristics of nodes. In this chapter, we introduce three attribute-
assisted HG representation models including HAN, HPN, and HGSL, which simul-
taneously integrate both structural information and attribute information into the
node representations. Taking node attributes and graph structures as inputs, HAN
learns the importance of neighbor and meta-path and then aggregates them to learn
node representation in a hierarchical manner. Further, HPN improves the node-level
aggregating process in HAN via emphasizing the local semantic of each node, sig-
nificantly alleviating the deep degradation phenomenon (a.k.a, semantic confusion).
After that, HGSL mines the complex correlations from heterogeneous node features
and graph structures, and then jointly learns the GNN parameters and graph structure
simultaneously.

References

[1] Bahdanau, D., Cho, K., and Bengio, Y. Neural machine translation by jointly
learning to align and translate. ICLR (2015).

[2] Chen, T., and Sun, Y. Task-guided and path-augmented heterogeneous net-
work embedding for author identification. In WSDM (2017), pp. 295–304.

[3] Chen, Y., Wu, L., and Zaki, M. J. Deep iterative and adaptive learning for
graph neural networks. arXiv preprint arXiv:1912.07832 (2019).

[4] Dong, Y., Chawla, N. V., and Swami, A. metapath2vec: Scalable represen-
tation learning for heterogeneous networks. In SIGKDD (2017), pp. 135–144.

[5] Dong, Y., Chawla, N. V., and Swami, A. metapath2vec: Scalable represen-
tation learning for heterogeneous networks. In KDD (2017), pp. 135–144.

[6] Fan, S., Zhu, J., Han, X., Shi, C., Hu, L., Ma, B., and Li, Y. Metapath-
guided heterogeneous graph neural network for intent recommendation. In
KDD (2019), ACM, pp. 2478–2486.

[7] Franceschi, L., Niepert, M., Pontil, M., and He, X. Learning discrete
structures for graph neural networks. In ICML (2019), pp. 1972–1982.

[8] Fu, X., Zhang, J., Meng, Z., and King, I. MAGNN: metapath aggregated
graph neural network for heterogeneous graph embedding. In WWW (2020),
pp. 2331–2341.

[9] Hamilton, W., Bajaj, P., Zitnik, M., Jurafsky, D., and Leskovec, J. Embed-
ding logical queries on knowledge graphs. In Advances in Neural Information
Processing Systems (2018), pp. 2030–2041.

[10] Hamilton, W. L., Ying, R., and Leskovec, J. Inductive representation learn-
ing on large graphs. In NIPS (2017), pp. 1024–1034.

[11] Hong, H., Guo, H., Lin, Y., Yang, X., Li, Z., and Ye, J. An attention-based
graph neural network for heterogeneous structural learning. In AAAI (2020),
pp. 4132–4139.

30

[12] Hu, B., Fang, Y., and Shi, C. Adversarial learning on heterogeneous infor-
mation networks. In KDD (2019), pp. 120–129.

[13] Hu, L., Yang, T., Shi, C., Ji, H., and Li, X. Heterogeneous graph attention
networks for semi-supervised short text classification. In EMNLP-ĲCNLP
(2019), pp. 4820–4829.

[14] Hu, Z., Dong, Y., Wang, K., and Sun, Y. Heterogeneous graph transformer.
In WWW (2020), pp. 2704–2710.

[15] Ji, H., Wang, X., Shi, C., Wang, B., and Yu, P. S. Heterogeneous graph
propagation network. In IEEE Trans. Knowl. Data Eng. (2021).

[16] Jiang, B., Zhang, Z., Lin, D., Tang, J., and Luo, B. Semi-supervised learning
with graph learning-convolutional networks. In CVPR (2019), pp. 11313–
11320.

[17] Jin, W., Ma, Y., Liu, X., Tang, X., Wang, S., and Tang, J. Graph structure
learning for robust graph neural networks. In KDD (2020), pp. 66–74.

[18] Keyulu, X., Chengtao, L., Yonglong, T., Tomohiro, S., Ken-ichi, K.,
and Stefanie, J. Representation learning on graphs with jumping knowledge
networks. In ICML (2018), pp. 5453–5462.

[19] Kingma, D. P., and Ba, J. Adam: A method for stochastic optimization. ICLR
(2015).

[20] Kipf, T. N., and Welling, M. Semi-supervised classification with graph
convolutional networks. In ICLR (2017).

[21] Klicpera, J., Bojchevski, A., and Gunnemann, S. Predict then propagate:
Graph neural networks meet personalized pagerank. In ICLR (2019).

[22] Lee, S., Park, S., Kahng, M., and Lee, S.-G. Pathrank: Ranking nodes on a
heterogeneous graph for flexible hybrid recommender systems. Expert Systems
with Applications 40, 2 (2013), 684–697.

[23] Li, X., Wu, Y., Ester, M., Kao, B., Wang, X., and Zheng, Y. Semi-supervised
clustering in attributed heterogeneous information networks. InWWW (2017),
pp. 1621–1629.

[24] Lu, Y., Shi, C., Hu, L., and Liu, Z. Relation structure-aware heterogeneous
information network embedding. In AAAI (2019), pp. 4456–4463.

[25] Pei, H., Wei, B., Chang, K. C., Lei, Y., and Yang, B. Geom-gcn: Geometric
graph convolutional networks. In ICLR (2020).

[26] Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online learning of
social representations. In SIGKDD (2014), pp. 701–710.

[27] Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online learning of
social representations. In KDD (2014), pp. 701–710.

[28] Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R., Titov, I., and
Welling, M. Modeling relational data with graph convolutional networks. In
European Semantic Web Conference (2018), Springer, pp. 593–607.

[29] Shang, J., Qu, M., Liu, J., Kaplan, L. M., Han, J., and Peng, J. Meta-path
guided embedding for similarity search in large-scale heterogeneous informa-
tion networks. CoRR abs/1610.09769 (2016).

31

[30] Shi, C., Hu, B., Zhao, X., and Yu, P. Heterogeneous information network
embedding for recommendation. IEEE Transactions on Knowledge and Data
Engineering (2018).

[31] Sun, Y., Han, J., Yan, X., Yu, P. S., and Wu, T. Pathsim: Meta path-based
top-k similarity search in heterogeneous information networks. VLDB 4, 11
(2011), 992–1003.

[32] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L., and Polosukhin, I. Attention is all you need. In NIPS
(2017), pp. 5998–6008.

[33] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and
Bengio, Y. Graph Attention Networks. ICLR (2018).

[34] Wang, X., He, X., Wang, M., Feng, F., and Chua, T.-S. Neural graph
collaborative filtering. In SIGIR (2019), pp. 165–174.

[35] Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., and Yu, P. S. Heteroge-
neous graph attention network. In WWW (2019), pp. 2022–2032.

[36] Wang, X., Zhu, M., Bo, D., Cui, P., Shi, C., and Pei, J. AM-GCN: adaptive
multi-channel graph convolutional networks. InKDD (2020), R. Gupta, Y. Liu,
J. Tang, and B. A. Prakash, Eds.

[37] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel,
R., and Bengio, Y. Show, attend and tell: Neural image caption generation
with visual attention. In ICML (2015), pp. 2048–2057.

[38] Yun, S., Jeong, M., Kim, R., Kang, J., and Kim, H. J. Graph transformer
networks. In NIPS (2019), pp. 11960–11970.

[39] Zhang, C., Song, D., Huang, C., Swami, A., and Chawla, N. V. Heteroge-
neous graph neural network. In KDD (2019), pp. 793–803.

[40] Zhang, C., Swami, A., and Chawla, N. V. SHNE: representation learning for
semantic-associated heterogeneous networks. InWSDM (2019), pp. 690–698.

[41] Zhao, J., Wang, X., Shi, C., Hu, B., Song, G., and Ye, Y. Heterogeneous
graph structure learning for graph neural networks. In 35th AAAI Conference
on Artificial Intelligence (AAAI) (2021).

[42] Zhao, J., Wang, X., Shi, C., Liu, Z., and Ye, Y. Network schema preserving
heterogeneous information network embedding. In ĲCAI (2020), pp. 1366–
1372.

	4 Attribute-assisted Heterogeneous Graph Representation
	4.1 Introduction
	4.2 Heterogeneous Graph Attention Network
	4.2.1 Overview
	4.2.2 The HAN Method
	4.2.3 Experiments

	4.3 Heterogeneous Graph Propagation Network
	4.3.1 Overview
	4.3.2 Semantic Confusion Analysis
	4.3.3 The HPN Method
	4.3.4 Experiments

	4.4 Heterogeneous Graph Structure Learning
	4.4.1 Overview
	4.4.2 The HGSL Method
	4.4.3 Experiments

	4.5 Conclusions
	References

