
Chapter 5
Dynamic Heterogeneous Graph Representation

Abstract Graphs are gradually generated with multiple temporal heterogeneous in-
teractions in real-world scenarios, containing both abundant structures and complex
dynamics. Compared to static heterogeneous graphs, the dynamics express not only
the changing graph topology but also the sequential evolution as well as multiple
temporal preferences, indicating the necessity of dynamic heterogeneous graphmod-
eling. This chapter focuses on simultaneously modeling both the evolving dynamics
and heterogeneous semantics, and introduces three representative approaches, in-
cluding DyHNE to handle structure changes via matrix perturbation theory based
incremental learning, SHCF to tackle evolving sequences via heterogeneous sequen-
tial neural collaborative filtering, and THIGE to model multiple long- and short-term
preferences via temporal heterogeneous GNNs.

5.1 Introduction

Heterogeneous graphs in real-world scenarios usually exhibit high dynamics with the
evolution of various types of nodes and edges, e.g., the newly added (deleted) nodes or
edges, forming the dynamic heterogeneous graph or temporal heterogeneous graph.
The complex but valuable temporal heterogeneity introduce essential challenges for
representation. Specifically, heterogeneous interactions are accumulated over time,
leading to the continuously changes of graphic topologies. Besides, interactions are
often sequentially generated, which indicate the corresponding evolution of interests.
Furthermore, there aremultiple temporal interactions, expressing both heterogeneous
sequential evolution of current demands and multi-view historical habits.

However, the current heterogeneous graph embedding methods [37, 42, 16, 6, 3]
cannot model the dynamics within structural semantics, which have to be retrained
repeatedly at each time step. Focusing on modeling the evolving dynamics, some
researchers attempt to integrate with Recurrent Neural Networks (RNNs) [13, 23,
14, 31] and Transformers [18, 36, 46], and some recent approaches [25, 38, 26] pay
attention to combine both short-term and long-term interests to generate fine-grained
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node representations. Unfortunately, almost all of these sequential methods construct
user embeddings based on only their own sequential item interactions while ignoring
the abundant heterogeneous information.

In this chapter, we introduce three dynamic heterogeneous graph representation
learning methods to solve the challenges in incremental learning, sequential infor-
mation and temporal interactions. First, we introduce the Dynamic Heterogeneous
Network Embedding (named DyHNE) [26] to handle the incremental learning of
temporal semantics by utilizing matrix perturbation theory. Second, we introduce
the Sequence-aware Heterogeneous graph neural Collaborative Filtering (called
SHCF) [21] to model the heterogeneous evolution of sequential information for rec-
ommendation. Third, we introduce the Temporal Heterogeneous Interaction Graph
Embedding (named THIGE) [17] to model both long-term habits and short-term
demands of temporal interactions via temporal heterogeneous GNNs.

5.2 Incremental Learning

5.2.1 Overview

Heterogeneous graph are often gradually formatted with dynamic edges. The current
HG embedding methods can hardly handle such complex evolution effectively in a
dynamic heterogeneous graph. Basically, there are two fundamental problems which
need to be carefully considered for dynamic heterogeneous graph embedding. One is
how to effectively preserve the structure and semantics in a dynamic heterogeneous
graph. As the heterogeneous graph evolves with a newly added node, the local
structure centered on this node will be changed, and such changes will be gradually
propagated across all the nodes via different meta-paths, leading to changes in the
global structure. The other problem is how to efficiently update the node embeddings
without retraining on the whole heterogeneous graph, when the heterogeneous graph
evolves over time. For each time step, retraining a heterogeneous graph embedding
method is the most straightforward way to get the optimal embeddings. However,
apparently, this strategy is very time consuming, especially when the change of
network structure is very slight. In the era of big data, retraining manner becomes
unrealistic. These problems motivate us to seek an effective and efficient method to
preserve the structure and semantics for dynamic heterogeneous graph embedding.

This section designs the DyHNE with meta-path based proximity to effectively
and efficiently learn the node embeddings. Inspired by the perturbation theory [10]
widely used for capturing changes of a system, we learn the node embeddings by
solving the generalized eigenvalue problem and model the evolution of the heteroge-
neous graph with the eigenvalue perturbation. We firstly adopt meta-path augmented
adjacency matrices to capture the structure and semantics in dynamic heterogeneous
graphs. For capturing the evolution of the heterogeneous graph, we then utilize the
perturbations of multiple meta-path augmented adjacency matrices to model the
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changes of the structure and semantics of the heterogeneous graph in a natural man-
ner. Finally, we employ the eigenvalue perturbation theory to incorporate the changes
and derive the node embeddings efficiently.

5.2.2 The DyHNE Model

The core idea of DyHNE is to build an effective and efficient architecture that can
capture the changes of structure and semantics in a dynamic heterogeneous graph
and derive the node embeddings efficiently.

To achieve this, we first introduce themeta-path based first-order and second-order
proximity to preserve structure and semantics in heterogeneous graphs. As shown
in Fig. 5.1, three augmented adjacency matrices based on meta-path APA, APCPA
and APTPA are defined and fused with weights, which gives rise to the fused matrix
W(C) at time C. Then, we learn node embeddings U(C) by solving the generalized
eigenvalue problem in terms of the fused matrix W(C) . As the heterogeneous graph
evolves from time C to C + 1, new nodes and edges are added into the network (i.e.
nodes 03, ?4 and C3; edges (03, ?4), (01, ?4), (?4, 22), (?4, C2) and (?4, C3)), leading
to the changes of meta-path augmented adjacency matrices. Since these matrices
are actually the realization of structure and semantics in the heterogeneous graph,
we naturally capture changes of structure and semantics with the perturbation of
the fused matrix (i.e. ΔW). Further, we tailor the embeddings update formulas for
dynamic heterogeneous graph with matrix perturbation theory, so that our DyHNE
can efficiently derive the changed embedding ΔU and update network embedding
from U(C) to U(C+1) with U(C+1) = ΔU+U(C) .

In a nutshell, the proposed StHNE is capable of capturing the structures and
semantics in a heterogeneous graph with meta-path based first-order and second-
order proximity, and DyHNE achieves the efficient update of network embeddings
with the perturbation of meta-path augmented adjacency matrices.

5.2.2.1 Static Modeling

Before achieving effective update node embeddings when the heterogeneous graph
evolves over time, a proper static heterogeneous graph embedding for capturing
structural and semantic information is a must. Hence, we next propose a Static
Heterogeneous Network Embedding model (named StHNE), which preserves the
meta-path based first- and second-order proximity. The meta-path based first-order
proximity models the local proximity in heterogeneous graphs, which means that the
nodes connected via path instances are similar. Given a node pair (E8 , E 9 ) connected
via path instances following <, we model the meta-path based first-order proximity
as:

?<1 (E8 , E 9 ) = F
<
8 9 | |u8 −u 9 | |22, (5.1)



4

Paper(P)Author(A) Conf.(C) Term(T)

a3
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> t3<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>p4

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

APA

APCPA

APTPA

……

1 0

20

WAPA
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1 0

40

WAPCPA
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1 1

21

WAPTPA
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1 0.45

30.45

����

���

����

����

���

����

0 2

01

WAPA
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

2 0

0

1

1

WAPCPA
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

0 4

02

4 0

0

1

2

WAPTPA
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

2 2

12

3 2

1

2

2

0.9 3

0.451.95

3.45 0.9

0.45

1.45

1.95

…

       0.6 0.1 0.3 0.2…

0.6 0.4 0.6 0.3…

0.4 0.3 0.8 0.2…       

t
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

t + 1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

…

       0.8 0.2 0.5 0.3…

0.7 0.6 0.9 0.5…

0.7 0.5 0.9 0.4…

              

       

0.45 0

0.451.95

2.45 0.45

0.45

1.45

1.95

�W<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DyHNE

StHNE

Matrix 
Perturbation

a1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p3
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

c1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

c2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

t1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

t2<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p3
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

c1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

c2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

t1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

t2<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W(t+1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W(t)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Network Embedding U(t)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Network Embedding U(t+1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

…

       0.2 0.1 0.2 0.1…

0.1 0.2 0.3 0.2…

0.3 0.2 0.1 0.2…       

       

�U<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Changed Embedding

Fig. 5.1 The overall architecture of the proposed StHNE and DyHNE.

where u8 ∈ R3 is the 3-dimension representation vector of node E8 . To preserve the
meta-path based first-order proximity in heterogeneous graphs, we minimize the
following objective function:

L<1 =
∑

E8 ,E9 ∈V
F<8 9 | |u8 −u 9 | |22. (5.2)

As larger F<
8 9
indicates that E8 and E 9 have more connections via the meta-path

<, which makes nodes E8 and E 9 closer in the low-dimensional space.
The meta-path based second-order proximity is determined through the shared

neighborhood structure of nodes. Given the neighbors of node E? under the meta-
path <, denoted as N (E?)<, we can model the second-order proximity based on
meta-path as follows:

?<2 (E? ,N (E?)
<) = | |u? −

∑
E@ ∈N (E?)<

F<?@u@ | |22. (5.3)

Here, we normalize F<?@ so that
∑
E@ ∈N (E?)< F?@ = 1.

With Eq. (5.3), we keep the node ? close to its neighbors under a specific
meta-path. Eq. (5.3) guarantees that unconnected nodes are close to each other if
they contain the similar neighbors. To preserve the meta-path based second-order
proximity in heterogeneous graphs, we minimize the following object function,
namely

L<2 =
∑
E? ∈V
| |u? −

∑
E@ ∈N (E?)<

F<?@u@ | |22. (5.4)

Intuitively, minimizing Eq. (5.4) will cause the small distance between node E?
and its neighbors in the low-dimensional space. Thus, nodes that shares the same
neighbors with node E? will also be close to E? . In this way, the meta-path based
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second-order proximity can be preserved. Considering multiple semantic relations
in a heterogeneous graph, we define a set of meta-paths M and assign weights
{\1, \2, ..., \ |M |} to each meta-path, where ∀\8 > 0 and

∑ |M |
8=1 \8 = 1. Thus, our

unified model combines multiple meta-paths while preserving both of the meta-path
based first- and second-order proximity, namely

L =
∑
<∈M

\< (L<1 +WL
<
2 ), (5.5)

where W is the trade-off factor. Now, the static heterogeneous graph embedding
problem is turned to:

arg min
U>DU=I

∑
<∈M

\< (L<1 +WL
<
2 ), (5.6)

where D is the degree matrix that will be described later. The constraint U>DU = I
removes an arbitrary scaling factor in the embedding and avoids the degenerate case
where all node embeddings are equal.

Inspired by spectral theory [27, 2], we transform the problem of Eq. (5.6) as
the generalized eigenvalue problem, so that we can get a closed-form solution and
dynamically update embeddingswith the eigenvalue perturbation theory [10].Hence,
we reformulate Eq. (5.2) as follows:

L<1 =
∑

E8 ,E9 ∈V
F<8 9 | |u8 −u 9 | |22 = 2CA (U

>L<U), (5.7)

where CA (·) is the trace of the matrix, U is the embedding matrix, L< = D< −W<

is the Laplacian matrix under the meta-path <, and D< is a diagonal matrix with
D<
88
=

∑
9 F

<
8 9
. Similarly, Eq. (5.4) can be rewritten as follows:

L<2 =
∑
E? ∈V
| |u? −

∑
E@ ∈N (E?)<

F<?@u@ | |22 = 2CA (U
>H<U), (5.8)

where H< = (I−W<)> (I−W<) is symmetric. As discussed earlier, we fuse all
meta-paths in M, which gives rise to:

W =
∑
<∈M

\<W<, D =
∑
<∈M

\<D<. (5.9)

Hence, the StHNE can be reformulated as:

L = CA (U> (L+WH)U)), (5.10)

whereL=D−W andH= (I−W)> (I−W). Now, the problemof static heterogeneous
graph embedding reduces to:

arg min
U>DU=I

CA (U> (L+WH)U), (5.11)
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where L+WH is symmetric. The problem of Eq. (5.11) boils down to the generalized
eigenvalue problem [40] as follows:

(L+WH)U = D_U, (5.12)

where _ = 3806(_1,_2, ...,_#M ) is the eigenvector matrix, #M is the number of
nodes in the meta-path setM.

Having transformed the StHNE as the generalized eigenvalue problem, the em-
bedding matrix U is given by the top-3 eigenvectors with the smallest non-zero
eigenvalues. As the heterogeneous graph evolves from time C to C + 1, the dynamic
heterogeneous graph embeddingmodel focuses on efficiently updatingU(C) toU(C+1) .
That is, update the eigenvectors and eigenvalues.

5.2.2.2 Dynamic Modeling

The core idea of a dynamic heterogeneous graph embedding model is to learn node
embeddings efficiently in a dynamic manner, thus we next to effectively update the
eigenvectors and eigenvalues based on matrix perturbation.

Following the previous works [22, 50], we assume that the network evolves on
a common node set of cardinality # . A nonexistent node is treated as an isolated
node with zero degree and thereby the evolution of a network can be regarded as the
change of edges [1]. Besides, the addition (deletion) of edges may vary by types. It is
naturally appealing to capture the evolution of a dynamic heterogeneous graph with
the perturbation of meta-path augmented adjacency matrix ΔW =

∑
<∈M \<ΔW<.

Thus, the changes of L and H can be calculated as follows:

ΔL = ΔD−ΔW, (5.13)

ΔH = ΔW>ΔW− (I−W)>ΔW−ΔW> (I−W). (5.14)

Since perturbation theory can give approximate solution to a problem by adding
a perturbation term [10], we can update eigenvalues and eigenvectors from the
eigenvalues and eigenvectors at the previous time with the eigenvalue perturbation.
Hence, at new time step, we have the following equation based on Eq. (5.12):

(L+ΔL+WH+WΔH) (U+ΔU) = (D+ΔD) (_+Δ_) (U+ΔU), (5.15)

where ΔU and Δ_ are the changes of the eigenvectors and eigenvalues. Here, we omit
the (C) superscript for brevity since the perturbation process for any time step C is the
same. Let us focus on a specific eigen-pair (u8 ,_8), Eq. (5.15) is rewritten as

(L+ΔL+WH+WΔH) (u8 +Δu8) = (_8 +Δ_8) (D+ΔD) (u8 +Δui). (5.16)
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Hence, the dynamic heterogeneous graph embedding problem is how to calculate
the changes of the 8-th eigen-pair (Δu8 ,Δ_8), because if we have ΔU and Δ_ between
C and C +1, we can efficiently update the embedding matrix with U(C+1) = U(C) +ΔU.

We first introduce how to calculate Δ_8 . By expanding Eq. (5.16) and removing
the higher order terms that have limited effects on the accuracy of the solution [10],
such as ΔLΔu8 and Δ_8ΔDΔu8 , then based on the fact (L+WH)u8 = _8Du8 , we have

(L+WH)Δu8 + (ΔL+WΔH)u8 = _8DΔu8 +_8ΔDu8 +Δ_8Du8 . (5.17)

Furthermore, left multiplying both sides by u>
8
, we have

u>8 (L+WH)Δu8 +u>8 (ΔL+WΔH)u8 = _8u>8 DΔu8 +_8u>8 ΔDu8 +Δ_8u>8 Du8 . (5.18)

As L+WH and D are symmetric, then based on the fact (L+WH)u8 = _8Du8 and
right multiplying both side by Δu8 , we have u>

8
(L+WH)Δu8 = _8u>8 DΔu8 . Thus, we

can rewrite Eq. (5.18) as follows:

u>8 (ΔL+WΔH)u8 = _8u>8 ΔDu8 +Δ_8u>8 Du8 . (5.19)

Based on Eq. (5.19), we get the changes of the eigenvalue _8:

Δ_8 =
u>
8
ΔLu8 +Wu>

8
ΔHu8 −_8u>8 ΔDu8

u>
8

Du8
. (5.20)

It is easy to see that D is a positive-semidefinite matrix, so we have u>
8

Du8 = 1 and
u>
8

Du 9 = 0(8 ≠ 9) [29, 10]. Thus,

Δ_8 = u>8 ΔLu8 +Wu>8 ΔHu8 −_u>8 ΔDu8 . (5.21)

Having got the change of eigenvalue Δ_8 between two continuous time steps, our
next goal is to calculate the changes of eigenvectors Δu8 .

As a heterogeneous graph usually evolves smoothly [1], the network changes
based on meta-paths (i.e., ΔW) are subtle. We assume the perturbation of the eigen-
vectors Δu8 is linearly weighted by the top-3 eigenvectors with the smallest non-zero
eigenvalues [10]:

Δu8 =
3+1∑

9=2, 9≠8
U8 9u 9 , (5.22)

where U8 9 indicates the weight of u 9 on Δu8 . Thus, the problem of calculating Δu8
now is transformed into how to determine these weights. Considering Eq. (5.16), by
replacing Δu8 with Eq. (5.22) and removing the higher order terms that have limited
effects on the accuracy of the solution [19], we obtain the following:
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(L+WH)
3+1∑

9=2, 9≠8
U8 9u 9 + (ΔL+WΔH)u8

=_8D
3+1∑

9=2, 9≠8
U8 9u 9 +_8ΔDu8 +Δ_8Du8 .

(5.23)

With the fact that (L+WH)∑3+1
9=2 U8 9u 9 =D

∑3+1
9=2 U8 9_ 9u 9 , and bymultiplying u>? (2 ≤

? ≤ 3 +1, ? ≠ 8) on both sides of Eq. (5.23), we get:

u>?D
3+1∑

9=2, 9≠8
U8 9_ 9u 9 +u>? (ΔL+WΔH)u8

=_8u>?D
3+1∑

9=2, 9≠8
U8 9u 9 +_8u>?ΔDu8 +Δ_8u>?Du8 .

(5.24)

Based on u>
8

Du8 = 1 and u>
8

Du 9 = 0(8 ≠ 9), we can simplify the above formula and
get:

_?U8 ? +u>? (ΔL+WΔH)u8 = _8U8 ? +_8u>?ΔDu8 . (5.25)

Finally, we obtain the weight U8 ? as follows:

U8 ? =
u>?ΔLu8 +Wu>?ΔHu8 −_8u>?ΔDu8

_8 −_?
, 8 ≠ ?. (5.26)

To sum up, we now have the changes of eigenvalues and eigenvectors based on
Eq. (5.21), (5.22) and (5.26). The new eigenvalues and eigenvectors at C +1 can be
updated as follows:

_ (C+1) = _ (C) +Δ_, U(C+1) = U(C) +ΔU. (5.27)

5.2.2.3 Acceleration

A straightforward idea to update the embeddings is to calculate Eq. (5.21), (5.22)
and (5.26) for Eq. (5.27). However, the calculation of Eq. (5.21) is time-consuming
due to the definition of ΔH (i.e., Eq. (5.14)). Thus, we propose an acceleration
solution tailored for dynamic heterogeneous graph embedding.

Let us focus onΔ_8 and U8 9 in a more detailed way.We replaceΔHwith Eq. (5.14)
and remove the higher order terms as earlier, Eq. (5.21) and Eq. (5.26) can be
reformulated as follows:

Δ_8 = u>8 ΔLu8 −_8u>8 ΔDu8 +W{[(W− I)u8]>ΔWu8 + (ΔWu8)> (W− I)u8}, (5.28)
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U8 9 =
u>
9
ΔLu8 −_8u>9 ΔDu8

_8 −_ 9
(5.29)

+
W{[(W− I)u 9 ]>ΔWu8 + (ΔWu 9 )> (W− I)u8}

_8 −_ 9
.

For the sake of convenience, we rewrite Δ_8 and U8 9 as follows:

Δ_8 = C(8, 8) +W [A(:, 8)>B(:, 8) +B(:, 8)>A(:, 8)], (5.30)

U8 9 =
C( 9 , 8) +W [A(:, 9)>B(:, 8) +B(:, 9)>A(:, 8)]

_8 −_ 9
, (5.31)

where A(:, 8) = (W− I)u8 , B(:, 8) = ΔWu8 and C(8, 9) = u>
8
ΔLu 9 −_8u>8 ΔDu 9 .

Obviously, the calculation of A is time-consuming. Hence, we define A(C+1) (:, 8)
at time step C +1 as follows:

A(C+1) (:, 8) = (W− I+ΔW) (u8 +Δu8). (5.32)

Replacing Δu8 with Eq. (5.22), we have

A(C+1) (:, 8) = (W− I+ΔW) (u8 +
3+1∑

9=2, 9≠8
U8 9u 9 ) =

3+1∑
9=2
V8 9 (W− I+ΔW)u 9 , (5.33)

where V8 9 = U8 9 if 8 ≠ 9 , otherwise, V8 9 = 1. Furthermore, we can obtain the following:

A(C+1) (:, 8) =
3+1∑
9=2
V8 9 (AC (:, 9) +BC (:, 9)). (5.34)

Now, we reduce the time complexity of updatingA(C+1) from$ (43) to$ (32), which
guarantees the efficiency of DyHNE.

5.2.3 Experiments

5.2.3.1 Experimental Settings

Datasets. We evaluate models on three datasets, including two academic networks
(i.e., DBLP and AMiner) and a social Yelp. Yelp dataset extracts information related
to restaurants of three sub-categories: “American (New) Food", “Fast Food" and
“Sushi Bars" [24]. The meta-paths that we are interested in are BRURB (i.e., the
user reviewed on two businesses) and BSB (i.e., the same star level businesses).
DBLP is an academic network in computer science where the authors are labeled
with their research areas. We consider meta-paths including APA (i.e., the co-author
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relationship), APCPA (i.e., authors sharing conferences) and APTPA (i.e., authors
sharing terms). AMiner is also an academic network, which evolved from 1990 to
2005 in five research domains and the meta-paths are APA, APCPA and APTPA.

Baselines. We compare our proposed StHNE and DyHNE with comprehensive
state-of-the-art alternatives, including two homogeneous network embedding meth-
ods (i.e., DeepWalk [30] and LINE [39]); two heterogeneous information network
embeddingmethods (i.e., ESim [33] andmetapath2vec [8]); and two dynamic homo-
geneous network embeddingmethods (i.e., DANE [22], DHPE [50] andDHNE [47]).
Additionally, in order to verify the effectiveness of the meta-path based first-order
and second-order proximity, we test the performance of StHNE-1st and StHNE-2nd.
We use codes of the baseline methods provided by their authors.

5.2.3.2 Effectiveness of StHNE

To evaluate the effectiveness of StHNE, here we learn the node embeddings with the
static embedding methods on the whole heterogeneous graph without considering
the evolution of the network. In other words, given a dynamic network with 10 time
steps {G1, · · · ,G10}, we conduct all static network embedding methods, including
StHNE, on the union network, i.e., G1∪G1∪ · · ·G10.

Node Classification. Node classification is a common task to evaluate the perfor-
mance of representation learning on networks. In this task, after learning the node
embeddings on the fully evolved network, we train a logistic regression classifier
with node embeddings as input features. The ratio of training set is set as 40%, 60%,
and 80%.We set the weights of BSB and BRURB in Yelp to 0.4 and 0.6. In DBLP, we
assign weights {0.05, 0.5, 0.45} to {APA, APCPA, APTPA}. In AMiner, we assign
weights {0.25, 0.5, 0.25} to {APA, APCPA, APTPA}. We report the results in terms
of Macro-F1 and Micro-F1 in Table 5.1.

As we can observe, the StHNE outperforms all baselines on three datasets. It
improves classification performance by about 8.7% in terms of Macro-F1 averagely
with 80% training ratio, which is due to the weighted integration of meta-paths and
the preservation of network structure. Both our model StHNE, ESim and metap-
ath2vec fuse multiple meta-paths with weights, but the performances of ESim and
metapath2vec are slight worse on three datasets. This may be caused by the sepa-
ration of meta-paths fusion and model optimization, which lose some information
between multiple relationships for heterogeneous graph embedding. We also notice
that StHNE-1st and StHNE-2nd both outperform LINE-1st and LINE-2nd in most
cases, which shows the superiority of the meta-path based first- and second-order
proximity in heterogeneous graphs. From a vertical comparison, our StHNE contin-
ues to perform best against different sizes of training data, which implies the stability
and robustness of our model.

Relationship Prediction. For DBLP andAMiner, we are interested in the co-author
relationships (APA). Hence, we generate training networks by randomly hiding 20%
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Table 5.1 Performance evaluation of node classification on static heterogeneous graphs. (Tr.Ratio
means the training ratio.)

Datasets Metric Tr.Ratio DeepWalk LINE-1st LINE-1st ESim metapath2vec StHNE-1st StHNE-2nd StHNE

Yelp

Macro-F1
40% 0.6021 0.5389 0.5438 0.6387 0.5872 0.6193 0.5377 0.6421
60% 0.5954 0.5865 0.5558 0.6464 0.6081 0.6639 0.5691 0.6644
80% 0.6101 0.6012 0.6068 0.6793 0.6374 0.6909 0.5783 0.6922

Micro-F1
40% 0.6520 0.6054 0.6105 0.6896 0.6427 0.6838 0.6118 0.6902
60% 0.6472 0.6510 0.6233 0.7011 0.6681 0.7103 0.6309 0.7017
80% 0.6673 0.6615 0.6367 0.7186 0.6875 0.7232 0.6367 0.7326

DBLP

Macro-F1
40% 0.9295 0.9271 0.9172 0.9354 0.9213 0.9392 0.9283 0.9473
60% 0.9355 0.9298 0.9252 0.9362 0.9311 0.9436 0.9374 0.9503
80% 0.9368 0.9273 0.9301 0.9451 0.9432 0.9511 0.9443 0.9611

Micro-F1
40% 0.9331 0.9310 0.9219 0.9394 0.9228 0.9421 0.9312 0.9503
60% 0.9383 0.9328 0.9291 0.9406 0.9305 0.9487 0.9389 0.9519
80% 0.9392 0.9323 0.9347 0.9502 0.9484 0.9543 0.9496 0.9643

AMiner

Macro-F1
40% 0.8838 0.8929 0.8972 0.9449 0.9487 0.9389 0.9309 0.9452
60% 0.8846 0.8909 0.8967 0.9482 0.9490 0.9401 0.9354 0.9499
80% 0.8853 0.8947 0.8962 0.9491 0.9493 0.9412 0.9381 0.9521

Micro-F1
40% 0.8879 0.8925 0.8958 0.9465 0.9469 0.9407 0.9412 0.9467
60% 0.8881 0.8936 0.8960 0.9482 0.9497 0.9423 0.9431 0.9509
80% 0.8882 0.8960 0.8962 0.9500 0.9511 0.9448 0.9423 0.9529

Table 5.2 Performance evaluation of relationship prediction on static heterogeneous graphs.

Datasets Metric DeepWalk LINE-1st LINE-1st ESim metapath2vec StHNE-1st StHNE-2nd StHNE

Yelp
AUC 0.7404 0.6553 0.7896 0.6651 0.8187 0.8046 0.8233 0.8364
F1 0.6864 0.6269 0.7370 0.6361 0.7355 0.7348 0.7397 0.7512
ACC 0.6819 0.6115 0.7326 0.6386 0.7436 0.7286 0.7526 0.7661

DBLP
AUC 0.9235 0.8368 0.7672 0.9074 0.9291 0.9002 0.9246 0.9385
F1 0.8424 0.7680 0.7054 0.8321 0.8645 0.8359 0.8631 0.8850
ACC 0.8531 0.7680 0.6805 0.8416 0.8596 0.8266 0.8577 0.8751

AMiner
AUC 0.7366 0.5163 0.5835 0.8691 0.8783 0.8935 0.9180 0.8939
F1 0.5209 0.5012 0.5276 0.6636 0.6697 0.7037 0.8021 0.7085
ACC 0.6686 0.6475 0.6344 0.7425 0.7506 0.7622 0.8251 0.7701

AP in DBLP and 40% AP in AMiner as AMiner is much larger. For Yelp, we want
to find two businesses that one person has reviewed (BRURB), which can be used
to recommend businesses for users. Thus, we randomly hide 20% BR to generate
the training network. We set the weights of BSB and BRURB in Yelp to 0.4 and
0.6. In DBLP, we assign weights {0.9, 0.05, 0.05} to {APA, APCPA, APTPA}. In
AMiner, we assign weights {0.4, 0.3, 0.3} to {APA, APCPA, APTPA}. We evaluate
the prediction performance on testing networks with AUC and Accuracy.

Table 5.2 shows the comparison results of different methods. Overall, we can see
that StHNE achieves better relation prediction performance than other methods on
two metrics. The improvement indicates the effectiveness of our model to preserve
structural information in heterogeneous graphs. Benefiting from the second-order
proximity preserved based on meta-path, StHNE-2nd outperforms than StHNE-1st
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significantly. The reason is that the higher order proximity is more conducive for
preserving complex relationships in heterogeneous graphs.

5.2.3.3 Effectiveness of DyHNE

In this section, our goal is to verify the effectiveness of DyHNE compared with
these baselines designed for dynamic networks (i.e., DANE and DHPE). Since some
baselines (e.g., DeepWalk, LINE and StHNE) cannot handle dynamic networks and
we have reported the performance of these methods in Section 5.2, here we only
apply these methods to initial networks as in [22, 50]. Specifically, given a dynamic
network with 10 time steps {G1, · · · ,G10}, for the static network embedding methods,
including StHNE, we only conduct them on G1 and report the results, while for the
dynamic network embedding methods, i.e., DANE, DHPE and DyHNE, we conduct
them from G1 to G10 to update the embedding incrementally, and report the final
results to evaluate their performance in a dynamic environment.

NodeClassification. For each dataset, we generate the initial and growing heteroge-
neous graph from the original network. Each growing heterogeneous graph contains
ten time steps. In Yelp, reviews are time-stamped, we randomly add 0.1% new UR
and BR to the initial network at each time step. For DBLP, we randomly add 0.1%
new PA, PC and PT to the initial network at each time step. Since AMiner itself
contains the published year of each paper, we divide the edges appearing in 2005
into 10 time steps uniformly.

We vary the size of the training set from 40% to 80%with the step size of 20% and
the remaining nodes as testing.We repeat each classification experiment for ten times
and report the average performance in terms of both Macro-F1 andMicro-F1 scores,
as shown inTable 5.3.We can see thatDyHNEconsistently performs better than other
baselines on all datasets with all varying sizes of training data, which demonstrates
the effectiveness and robustness of our learned node embeddings when served as
features for node classification. (a) Especially, our DyHNE significantly outperforms
the two dynamic homogeneous network embeddingmethods, DANE andDHPE. The
reason is that our model considers the different types of nodes and relations and can
capture the structure and semantic information in heterogeneous graphs. (b) We
also notice that our DyHNE achieves better performance than DHNE which is also
designed for dynamic heterogeneous graphs. We believe that the improvement is
due to the preserved meta-path based first-order and second-order proximity in node
embeddings learned by our DyHNE. (c) Compared with the baselines designed for
static heterogeneous graphs (i.e., DeepWalk, LINE, ESim and metapath2vec), our
method also achieves the best performance, which proves the effectiveness of the
update algorithm without losing important structure and semantic information in
heterogeneous graphs.

Relationship Prediction. For each dataset, we generate the initial, growing and
testing heterogeneous graph from the original heterogeneous graph. For Yelp, we
first build the testing network containing 20% BR. The remaining constitutes the
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Table 5.3 Performance evaluation of node classification on dynamic heterogeneous graphs.
(Tr.Ratio means the training ratio.)
Datasets Metric Tr.Ratio DeepWalk LINE-1st LINE-1st ESim metapath2vec StHNE DANE DHPE DHNE DyHNE

Yelp

Macro-F1
40% 0.5840 0.5623 0.5248 0.6463 0.5765 0.6118 0.6102 0.5412 0.6293 0.6459
60% 0.5962 0.5863 0.5392 0.6642 0.6192 0.6644 0.6342 0.5546 0.6342 0.6641
80% 0.6044 0.6001 0.6030 0.6744 0.6285 0.6882 0.6471 0.5616 0.6529 0.6893

Micro-F1
40% 0.6443 0.6214 0.5901 0.6932 0.6457 0.6826 0.6894 0.5823 0.6689 0.6933
60% 0.6558 0.6338 0.5435 0.6941 0.6656 0.7074 0.6921 0.5981 0.6794 0.6998
80% 0.6634 0.6424 0.6297 0.7104 0.6722 0.7281 0.6959 0.6034 0.6931 0.7298

DBLP

Macro-F1
40% 0.9269 0.9266 0.9147 0.9372 0.9162 0.9395 0.8862 0.8893 0.9302 0.9434
60% 0.9297 0.9283 0.9141 0.9369 0.9253 0.9461 0.8956 0.8946 0.9351 0.9476
80% 0.9322 0.9291 0.9217 0.9376 0.9302 0.9502 0.9051 0.9087 0.9423 0.9581

Micro-F1
40% 0.9375 0.9310 0.9198 0.9383 0.9254 0.9438 0.8883 0.8847 0.9352 0.9467
60% 0.9346 0.9245 0.9192 0.9404 0.9281 0.9496 0.8879 0.8931 0.9404 0.9505
80% 0.9371 0.9297 0.9261 0.9415 0.9354 0.9543 0.9071 0.9041 0.9489 0.9617

AMiner

Macro-F1
40% 0.8197 0.8219 0.8282 0.8797 0.8673 0.8628 0.7642 0.7694 0.8903 0.9014
60% 0.8221 0.8218 0.8323 0.8807 0.8734 0.8651 0.7704 0.7735 0.9011 0.9131
80% 0.8235 0.8238 0.8351 0.8821 0.8754 0.8778 0.7793 0.7851 0.9183 0.9212

Micro-F1
40% 0.8157 0.8189 0.8323 0.8729 0.8652 0.8563 0.7698 0.7633 0.8992 0.9117
60% 0.8175 0.8182 0.8361 0.8734 0.8693 0.8574 0.7723 0.7698 0.9045 0.9178
80% 0.8191 0.8201 0.8298 0.8751 0.8725 0.8728 0.7857 0.7704 0.9132 0.9203

Table 5.4 Performance evaluation of relationship prediction on dynamic heterogeneous graphs.

Datasets Metric DeepWalk LINE-1st LINE-1st ESim metapath2vec StHNE DANE DHPE DHNE DyHNE

Yelp
AUC 0.7316 0.6549 0.7895 0.6521 0.8164 0.8341 0.7928 0.7629 0.8023 0.8346
F1 0.6771 0.6125 0.7350 0.6168 0.7293 0.7506 0.7221 0.6809 0.7194 0.7504
ACC 0.6751 0.6059 0.7300 0.6185 0.7395 0.7616 0.7211 0.7023 0.7024 0.7639

DBLP
AUC 0.9125 0.8261 0.7432 0.9053 0.9196 0.9216 0.5413 0.6411 0.8945 0.9278
F1 0.8421 0.7840 0.7014 0.8215 0.8497 0.8621 0.7141 0.6223 0.8348 0.8744
ACC 0.8221 0.7227 0.6754 0.8306 0.8405 0.8436 0.5511 0.5734 0.8195 0.8635

AMiner
AUC 0.8660 0.6271 0.5648 0.8459 0.8694 0.8659 0.8405 0.8412 0.8289 0.8823
F1 0.7658 0.5651 0.6071 0.7172 0.7761 0.7567 0.7167 0.7158 0.7386 0.7792
ACC 0.7856 0.5328 0.5828 0.7594 0.7793 0.7733 0.7527 0.7545 0.7498 0.7889

initial and growing network, where the growing network is divided into 10 time
steps, and 0.1% new UR and BR are added to the initial network at each time step.
For DBLP, we use the similar approach as described above. For AMiner, we take the
data involved in 1990-2003 as the initial network, 2004 as the growing network and
2005 as the testing network.

We report the prediction performance in Table 5.4 and have some findings: (a)
Our method consistently improves the relationships prediction accuracy on the three
datasets, which is attributed to the structural information preserved by the meta-path
based first-order and second-order proximity. (b) DANE and DHPE obtain poor
performance due to the neglect of multiple types of nodes and relations in hetero-
geneous graphs. (c) Compared to DHNE, our DyHNE consistently performances
better on three datasets, which is benefit from the effectiveness of update algorithm.
Additionally, the meta-path based second-order proximity ensures that our DyHNE
captures the high order structures of heterogeneous graph, which is also preserved
with the updated node embeddings.
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The more detailed method description and experiment validation can be seen
in [45].WhileDyHNEmainly focuses on incremental learning of dynamic semantics,
the sequential interactions of entities indeed express the evolution of heterogeneous
interests, and we introduce the following model SHCF to extract such valuable
information for recommender systems.

5.3 Sequence information

5.3.1 Overview

Heterogeneous graphmodeling, as an effective information fusionmethod containing
different types of nodes and links, can be used to integrate multiple types of objects
and their complex interactions in the recommendation system that may producemore
accurate recommendation results [35]. These methods mainly model a user’s static
preference [34], while ignoring the interactions’ sequential pattern that a small set
of the most recent interactions can better reflect a user’s dynamic interests over time.
Considering the sequential pattern to model a user’s latest interests, there is another
line of work called sequential recommendation. The sequential recommendation
system is to predict which item a user most probably would like to interact with
next time given her sequential interaction data as context. However, almost all of the
sequential recommendation methods [13, 23, 14, 31] model user embeddings based
on only their own sequential item interactions while ignoring the heterogeneous
information widely existing in recommendation system, such like item attributes.
When the data is sparse and there are few user interaction behaviors, these methods
also suffer from cold-start problem.

user item attributes HIN schema

user

item

category location

Fig. 5.2 A toy example of user-item interactions with heterogeneous information.

In this section, we construct a heterogeneous graph with user-item interactions
and item attributes in Fig. 5.2 and propose the SHCF to fully consider both the
sequential patterns and the high-order heterogeneous collaborative signals. For user
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Fig. 5.3 The framework of SHCF.

embedding, we aggregate the static representation with a novel element-wise at-
tention mechanism, and the dynamic interests by aggregating her interacted item
sequence with a sequence-aware self-attention mechanism. For item embedding, we
aggregate the heterogeneous information of its neighboring nodes including users
and item attributes with dual-level attention.We can not only learn the importance of
different nodes but also pay attention to important types of nodes. By stacking multi-
ple message passing layers, we can enforce the embeddings to capture the high-order
collaborative relationships.

5.3.2 The SHCF Model

Fig. 5.3 shows the framework of our SHCF, which contains three major steps. First,
we construct a heterogeneous graph with user-item interactions and item attributes
as shown in Fig. 5.2. Notice that here we only consider item attributes to focus on
clearly illustrating how to handle sequence patterns and heterogeneous information.
In fact, user attributes and other heterogeneous information can be easily added
into our SHCF through concatenating embedding learned from these heterogeneous
attributes as item embedding does. Thenwe apply an embedding layer to initialize the
representations of users, items, and item attributes (e.g., item categories). Second, we
designmultiplemessage passing layers over the heterogeneous graph to learn the user
and item embeddings. For user embedding, we capture a user’s fine-grained static
interests on different aspects of an item with an element-wise attention mechanism.
We also consider a user’s dynamic interests by aggregating her interacted item
sequence with a sequence-aware self-attention mechanism. For item embedding, we
aggregate the heterogeneous information of its neighborhoods including users and
item attributes with dual-level attention which considers the importance of different
neighboring nodes with different types. Finally, the prediction layer aggregates the
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learned embeddings from different message passing layers for both user and item
representations, and outputs the prediction of target user-item pairs.

5.3.2.1 Embedding Layer

The users, items and item attributes in real datasets are usually identified by some
unique IDs, whereas these original IDs have a very limited representation capacity.
Therefore, we create a user embedding matrixU ∈ R |U |×3 , where 3 is dimensionality
of the latent embedding spaces. The 9 Cℎ row of the embedding matrix U encodes
the user D 9 to the real-valued embedding u 9 , which is more informative. In the same
way, we respectively create an item embedding matrix I ∈ R |I |×3 and item attribute
embedding matrices, e.g. item category embedding matrix C ∈ R |C |×3 .

Positional Embedding. Motivated by the recent works of transformer [41, 7], as for
the interacted item sequence (D = {81, · · · , 8C−1, 8C } sorted by the time C, we correlate
each item with a learnable position embedding p ∈ R3 to capture the sequential
pattern of the items.

ÎD =


iC +p1
iC−1 +p2
· · ·

i1 +pC

 . (5.35)

Notice that we add the position embedding in a reverse order to capture the relevant
distance to the target item.

5.3.2.2 Sequence-Aware Heterogeneous Message Passing

To capture high-order heterogeneous collaborative information and the sequential in-
formation, we first construct a heterogeneous graph enriching user-item interactions
with added item attributes as shown in Fig. 5.2. We also model a user’s interacted
item sequence with a sequence-aware attention mechanism, in order to capture the
user’s dynamic interests. In this way, we can not only better model user preferences
but also alleviate the sparsity of the interactions. In the following, we will first
present a single graph convolution layer to model item embedding and user embed-
ding with considering heterogeneous information and sequential information, and
then generalize it to multiple layers.

Item Modeling with Heterogeneous Information. To alleviate the sparsity prob-
lem, we add item attribute information to the user-item bipartite graph and create a
heterogeneous graph that includes different types of nodes. Inspired by HGAT [15],
in this part, we present our proposed message passing layers which consider the het-
erogeneous information. Taking the item node as an example, it has different types of
neighboring nodes such as users, categories and cities. On one hand, different types
of neighboring nodes may have different impacts on it. For example, the category
of one item may be more informative than the user who interacted with it. On the
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other hand, different neighboring nodes of the same type could also have different
importance. For example, different users may have different preference on one item.
To capture both the different importance at both node level and type level, we design
a dual-level attention mechanism when aggregating embeddings from neighboring
nodes.

(a) Node-Level Attention.We design the node-level attention to learn the different
importance of neighboring nodeswith the same type and aggregate the representation
of these neighbors to form a specific type embedding. Formally, given a specific item
E and its neighboring node E′ ∈N g′

E with type g′, the weight coefficient UEE′ of the
specific node pair (E, E′) can be formulated as follows:

UEE′ =
exp(f(a>

g′ · [iE | |hE′]))∑
:∈N g′

E
exp(f(a>

g′ · [iE | |h: ]))
, (5.36)

where f(·) is the activation function, such like LeakReLU, ag′ is the attention vector
for the type g′, h is the embedding of neighboring node and | | denotes the concatenate
operation.

Then, for the item E, we can get the specific type embedding gg′E by aggregating
neighboring nodes of the same type with corresponding coefficients as follows:

gg
′
E = f(

∑
E′∈N g′

E

UEE′ ·hE′). (5.37)

(b) Type-Level Attention. For any type g′ belonging to the item E’s neighboring
node type set T , we can get a type specific embedding hg

′
E following the Eq. (5.37). To

capture different importance of different node types, we design a type-level attention
defined as follows:

<g
′
E =+ · tanh(w ·gg

′
E + 1), (5.38)

Vg
′
E =

exp(<g′E )∑
g∈T exp(<gE )

. (5.39)

With the learned weights as coefficients, we can fuse these type embeddings gg′E
to obtain the final item embedding ĩE as follows:

ĩE = f(
∑
g′∈T

Vg
′
E ·gg

′
E ). (5.40)

Notice that the above is an example of how to obtain item embedding with het-
erogeneous information, other typed nodes in heterogeneous graph such as attribute
nodes can be modeled in the same way.

User Modeling with Fine-grained Static and Dynamic Interest. A great chal-
lenge for recommendation is how to accurately model user preferences. For tradi-
tional collaborative filtering or heterogeneous graph based recommendation meth-
ods, on one hand, they usually view an item as an entirety, which ignore the fact that
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users may have different preferences on different aspects of an item; on the other
hand, they always neglect the sequential information of a user’s interaction history,
thus failing to capture the user’s dynamic interests. Therefore, for user nodes, we
present a carefully designed message passing layer to capture a user’s fine-grained
static interests and dynamic interests. More specifically, we propose an element-wise
attention mechanism that assumes each dimension of the item embedding reflects
a distinct aspect of the item. In addition, to capture a user’s dynamic interests, we
adopt a sequence-aware self-attention mechanism where each item embedding is
correlated with a position embedding, and self-attention is applied to pay attention
to important items.

(a) Element-Wise Attention. Here we present the details of element-wise attention
to capture user’s fine-grained static preference. For a specific item 8 9 in user D’s
interaction sequence SD , we can calculate a weight vector WWW 9 for different aspects of
item 8 9 as follows:

WWW 9 = tanh(WD · i 9 + 1), (5.41)

where WD ∈ R3×3 , WWW 9 is the attention coefficients of different aspects, and a large
W:
9
means that the : Cℎ aspect of item embedding i 9 is strongly relevant to the user’s

preference.
Then we aggregate with element-wise product between the weight coefficients WWW 9

and the user integrated item i 9 to learn the embedding uB reflects user’s fine-grained
static interests:

uB =
∑
9∈SD

WWW 9 � i 9 . (5.42)

(b) Sequence-Aware Self-attention. Motivated by the self-attention mechanism
widely used in NLP tasks such like machine translation[41, 7], we adopt a sequence-
aware self-attention mechanism. Specifically, each item ÎD is integrated with its
position embedding and self-attention is used to pay attention to critical items,
which to learn the embedding u3 reflects user’s dynamic interests over time:

Attention(Q,K,V) = B> 5 C<0G(QK>
√
3
) ·V, (5.43)

u3 =
�

| |
ℎ=1
Attention(ÎDW&, ÎDW , ÎDW+ ), (5.44)

Eq. (5.43) is the paradigm of self-attention, where Attention() calculates a
weighted sum of all values V by queries Q and keys K, and the scale factor√
3 is to avoid overly large values of the inner product result. In Eq. (5.44),

W&,W ,W+ ∈ R3×3 is the projection matrices and we extend the self-attention
to multi-head attention by repeating it for � times and concatenate the learned
embeddings to get the final user dynamic interest representation.

After getting the static interest embedding uB and dynamic interest embedding
u3 , we combine them with a balance weight to get the final user embedding ũ:

ũ = _u3 + (1−_)uB (5.45)
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(c) High-order Propagation. The above shows a single messaging passing layer
with heterogeneous information and sequential information, which aggregates in-
formation from the first-order neighbors. To capture the high-order collaborative
information, we can stack it to multiple layers in which each layer takes the last
layer’s output representation as its input 1. After !-layer embedding propagation, we
can get output embeddings of ! different layers.

5.3.2.3 Optimization Objective

The embeddings of different layers may have different contributions in reflecting
user preferences, following [44], we concatenate the representation of each layer to
constitute the final embedding for both users and items:

u = ũ1 | | ũ2 | | · · · | | ũ! , i = ĩ1 | | ĩ2 | | · · · | | ĩ! . (5.46)

Finally, we use the simple dot product to estimate the user’s preference towards
the target item:

ŷ(u, i) = u>i. (5.47)

To optimize our model, we use the Bayesian Personalized Ranking (BPR)
loss [32] as our loss function:

L =
∑

8∈(D , 9∉(D
−lnf(ŷui− ŷuj) +[ | |Θ| |, (5.48)

where f(·) is the sigmid function, Θ denotes all the trainable parameters and [ is
the regularization coefficient, (D is the interaction sequence of the user D, and for
each positive sample (D, 8), we sample a negative sample 9 for training.

5.3.3 Experiments

5.3.3.1 Experimental Settings

Datasets. To verify the effectiveness of our method, we conduct extensive experi-
ments on three real-world datasets. Movielens is a widely used benchmark dataset
for recommendation task.In our experiments, we adopt a small version of 100K
interactions ML100K and a larger version of 1M interactions ML1M. Yelp is a local
business recommendation dataset which records the user ratings on local businesses.

Baselines. We compare our method with three groups of recommendation base-
line methods, namely collaborative filtering methods (BPR-MF [32], NeuMF [12],

1 According to our experiments, fine-grained and dynamic user interest modeling layer is taken as
the !-th layer for user modeling.
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Table 5.5 Recommendation performance of different models. The best result in each row is bold
and the second best result is underlined. The improvements of our method over the second best
models are shown in the last column.

Dataset Metrics BPR-MF NeuMF NGCF NeuACF HeRec NARM SR-GNN SHCF Improve

ML100K

HR@5 0.4030 0.4057 0.4274 0.4337 0.4255 0.5228 0.5010 0.5414 3.56%
NDCG@5 0.2747 0.2676 0.2889 0.2874 0.2798 0.3659 0.3510 0.3859 5.47%
HR@10 0.5801 0.5689 0.5864 0.6034 0.6012 0.6723 0.6660 0.7108 5.73%

NDCG@10 0.3312 0.3127 0.3402 0.3420 0.3325 0.4142 0.4048 0.4401 6.25%
HR@15 0.6787 0.6706 0.6649 0.7084 0.6981 0.7529 0.7598 0.7817 2.88%

NDCG@15 0.3573 0.3462 0.3611 0.3697 0.3521 0.4354 0.4298 0.4592 5.47%
HR@20 0.7455 0.7595 0.7434 0.7720 0.7524 0.8038 0.8048 0.8324 3.43%

NDCG@20 0.3731 0.3672 0.3796 0.3847 0.3721 0.4475 0.4396 0.4693 4.87%

ML1M

HR@5 0.4921 0.5092 0.5017 0.5050 0.4923 0.6713 0.6634 0.6927 3.18%
NDCG@5 0.3376 0.3511 0.3437 0.3508 0.3455 0.5201 0.5233 0.5299 1.26%
HR@10 0.6577 0.6803 0.6688 0.6684 0.6601 0.7603 0.7699 0.7964 3.19%

NDCG@10 0.3910 0.4066 0.3977 0.4038 0.3982 0.5565 0.5580 0.5639 1.06%
HR@15 0.7551 0.7761 0.7587 0.7593 0.7403 0.8230 0.8184 0.8503 3.32%

NDCG@15 0.4168 0.4320 0.4216 0.4279 0.4194 0.5687 0.5709 0.5785 1.33%
HR@20 0.8159 0.8369 0.8167 0.8232 0.8105 0.8602 0.8584 0.8844 2.81%

NDCG@20 0.4311 0.4463 0.4353 0.4430 0.4328 0.5723 0.5803 0.5968 2.84%

Yelp

HR@5 0.3077 0.3571 0.4097 0.4094 0.3982 0.3490 0.3754 0.4421 7.91%
NDCG@5 0.2086 0.2419 0.2855 0.2844 0.2765 0.2373 0.2565 0.3100 8.58%
HR@10 0.4325 0.5018 0.5584 0.5553 0.5505 0.4900 0.5208 0.5878 5.27%

NDCG@10 0.2488 0.2885 0.3335 0.3314 0.3311 0.2828 0.3035 0.3572 7.11%
HR@15 0.5084 0.6006 0.6434 0.6504 0.6423 0.5851 0.6054 0.6725 3.40%

NDCG@15 0.2689 0.3146 0.3544 0.3565 0.3499 0.3080 0.3259 0.3796 6.48%
HR@20 0.5643 0.6717 0.7005 0.7138 0.6923 0.6496 0.6684 0.7260 1.71%

NDCG@20 0.2821 0.3315 0.3686 0.3715 0.3603 0.3232 0.3408 0.3922 5.57%

NGCF [43]), heterogeneous graph recommendationmethods (NeuACF [11],HeRec [34])
, and sequential recommendation methods (NARM [23], SR-GNN [13]).

Implementation Details. For all the methods, we apply a grid search for hyper
parameters. For NGCF and SR-GNN, the layer of GNN is searched from 1 to 4. We
implement our proposed model based on Tensorflow. The dimension of embeddings
3 is set as 64. For the self-attention network, the attention head number � is set as 8.
The hyper parameter _ to balance the weights of a user’s dynamic interests and static
interests is set as 0.5 and 0.2 for MovieLens and Yelp, respectively. In addition, the
learning rate is 0.0005 for MovieLens and 0.00005 for Yelp. The coefficient of L2
normalization [ for all the datasets is set to 10−5. We set the depth of our proposed
SHCF ! as 4. We randomly initialize the model parameters with Xavier initializer,
then use the Adam as the optimizer. To avoid over-fitting, we apply early stopping
strategy and apply dropout (dropout rate is 0.1) in every layer of our proposed SHCF.

5.3.3.2 Performance Comparison

We first compare the recommendation performance of all the methods. For a fair
comparison, the embedding dimension of all the methods is set as 64. Table 5.5
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shows the experiment results of different methods. We have the following obser-
vations: 1) heterogeneous graph based recommendation methods generally perform
better than traditional collaborative filtering methods. They especially have great im-
provements on the sparse dataset (i.e., Yelp), which illustrates that applying hetero-
geneous graph to incorporate side information for recommendation can alleviate the
data sparsity problem and improve recommendation performance. 2) For the dense
datasets ML100K and ML1M that users have adequate interaction behaviors (the
average number of interactions per user is 103.9 and 165.3 respectively), sequential
recommendation methods perform better than collaborative filtering methods and
heterogeneous graph based recommendation methods. But for the sparse dataset
Yelp where the average number of interactions per user decreases to 10.0, the per-
formance of sequential recommendation methods significantly declines. It illustrates
the limitation of sequential recommendation methods in modeling user embeddings
based on only the user’s own sequential item interactions without considering the
collaborative information of similar users or items when the user does not have suf-
ficient interaction records. 3) Our proposed model SHCF consistently outperforms
all the baselines on all the datasets including the two dense datasets (i.e., ML100K
and ML1M) and one sparse dataset (i.e., Yelp). These results verify the effectiveness
of SHCF in modeling users and items in both sparse and dense datasets by fully
considering the high-order heterogeneous collaborative information and sequential
information.

The more detailed methods and experiments description can be obtained in [21].
While the SHCF focuses on dealing with single-typed sequences, there are multiple
interactions in real-world systems indeed, and the time span of recorded interactions
becomes larger and larger, indicating not only short-term but also long-term hetero-
geneous preferences. The following section is to study the temporal heterogeneous
interaction modeling.

5.4 Temporal Interaction

5.4.1 Overview

By modeling historical user-item interactions, recommender systems play a funda-
mental role in e-commerce [25, 38]. Existing methods [49, 20] are mainly capable of
modelling short-term preferences from relatively recent interactions, capturing long-
term preferences (e.g., preferred brands) from historical habits is also an important
element of temporal dynamics [38]. However, these methods usually model short-
and long-term preferences independently, ignoring the role of habits in driving the
current, evolving demands. Taking Fig. 5.4a as an example, when browsing similar
items (e.g., two schoolbags), users prefer to click those with attributes they habitually
care (e.g., the brands). This presents the first research challenge: How to effectively
model the complex temporal dynamics, coupling both historical habits and evolv-
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Fig. 5.4 Toy example of next-item recommendation, from (a) a temporal sequence of interactions,
to (b) a Temporal Heterogeneous Interaction Graph (THIG).

ing demands? Another dimension overlooked by existing sequential models is the
abundant heterogeneous structural information, as shown in Fig. 5.4b. This leads to
the second research challenge: How to make full use of the temporal heterogeneous
interactions to model the preferences of different types?

In this section, we propose THIGE to effectively learn user and item embed-
dings on temporal heterogeneous interaction graphs for next-item recommendation.
THIGEfirst encodes heterogeneous interactionswith temporal information. Building
upon the temporal encoding, we take into account the influence of long-term habits
on short-term demands, and design a habit-guided attention mechanism to couple
short- and long-term preferences. To fully exploit the rich heterogeneous interac-
tions to enhance multifaceted preferences, we further capture the latent relevance of
varying types of interaction via heterogeneous self-attention mechanisms.

5.4.2 The THIGE Model

The overall framework is shown in Fig. 5.5. Specifically, we divide the histori-
cal interactions of a user into long and short term based on their timestamps. For
short-term preferences, we model users’ sequences of recent interactions with gated
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Fig. 5.5 Overall framework of user embedding in THIGE for next-item recommendation.

recurrent units (GRU), to embed users’ current demands ℎℎℎ (()D . For long-term pref-
erence, we model users’ long-term interactions with a heterogeneous self-attention
mechanism, to embed users’ historical habits ℎℎℎ (!)D . Different from the decoupled
combination (e.g., simple concatenation) of long- and short-term embeddings in
previous methods [20, 48], we propose to exploit the long-term historical habits to
guide the learning of short-term demands using the habit-guided attention, which
effectively captures the impact of habits on recent behaviors. Notice that Fig. 5.5
only shows the learning of user representations. For items, we do not distinguish their
long- and short-term interactions, and only adopt a long-term model similar to that
of users. The reason lies in the fact that there may be numerous users interacting with
an item around a short period of time, and these users have no significant short-term
sequential dependency.

5.4.2.1 Embedding Layer with Temporal Information

Each interacted item of a user is associated with not only attributes but also a
timestamp. As shown in Fig. 5.5, the timestamps is in the form of [C1, C2, · · · , C=].

Thus, the temporal embedding of an item E consists of both a static and a temporal
component. The static component GGGE =,,, q (E)000E , where the input vector 000E ∈R3q (E)
encodes the attributes of E, ,,, q (E) ∈ R3×3q (E) denotes the latent projection, 3q (E)
and 3 are the dimension of attributes and latent representation of E. Moreover, at
time C, denoting ΔC as the time span before the current time ) and dividing the
overall time span into � buckets, the temporal component of E is defined as,,,b (ΔC),
where b (ΔC) ∈ R� denotes the one-hot bucket representation of ΔC, and,,, ∈ R3T ×�
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denotes the projection matrix and 3T is the output dimension. Thus, the temporal
embedding of an item E at time C is

GGGE,C = [,,,b (ΔC) ⊕ GGGE ], (5.49)

where ⊕ denotes concatenation. Similarly, we generate the static representation of a
user D as GGGD ∈ R3 , and temporal representation of D at time C as GGGD,C .

To further consider the sequential evolution of heterogeneous interactions,we gen-
erate the 8Cℎ interacted item embedding GGGE8 ,C8 ,A8 = [GGGE8 ,C8 ⊕ AAA 8] as the combination of
the temporal embedding GGGE8 ,C8 and the corresponding type embedding AAA 8 =,,,R��� (A8)
where ��� (A8) denotes the one-hot vector of A8 with dimension |R|,,,,R ∈ R3R×|R | is
the projection matrix and 3R is the latent dimension. For long-term preference mod-
eling, we input the temporal embedding into type-aware aggregators to distinguish
preferences of different types.

5.4.2.2 Short-Term Preference Modeling

Recent interactions of users usually indicate the evolving current demands. For
instance, as shown in Fig. 5.4a, Tom’s current demand has been evolved from bags to
notebooks. In order tomodel the short-term and evolving preferences, we adopt gated
recurrent units (GRU) [5], which can capture the dependency of recent interactions.
Given a user D here, let his/her : recent interactions be {(E8 , C8 , A8) | 1 ≤ 8 ≤ :},
where C: is the most recent timestamp before the current time ) . Subsequently, we
encode the user preference at time C8 as ℎℎℎ (()D,C8 , using a GRU based on the embedding
of interaction (E8 , C8 , A8) (i.e., GGGE8 ,C8 ,A8 ) and his/her preference at C8−1, as follows.

ℎℎℎ
(()
D,C8

= GRU(GGGE8 ,C8 ,A8 , ℎℎℎ
(()
D,C8−1 ), ∀1 < 8 ≤ :, (5.50)

where ℎℎℎ (()D,C8 ∈ R
3 . The time-dependent user embeddings {ℎℎℎ (()D,C8 |1 ≤ 8 ≤ :} can be

further aggregated to encode the current demand of user D.
However, the current and evolving demands of user are not only influenced by their

recent transactions. Their long-term preferences, i.e., historical habits such as brands
and lifestyle inclinations, often play a subtle but important role. Thus, we enhance the
encoding of short-term preferences under the guidance of historical habits, in order
to discover more fine-grained and personalized preferences. Specially, we propose
a habit-guided attention mechanism to aggregate short-term user preferences, as
follows.

ℎℎℎ
(()
D = f

(
, (() ·

∑
8

0D,8ℎℎℎ
(()
D,C8
+ 1B

)
, ∀1 ≤ 8 ≤ :, (5.51)

where ℎℎℎ (()D ∈ R3 denotes the overall short-term preference of D,, (() ∈ R3×3 denotes
the projection matrix, f is the activation function and we adopt RELU here to ensure
the non-linearity , 1B is the bias, and 0D,8 is the habit-guided weight:
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0D,8 =

exp
(
[ℎℎℎ (!)D ⊕ GGGD]),,,0ℎℎℎ

(()
D,C8

)
∑:
9=1 exp

(
[ℎℎℎ (!)D ⊕ GGGD]),,,0ℎℎℎ

(()
D,C 9

) , (5.52)

where ℎℎℎ (!)D ∈ R3 is the long-term preference of D which would have encoded the
habits of D, and ,,,0 ∈ R23×3 is a mapping to quantify the fine-grained relevance
between the short-termpreference ofD and the long-termhabits ofD at different times.
Therefore, how to encode the long-term habits ℎℎℎ (!)D in the context of heterogeneous
interactions is the second key thesis of this work, as we will introduce next.

5.4.2.3 Long-Term Preference Modeling

Besides short-term preferences to encode current and evolving demands, users also
exhibit long-term preferences to express personal and historical habits. In partic-
ular, there exist multiple types of heterogeneous interactions which have different
relevance w.r.t. each other. For example, a “click" is more relevant to a “cart" or
“buy" on the same item or similar items; “favorite" could be less relevant to “cart"
or “buy", but is closely tied to the user’s brand or lifestyle choices in the long run.
Thus, different types of interactions entail both latent relevance and multifaceted
preferences. Thereby, our goal is to fully encode the latent, fine-grained relevance of
multifaceted long-term preferences.

Consider a user D, and his/her long-term interactions {(E8 , C8 , A8) | 1 ≤ 8 ≤ =}where
=� : (: is the count of recent interactions in short-term modeling). To differentiate
the explicit interaction types, we first aggregate the embeddings of items which the
user have interacted with under a specific type A:

ℎℎℎ
′(!)
D,A = f

(
,,,A · aggre({GGGE8 ,C8 | 1 ≤ 8 ≤ =,A8 = A})

)
, (5.53)

where ℎℎℎ′(!)D,A ∈ R3 is the type-A long-term preferences of user D,,,,A ∈ R3×(3T +3) is
the type-A learnable mapping, aggre(·) is an aggregator, and we utilize mean-pooling
here.

While we can simply sum or concatenate the type-specific long-term preferences
into an overall representation, there exists latent relevance among the types (e.g.,
“click" and “buy") and latent multifaceted preferences (e.g., brands and lifestyles). In
this section, we design a heterogeneous self-attentionmechanism to express the latent
relevance of different-typed interactions and long-term multifaceted preferences. By
concatenating all long-term preferences of different types as ��� (!)D = ⊕A ∈Rℎℎℎ′′′(!)D,A with
size 3-by-|R|, we first formulate the self-attention to capture the latent relevant of
heterogeneous types in R w.r.t. each other:

ℎℎℎ
(!)
D,A =

∑
A ′∈R

©­­«
exp

(
&&&)D,A   D,A ′/

√
30

)
∑
A ′′∈R exp

(
&&&)D,A   D,A ′′/

√
30

)+++D,A ′ª®®¬ , (5.54)



26

where&&&D =,,,&���
(!)
D ,   D =,,, ���

(!)
D ,+++D =,,,+���

(!)
D ,,,,&,,,, ∈ R30×3 and,,,+ ∈

R3×3 are the projection matrices, and 30 is the dimension of keys and queries.
Next, to express multifaceted preferences, we adopt a multi-head approach to

model latent fine-grained facets. Specifically, the original embeddings of preferences
are split into multi-heads and we adopt the self-attention for each head. The type-A
long-term preference is concatenated from the ℎ heads:

ℎℎℎ
(!)
D,A = ⊕<=ℎ<=1 ℎℎℎ

(!)
D,A ,<, (5.55)

where ℎℎℎ (!)D,A ,< denotes the <Cℎ head based preference and there are ℎ heads. The
overall long-term preference can also be derived by fusing different types in R:

ℎℎℎ
(!)
D = f

(
,,, (!) (⊕A ∈Rℎℎℎ (!)D,A ) + 1;

)
, (5.56)

where ,,, (!) ∈ R3×|R |3 and 1; are the projection parameters. By now, both short-
and long-term preferences haven been modeled. Taking the inherent attributes of
users into consideration, the final representation of user D is calculated by

ℎℎℎD = f(,,,DDD [GGGD ⊕ ℎℎℎ (()D ⊕ ℎℎℎ (!)D ] + 1D), (5.57)

where ℎℎℎD ∈ R3 will be used for next-item prediction, and ,,,DDD ∈ R3×33 and 1D are
learnable parameters.

5.4.2.4 Preference Modeling of Items

The temporal interactions of an item is significantly different from those of a user. In
practice, on a mass e-commerce platform, it is typical that many users interact with
the same itemaround the same time constantly,without ameaningful sequential effect
among different users. In other words, it is more reasonable to onlymodel the general,
long-term popularity of items. Thus, wemodel item representation ℎℎℎ (!)E similar to the
long-term preference modeling of users in Eq. (5.56) with heterogeneous multi-head
self-attention, and then encode the item representation as follows:

ℎℎℎE = f(,,, E [GGGE ⊕ ℎℎℎ (!)E ] + 1E ), (5.58)

where ℎℎℎE ∈ R3 is the final representation of item E for next-item prediction, and,,, E

and 1E are learnable parameters and GGGE is the attribute vector of item E.

5.4.2.5 Optimization Objective

To deal with next-item recommendation, we predict ĤD,E between user D and item E,
indicating whether D will interact with E (under a given type) at the next time. Here
we utilize a Multi-Layer Perception (MLP) [28]:
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ĤD,E = sigmoid(MLP(ℎℎℎD ⊕ ℎℎℎE )), (5.59)

where ℎℎℎD and ℎℎℎE are the final representation of user D and item E, respectively.
Model parameters can be optimized with the following cross-entropy loss:

! = −
∑
〈D,E 〉
(1− HD,E ) log(1− ĤD,E ) + HD,E log( ĤD,E ), (5.60)

where 〈D, E〉 is a sample of user D and item E, and HD,E ∈ {0,1} is the ground truth
of the sample. We also optimize the L2 regularization of latent parameters to ensure
the robustness.

5.4.3 Experiments

5.4.3.1 Experimental Settings

Datasets. We evaluate the empirical performance of THIGE for next-item recom-
mendation on three real-world datasets including Yelp, CloudTheme and UserBe-
havior. For all datasets, we utilize the actual feedback of users as labels—among the
candidates displayed to users.

Baselines. WecompareTHIGEwith six representativemodels, including sequential
models (DIEN [49], STAMP [25]), long-term interest learningmodels (SHAN [48],
M3R [38]) and heterogeneous GNNs (MEIRec [9], GATNE [4]).

Implementation Details. For all baselines and our method, we set embedding size
3 = 128, 30 = 128, 3T = 16, heads ℎ = 8, the maximum iterations as 100, batch size
as 128, learning rate as 0.001 and weight of regularization as 0.001 on all three
datasets. The number of temporal buckets � is set as 60, 14, and 7 on the three
datasets, respectively. For DIEN, MEIRec and our THIGE, we set three-layers MLP
with dimensions 64, 32 and 1. For our THIGE and all baselines learning long- or
short-term preferences, we consider the last 10, 10 and 50 interactions as the short
term, and sample up to 50, 50 and 200 historical interactions as the long term for
Yelp, CloudTheme and UserBehavior respectively. We evaluate the performance of
next-item recommendation with the metrics of F1, PR-AUC and ROC-AUC.

5.4.3.2 Performance Comparison

We report the results of differentmethods for next-item recommendation in Table 5.6.
In general, THIGE achieves the best performance on the three datasets, outperform
the second best method by 4.04% on Yelp, 5.84% on CloudTheme and 0.51% on
UserBehavior.
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Table 5.6 Performance of next-item recommendation (with standard deviation). The best result is
in bold while the second best is underlined. PR. denotes PR-AUC and ROC. denotes ROC-AUC.
Dataset Metric DIEN STAMP SHAN M3R MEIRec GATNE THIGE

Yelp
F1 39.52 (1.31) 40.37 (0.94) 40.17 (1.10) 33.49 (1.04) 42.86 (0.44) 42.21 (0.96) 43.77 (0.66)
PR. 30.04 (0.37) 31.36 (1.23) 32.35 (1.10) 26.40 (0.92) 32.69 (0.54) 33.39 (1.42) 36.45 (1.66)
ROC. 74.69 (0.57) 73.74 (1.15) 70.91 (1.14) 72.03 (1.33) 74.65 (0.23) 76.15 (0.64) 79.23 (0.80)

CT.
F1 25.70 (1.25) 21.42 (0.91) 26.25 (1.09) 33.54 (1.67) 25.02 (0.98) 27.33 (0.50) 37.17 (1.36)
PR. 41.16 (0.22) 25.65 (0.44) 40.92 (1.09) 34.23 (0.95) 43.86 (0.42) 44.74 (0.20) 51.94 (0.43)
ROC. 68.41 (0.34) 52.97 (0.52) 67.48 (1.06) 62.92 (0.89) 69.98 (0.35) 71.22 (0.11) 75.38 (0.33)

UB.
F1 67.32 (3.45) 63.06 (1.51) 58.84 (7.83) 61.37 (2.20) 66.48 (1.16) 67.81 (1.14) 67.19 (0.98)
PR. 63.38 (0.19) 59.09 (0.22) 63.86 (4.76) 57.68 (0.03) 64.94 (0.15) 65.42 (0.05) 65.71 (0.09)
ROC. 62.90 (0.23) 58.29 (0.40) 55.45 (3.98) 57.82 (0.09) 64.82 (0.16) 65.06 (0.08) 65.39 (0.06)

Compared with sequential models (DIEN, STAMP, SHAN and M3R), the reason
that THIGE is superior is twofold. First, THIGE designs a more effective way
to integrate long- and short-term preferences, such that the current demands are
explicitly guided by historical habits. Second, it also considers different types of
interactions between users and items, leading to better performance.

Compared with GNN-based models (MEIRec and GATNE), the main improve-
ment of THIGE comes from jointlymodeling historical habits and evolving demands.
Moreover,MEIRecmodels heterogeneous interactions in an entirely decoupledman-
ner, whereas GATNE and THIGE achieves better performance by modeling their
latent relevance. It is also not surprising that heterogeneous GNN-based methods
typically outperform sequential models, as the former accounts for multi-typed in-
teractions whereas the latter only models single-typed interactions.

The whole details and experimental analysis of THIGE are introduced in [17].

5.5 Conclusion

Focusing on the preserving dynamics on real-world heterogeneous graphs, this chap-
ter introduces three representative models including DyHNE, SHCF and THIGE to
model the incremental heterogeneous structures, the type-aware sequential evolution
of entities as well as the multiple long-term habits and short-term demands. Specifi-
cally, this chapter designs a matrix perturbation based DyHNE to model the changes
between different semantic-level snapshots and learns the dynamic embedding of
heterogeneous nodes in Section 5.2. And then, as the dynamical interactions are in
the form of type-aware sequences, we present the heterogeneous graph neural col-
laborative filtering model to make full use of high-order heterogeneous collaborative
singles and sequential information for sequential recommendation in Section 5.3.
Furthermore, with the consideration that heterogeneous dynamics express the multi-
ple historical habits and current demands of entities, this chapter proposes a unified
model which integrates both heterogeneous long-/short-term preferences to handle
the problem of next-item recommendation in Section 5.4.
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