
Chapter 6
Emerging Topics of Heterogeneous Graph
Representation

Abstract Heterogeneous graph (HG) embedding, aiming to project HG into a low-
dimensional space, has attracted considerable research attention.We have introduced
some kinds of HG embeddingmethods, and there are also some other essential topics
on HG embeddings. In this chapter, we will introduce three novel HG embedding
methods. Specifically, to learn semantic-preserving and robust node representations,
we study the problem of adversarial learning on HG. Also, we work with large-scale
heterogeneous interaction graphs and focus on the problem of importance sampling
on HG embedding. Moreover, we explore the intrinsic spaces of HG and propose a
hyperbolic space based HG embedding method.

6.1 Introduction

Recently, some efforts begin to combine graph embedding methods with varied ma-
chine learning technologies to obtain better graph representations. These machine
learning technologies include generative adversarial networks (GANs) [12, 26], im-
portance sampling [5, 17], as well as hyperbolic representation [20, 22]. Specifically,
GANs hinge on the idea of adversarial learning, in which discriminators and gener-
ators compete with each other to learn better underlying data distributions. Besides,
importance sampling aims to reduce the computational and memory costs in ma-
chine learning. Moreover, hyperbolic spaces are non-Euclidean spaces, which are
more suitable to model data with a hierarchical structure.

Some homogeneous graph embedding methods combined with these technolo-
gies have shown their effectiveness in modeling graphs. For example, GAN-based
homogeneous graph embedding methods [6, 29] leverage generative and discrim-
inative components to learn graph representation. The generative component aims
to learn the underlying connectivity distribution in the graph, while the discrimi-
native component aims to predict the probability of edge existence between nodes.
Besides, to make large-scale graph representation learning possible, a natural idea
is to sample a small set of important nodes from the whole graph. The importance
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sampling strategies have achieved significant improvements for homogeneous graph
representation learning [5, 14, 17, 39]. Moreover, some researchers begin to embed
graphs into low-dimensional hyperbolic spaces. They find that embedding a graph
in hyperbolic spaces would have a low distortion when the graph has a hierarchical
structure [11, 22], and the hierarchical relation between nodes can be reflected by
analyzing hyperbolic embedding [22].

In this chapter, we introduce three emerging HG embedding methods. First, HG
embedding withGAN-based adversarial learning (namedHeGAN [16]) is designed
to learn semantic-preserving and robust node representations, which leverages the
relation-aware discriminator and generator to fit the heterogeneous setting. Second, to
reduce the cost of large-scale HG embedding,Heterogeneous importance Sampling
(named HeteSamp [19]) is proposed, which introduces both type-dependent and
type-fusion samplers with self-normalized and adaptive estimators to ensure the
model efficiency. Third, assuming the underlying spaces ofHGare hyperbolic spaces,
Hyperbolic Heterogeneous Network Embedding (named HHNE) [33] is proposed
to preserve the structure and semantic information of HG in hyperbolic spaces.

6.2 Adversarial Learning

6.2.1 Overview

GANs [12, 26] have been developed for learning robust latent representations in
various applications [31, 36]. In recent researches, GANs only study homogeneous
graphs [6, 24, 30, 37], such as the bibliographic data in Fig. 6.1a , so they do not con-
sider the heterogeneity of nodes and edges, resulting in unsatisfactory performance
on HG. In existing methods, positive (real) & negative (fake) nodes can only be
differentiated by the network structure, which is shown in Fig. 6.1b. Therefore, it is
urgent to design new formal discriminator and generator to distinguish and simulate
the real and fake semantic-rich nodes involving various relationships. Generators
are essentially picking an existing node from the original network according to the
learned distribution, without the ability to generalize to “unseen” nodes. Not surpris-
ingly, they do not generate the most representative fake nodes, as such nodes may
not even appear in the network. Thus, it is important to design a generator that can
efficiently produce latent fake samples.

We exploit the heterogeneity of HG in adversarial setting in order to learn
semantic-preserving and robust node representations. Different from previous ef-
forts [2, 6, 24, 30, 37], HeGAN raises two major novelties to address the challenges
of adversarial learning on HG. It is not only relation-aware to capture rich seman-
tics, but also equipped with a generalized generator that is effective and efficient.
It proposes a new form of discriminator and generator, as illustrated in Fig. 6.1c.
To a given relation, the discriminator can tell whether a node pair is real or fake,
whereas the generator can produce fake node pairs that mimic real pairs. To further
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improve the effectiveness and efficiency of sample generation, we propose a gen-
eralized generator, which is able to directly sample latent nodes from a continuous
distribution.

Fig. 6.1 Overview of HeGAN. (a) A toy example of HG for bibliographic data. (b) An example
of previous HG embedding. (c) Relation-aware discriminator and generator in our work. (d) The
framework of HeGAN for adversarial learning on HGs.

6.2.2 The HeGAN Model

6.2.2.1 Model Framework

HeGAN is based on GAN so that it consists of a discriminator and a generator.
It is a novel framework for HG embedding with GAN-based adversarial learning.
The discriminator and generator are relation-aware in HeGAN. The discriminator
is able to tell apart the specified relationship between nodes, and the generator will
try to generate nodes which has certain relation with other nodes. The node pair
is considered true in the following cases: (i) It is a positive pair based on network
topology; (ii) The pair is formed under the correct relation. HeGAN provides a
generalized generator, which is able to directly sample latent nodes from a continuous
distribution, such that (i) no softmax computation is necessary; and (ii) fake samples
are not restricted to the existing nodes.

Existing studies typically model the distribution of nodes using some forms of
softmax over all nodes in the original network. In terms of effectiveness, their fake
samples are limited to the nodes in the network, whereas the most representative
fake samples may fall “in between” the existing nodes in the embedding space.
For the bibliographic data in Fig. 6.1a, given a paper ?2, it can only choose fake
samples from V , such as 01 and 03. However, both may not be adequately similar to
real samples such as 02. Towards a better sample generation, HeGAN introduces a
generalized generator that can produce latent nodes not appearing in the embedding
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space. The generator can sample fake nodes directly without using a softmax. The
framework of HeGAN is in Fig. 6.1d.

6.2.2.2 Relation-aware Discriminator

In an HG, the relation-aware discriminator � (4E |D,A;\�) evaluates the relation A
between the pair of nodes D and E. Specifically, D ∈ V is a given node and A ∈ R is
a given relation from a HG G, 4E is the embedding of a sample node E (which can
be real or fake), and \� denotes the model parameters of �. In essence, � outputs
a probability that the sample E is connected to D under the relation A . We quantify
this probability as:

� (4E |D,A;\�) =
1

1+ exp
(
−4�D

>
"�
A 4E

) , (6.1)

where 4E ∈ R3×1 is the embedding of the sample E, 4�D ∈ R3×1 is the learnable
embedding of node D, and "�

A ∈ R3×3 is a learnable relation matrix for relation A.
\� = {4�D : D ∈ V , "�

A : A ∈R} forms the model parameters of �, i.e., the union of
all node embeddings and relation matrices learnt by �. Naturally, the probability
should be high when E is a positive sample related to D through A , or low when it
is a negative sample. In general, a sample E forms a triple 〈D, E,A〉 together with the
given D and A , and each triple belongs to one of the three cases below with regard to
its polarity. Each case also contributes to one part of the discriminator loss, inspired
by the idea of conditional GAN [26].

Case 1: Connected under a given relation. That is, nodes D and E are indeed
connected through the right relation A on the HG G, such as 〈02, ?2,write〉 shown in
Fig. 6.1a. Such a triple is considered positive and can be modeled by the below loss.

L�1 = E〈D,E,A 〉∼%G − log� (4�E |D,A). (6.2)

Here we draw the positive triple from the observed G, denoted as 〈D, E,A〉 ∼ %G .
Case 2: Connected under an incorrect relation. That is, D and E are connected on

the HG under a wrong relation A ′ ≠ A, such as 〈02, ?2,view〉. The discriminator is
expected to mark them as negative, as their connectivity does not match the desired
semantics carried by the given relation A. We define this part of loss as follows:

L�2 = E〈D,E 〉∼%G ,A ′∼%R′ − log
(
1−� (4�E |D,A ′)

)
. (6.3)

Here, we still draw the pair of nodes 〈D, E〉 from G, but the negative relation A ′ is
drawn fromR′ =R \ {A} uniformly.

Case 3: Fake node from a relation-aware generator. That is, given a node D ∈ V ,
it can form a fake pair with the node E supplied by the generator � (D,A;\�), such
as 〈0′, ?2,write〉 in Fig. 6.1d. The generator is also relation-aware: It attempts to
generate a fake node’s embedding that mimics the real nodes connected to D under
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the correct relation A . Again, the discriminator aims to identify this triple as negative,
which can be formulated as follows.

L�3 = E〈D,A 〉∼%G ,4′E∼� (D,A ;\� ) − log
(
1−� (4′E |D,A)

)
. (6.4)

Note that the fake sample E’s embedding 4′E is drawn from the generator �’s learnt
distribution. On the other hand, the discriminator� simply treats 4′E as non-learnable
input, and only optimizes its own parameters \� .

The loss function of the discriminator is comprehensive by the above three parts:

L� = L�1 +L
�
2 +L

�
3 +_

� ‖\� ‖22, (6.5)

where _� > 0 controls the regularization term to avoid overfitting. The parameters
\� of the discriminator can be optimized by minimizing L� .

6.2.2.3 Relation-aware Generalized Generator

Given a node D ∈ V and a relation A ∈R, the generator � (D,A;\�) aims to generate
a fake node E likely to connect to D in the context of relation A . In other words, E
should be as close as possible to a real node on G, in which has 〈D, E,A〉 ∼ %G . On the
other hand, the generator is generalized, which means the fake node E can be latent
and not found in V .

To meet the two requirements, the generator should also employ relation-specific
matrices (for relation-awareness), and generate samples from an underlying contin-
uous distribution (for generalization). One of the suitable distributions is Gaussian
distribution:

N (4�D
>
"�
A ,f

2�), (6.6)

where 4�D ∈ R3×1 and "�
A ∈ R3×3 denote the node embedding of D ∈ V and the

relation matrix of A ∈R for the generator. In other words, it is a Gaussian distribution
with mean 4�D

>
"�
A and covariance f2� ∈ R3×3 for some choices of f. Intuitively,

the mean represents a fake node is likely to be connected to D by relation A , and the
covariance represents potential deviations. As neural networks have shown strong
ability in modeling complex structure [15], we integrate the multi-layer perceptron
(MLP) into the generator for enhancing the expression of the fake samples. Hence,
our generator is formulated as follows,

� (D,A;\�) = 5 (,! · · · 5 (,1444 + 11) + 1!), (6.7)

where we draw 4 from the distribution N (4�D
>
"�
A ,f

2�). Here ,∗ and 1∗ respec-
tively denote the weight matrix and the bias vector for each layer, and 5 is an activa-
tion function. The parameter set of the generator is thus \� = {4�D : D ∈ V , "�

A : A ∈
R,,∗, 1∗}, i.e., the union of all node embeddings and relation matrices, as well as
the parameters of MLP.
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As motivated earlier, the generator aims to fool the discriminator by generating
close-to-real fake samples, such that the discriminator gives high score to them.

L� = E〈D,A 〉∼%G ,4′E∼� (D,A ;\� ) − log� (4′E |D,A) +_� ‖\� ‖22, (6.8)

where _� > 0 controls the regularization term. The parameters \� of the generator
can be optimized by minimizing L� .

Algorithm 6.1Model training for HeGAN.
Input: HG G, number of generator and discriminator trainings per epoch =� , =� , number of

samples =B
1: Initialize \� and \� for � and �, respectively
2: while not converge do
3: for = = 0; = < =� do ⊲ Discriminator training
4: Sample a batch of triples, i.e., 〈D, E, A 〉 ∼ %G
5: Generate =B fake nodes 4′E ∼� (D, A ; \�) for each 〈D, A 〉
6: Sample =B relations A ′ ∼ %R′ for each 〈D, E 〉
7: Update \� according to Eq. 6.5
8: end for
9: for = = 0; = < =� do ⊲ Generator training
10: Sample a batch of triples, i.e., 〈D, E, A 〉 ∼ %G
11: Generate =B fake nodes 4′E ∼� (D, A ; \�) for each 〈D, A 〉
12: Update \� according to Eq. 6.8
13: end for
14: end while
15: return \� and \�

6.2.2.4 Model Training

We adopt the iterative optimization strategy to train HeGAN. The iterative optimiza-
tion methods follow the steps below: At each iteration, \� is fixed first, and then the
generator generates fake samples to optimize \� and thus improve the discriminator.
Next, \� is fixed, followed by optimizing \� in order to produce increasingly better
fake samples as evaluated by the discriminator. The above steps repeat until the
model converges. The model training for HeGAN is outlined in Algorithm 6.1.

6.2.3 Experiments

6.2.3.1 Experimental Settings

We conduct extensive experiments on three benchmark datasets [10, 15], namely
DBLP (with four types of nodes: Author, paper, conference and term), Yelp (user,
business, service, star and reservation), AMiner (author, paper, conference and
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reference). We organize them into HGs, as summarized in Table 6.1. We perform
node classification and link prediction on three datasets.

Table 6.1 Description of datasets.
Datasets #Nodes #Edges #Node types #Labels
DBLP 37,791 170,794 4 4
Yelp 3,913 38,680 5 3

Aminer 312,776 599,951 4 6

For the baselines, we consider three categories of network embedding methods:
Traditional (Deepwalk [25], LINE [28]), GAN-based (GraphGAN [30], ANE [6])
and HG (HERec-HNE [27], HIN2vec [10], Metapath2vec [8]) embedding algo-
rithms.

6.2.3.2 Node Classification

We use 80% of the labeled nodes to train a logistic regression classifier, and test the
classifier on the remaining 20% of the nodes. We report Accuracy on the test set in
Table 6.2.

Table 6.2 Performance comparison on node classification. (bold: best; underline: runner-up).

Methods DBLP Yelp AMiner
Micro-F1 Macro-F1 Accuracy Micro-F1 Macro-F1 Accuracy Micro-F1 Macro-F1 Accuracy

Deepwalk 0.9201 0.9242 0.9298 0.8262 0.7551 0.8145 0.9519 0.9460 0.9529
LINE-1st 0.9239 0.9213 0.9285 0.8229 0.7440 0.8126 0.9776 0.9713 0.9788
LINE-2nd 0.9144 0.9172 0.9236 0.7591 0.5518 0.7571 0.9469 0.9341 0.9471
GraphGAN 0.9198 0.9210 0.9286 0.8098 0.7268 0.7820 - - -

ANE 0.9143 0.9153 0.9189 0.8232 0.7623 0.7932 0.9256 0.9203 0.9221
HERec-HNE 0.9214 0.9228 0.9299 0.7962 0.7713 0.7912 0.9801 0.9726 0.9784
HIN2vec 0.9141 0.9115 0.9224 0.8352 0.7610 0.8200 0.9799 0.9775 0.9801

Metapath2vec 0.9288 0.9296 0.9360 0.7953 0.7884 0.7839 0.9853 0.9860 0.9857
HeGAN 0.9381∗∗ 0.9375∗∗ 0.9421∗∗ 0.8524∗∗ 0.8031∗∗ 0.8432∗∗ 0.9864∗ 0.9873∗ 0.9883∗

In node classification, HeGAN consistently outperforms the best baseline with
statistical significance. It is also worth noting that our performance margins over
the best baseline become smaller compared to the node clustering task, since in
classification all methods are helped by the supervision, narrowing their gaps.

6.2.3.3 Link Prediction

In this task, we predict user-business links on Yelp, and author-paper links on DBLP
and AMiner. We randomly hide 20% of such links from the original network as the
ground truth positives, and randomly sample disconnected node pairs of the given
form as negative instances. The ground truth serves as our test set. We adopt two
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Table 6.3 Performance comparison on link prediction. (bold: best; underline: runner-up).

Methods DBLP Yelp AMiner
Acc AUC F1 Acc AUC F1 Acc AUC F1

Deepwalk 0.5441 0.5630 0.5208 0.7161 0.7825 0.7182 0.4856 0.5182 0.4618
LINE-1st 0.6546 0.7121 0.6685 0.7226 0.7971 0.7099 0.5983 0.6413 0.6080
LINE-2nd 0.6711 0.6500 0.6208 0.6335 0.6745 0.6499 0.5604 0.5114 0.4925

Logistic GraphGAN 0.5241 0.5330 0.5108 0.7123 0.7625 0.7132 - - -
ANE 0.5123 0.5430 0.5280 0.6983 0.7325 0.6838 0.5023 0.5280 0.4938

Regression HERec-HNE 0.7123 0.7823 0.6934 0.7087 0.7623 0.6923 0.7089 0.7776 0.7156
HIN2vec 0.7180 0.7948 0.7006 0.7219 0.7959 0.7240 0.7142 0.7874 0.7264

Metapath2vec 0.5969 0.5920 0.5698 0.7124 0.7798 0.7106 0.7069 0.7623 0.7156
HeGAN 0.7290∗∗ 0.8034∗∗ 0.7119∗∗ 0.7240∗∗ 0.8075∗∗ 0.7325∗∗ 0.7198∗∗ 0.7957∗∗ 0.7389∗∗

Deepwalk 0.5474 0.7231 0.6874 0.5654 0.8164 0.6953 0.5309 0.6064 0.6799
LINE-1st 0.6647 0.7753 0.7363 0.6769 0.7832 0.7199 0.6113 0.6899 0.7123
LINE-2nd 0.4728 0.4797 0.6325 0.4193 0.7347 0.5909 0.5000 0.4785 0.6666

Inner GraphGAN 0.5532 0.6825 0.6214 0.5702 0.7725 0.6894 - - -
ANE 0.5218 0.6543 0.6023 0.5432 0.7425 0.6324 0.5421 0.6123 0.6623

Product HERec-HNE 0.5123 0.7473 0.6878 0.5323 0.6756 0.7066 0.6063 0.6912 0.6798
HIN2vec 0.5775 0.8295 0.6714 0.6273 0.8340 0.4194 0.5348 0.6934 0.6824

Metapath2vec 0.4775 0.6926 0.6287 0.5124 0.6324 0.6702 0.6243 0.7123 0.6953
HeGAN 0.7649∗∗ 0.8712∗∗ 0.7837∗∗ 0.7391∗∗ 0.8298 0.7705∗∗ 0.6505∗∗ 0.7431∗∗ 0.7752∗∗

ways to perform link prediction, namely, logistic regression and inner product. The
evaluation metrics consist of Accuarcy, AUC and F1, as shown in Table 6.3.

We observe that, the performance of HeGAN over the best baseline is much larger
with inner product than with logistic regression. It is hypothesized that HeGAN in-
nately learns a much better structure and semantics preserving embedding space than
the baseline methods, since the inner product only relies on the learnt representations
without resorting to any external supervision.

The complete method and more experiments can be found in [16].

6.3 Importance Sampling

6.3.1 Overview

To make large-scale graph representation learning possible, researchers have pro-
posed several sampling strategies on Graph Neural Networks (GNNs), including
node-wise neighborhood sampling [14, 35] and layer-wise neighborhood sam-
pling [5, 17, 39] to accelerate the training process of GNNs by reducing the number
of edges in computation. The former is to sample neighbors for each node while the
latter is to sample neighbors from the whole graph. Unfortunately, both the node-
and layer-wise sampling only deal with homogeneous graphs, which are inadequate
in many real-world scenarios such as E-commerce graphs, as they (1) deal with
homogeneous graphs only; (2) take all the nodes of a graph as initial candidates; (3)
still incur rapidly increasing cost with more layers. There are two challenges we have
to face with as follows.
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First, how to design an effective sampler that works with the heterogeneous
neighborhoods? While a sampler can be easily defined on a per-node, per-type
basis, it is not clear how we can sample neighborhoods in a batch, given that the
candidates consist of different types of nodes. Two alternatives could work, namely,
type-dependent and type-fusion sampling. In the former, a sampler is deployed
for each neighbor type, and these type-based samplers sample from their respective
sub-neighborhood on their own. In the latter, a single sampler is deployed, which
treats the entire common neighborhood of the batch as its candidates. Intuitively, the
type-fusion sampler would work better, as it takes the influences of total types of
interactions into account and models the sampling distribution over all types jointly.

Second, how to design the corresponding effective estimators with the sampled
heterogeneous neighborhoods? With the neighbors being sampled based on the
global importance in a batch, traditional importance sampling could introduce un-
wanted variance because of the imbalance between the local importance to the given
target node and the global importance to the given batch. To address this challenge,
we propose self-normalized estimators and adaptive estimators, respectively. The
former is to adjust the estimators by self-normalizing importance of sampled neigh-
borhoods while the latter is to automatically learn the global importance (i.e., the
importance distribution of candidate neighborhoods) by modeling both structural
and attributed information.

Finally, we test the proposed sampling strategies on two public datasets, and the
experimental results demonstrate that the proposed framework can achieve statisti-
cally significant improvements. Compared with the full model without any sampling,
we achieve a memory cost reduction by up to 92.48% and a time cost reduction by up
to 85.95%, while maintaining the same level of accuracy on two real-world datasets.

6.3.2 The HeteSamp Model

This section introduces the architecture of the proposed HeteSamp model, which
consists of the the general Heterogeneous Interaction Graph Embedding (named
HIGE) and the heterogeneous sampling framework. The heterogeneous sampling
framework leverages type-dependent and type-fusion strategies to overcome the
expensive time cost and high computational complexity. Notice that, we name the
large-scale heterogeneous graph as heterogeneous interaction graph to emphasize
the rapidly increasing scale. Moreover, as HeteSamp consists of multiple samplers
and estimators, we name the specific strategies according to their adopted sampler
and estimator.

6.3.2.1 The General HIGE

To tackle with HIGs, a general idea is to reconstruct node embeddings by prop-
agating information from its heterogeneous neighbors, and backwardly propagate
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Fig. 6.2 The sampling processes of type-dependent and type-fusion sampling.

gradients [32, 38, 4], as shown in Fig. 6.2a. Specifically, given a node E8 with type
q(E8) and its edges {4E8 ,E9 ,A |E 9 ∈NE8 ,A , A ∈R}, the aggregated information of node
E8 from type-A neighborhoods is

666′E8 ,A =
∑

E9 ∈NE8 ,A

1
|NE8 ,A |

F(E8 , E 9 , A)ℎℎℎE9 , (6.9)

where 666′E8 ,A is the aggregated information,NE8 ,A is the type-A neighborhoods of node
E8 , E 9 ∈NE8 ,A is a specific type-A neighbor of node E8 , F(E8 , E 9 , A) denotes the weight
of edge 4E8 ,E9 ,A , ℎℎℎE9 ∈ R3 denotes the embedding of node E 9 , 3 is the dimension of
ℎℎℎE9 . F(E8 , E 9 , A) between node E8 and E 9 is calculated by

F(E8 , E 9 , A) = f(GGGE8 ,E9 ,A___A + 1A ), (6.10)

where f is an activation function, GGGE8 ,E9 ,A ∈ R3A is the edge features between node
E8 and E 9 , 3A is the length of type-A edge features, ___A ∈ R3A×1 and 1A ∈ R are the
weight and bias parameters shared by type-A edges.

We then take all semantics into account by aggregating information fromdifferent-
typed neighborhoods and constructing the global embedding ℎℎℎ′E8 ∈ R

3 of node E8 as

ℎℎℎ′E8 = f
(
2>=20C (666′E8 ,A0 , 666

′
E8 ,A1 , · · · , 666

′
E8 ,A|R| ),,, q (E8) + 1q (E8)

)
, (6.11)

where f is an activation function, 2>=20C (·) is the concatenation option, ,,, q (E8) ∈
R |R |3×3 denotes the projection matrix of type-q(E8) nodes, 1q (E8) denotes the bias
and |R| denotes the total number of edge types R in the heterogeneous graph. The
computational complexity of the general model is linear with the scale of edges and
nodes on heterogeneous graphs.

6.3.2.2 Batch-Wise Heterogeneous Sampling

To reduce computational overhead and memory cost of the training process, a naiv̈e
idea is to sample several neighbors rather than aggregating information from all
neighborhoods. Previous works [14, 35] on homogeneous works usually adopt node-
wise sampling to sample several neighbors per node for learning. Based on the global
and local structural information, current works [5, 17, 39] propose layer-wise sam-
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pling strategies which consider the whole neighborhood as the candidates. However,
these strategies are to deal with homogeneous graphs but ignore the abundant seman-
tics of heterogeneous nodes and edges. Moreover, these strategies can only deal with
small graphs because the overhead for node-wise and layer-wise sampling during
optimization could be quite expensive, or even unaffordable.

In this section, Eq. (6.9) can be re-written as

666′E8 ,A = E@

[
?(E 9 |E8 , A)
@(E 9 |���: )

F(E8 , E 9 , A)ℎℎℎE9
]
, (6.12)

where ���: denotes the target nodes in the : Cℎ mini-batch, @(E 9 |���: ) denotes the
corresponding sampling probability in the : Cℎ mini-batch, or in other words, the
importance in this batch, and ?(E 9 |E8 , A) equals to 1

|NE8 ,A
| . Thereby, we attempt

to make heterogeneous sampling for each batch. The batch-wise heterogeneous
sampling probability is defined as

Ê 9 ∼ @(Ê 9 |E1, E2, · · · , E |���: |) E 9 ∈ {NE8 ,A |A ∈R, E8 ∈ ���: }, (6.13)

where Ê 9 is the sampled neighbor. As shown in Fig. 6.2a, we sample instances
from the union neighborhood of all the target nodes in a batch, where the union
neighborhood denotes the union of the individual neighbors of each target node.
Since sampling is now done for each batch instead of each target node, batch-wise
sampling is often a good choice to reduce computational overhead and memory
cost of the training process. Compared with layer-wise sampling methods [5, 17,
39] which require the total nodes as candidates and have to load the whole graph
structure before training, our batch-wise heterogeneous sampling focuses on the
neighborhood union in the current batch. Compared with node-wise sampling which
sample neighborhoods for each target node, our batch-wise heterogeneous sampling
contains the advantages of reducing the overhead of sampling.

6.3.2.3 Type-Dependent Sampling Strategy

By now, we have defined the general batch-wise heterogeneous sampling. Differ-
ent from traditional importance sampling, the neighborhoods of each batch connect
with target nodes based on different-typed interactions. A straightforward idea is to
design a sampler for each type, respectively. For example, in Fig. 6.2b, there are
four types of candidates, and we sample neighbors from each type of candidates re-
spectively by using one sampler. By adopting type-dependent sampling, we consider
@(E 9 |E1, E2, · · · , E |���: |) as a set of {@A (E 9 |·) |A ∈ R}, and sample type-A neighborhoods
with the corresponding sampler @A (E 9 |·). The remaining problem for type-dependent
sampling is how to design the exact form of this sampler so as to keep low variance
for efficient training. Here we define the average information `̀̀@A of 666

′
8,A

as
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`̀̀@A =
1
|���: |

∑
E8 ∈���:

666′E8 ,A =
1
|���: |

∑
E9

@A (E 9 |·)
∑
E8 ∈���:

?(E 9 |E8 , A)F(E8 , E 9 , A)ℎℎℎE9
@A (E 9 |·)

, (6.14)

where |���: | is the number of type-A samples. Then, the variance +0A@A of `̀̀@A is
calculated by

+0A@A ( `̀̀@A ) =
1
|���: |
E@A

[
`̀̀@A @A (E 9 |·) −

∑
E8 ∈���: ?(E 9 |E8 , A)F(E8 , E 9 , A)ℎℎℎE8

]2

@A (E 9 |·)2
.

(6.15)

To ensure minimizing the variance, a better sampler is shown as

@A (E 9 ) =
∑
E8 ∈���: ?(E 9 |E8 , A)2∑

E9

∑
E8 ∈���: ?(E 9 |E8 , A)2

. (6.16)

6.3.2.4 Type-Fusion Sampling Strategy

Essentially, the type-dependent strategy pays attention to the influence of same-type
neighborhoods, without jointly considering the effect of heterogeneous types. Thus,
they only reduce the individual variance of each type, lacking a global picture on the
overall variance of the batch. To address this weakness, we propose a type-fusion
sampling strategy which considers the entire neighborhoods as the candidates.

The aggregation in Eq. (6.11) are to gather information from different-typed
neighborhoods, and can be rewritten as

666′E8 =
∑
A ∈R

∑
E9 ∈NE8 ,A

?(E 9 |E8 , A)F(E8 , E 9 , A)ℎℎℎE9,,,A , (6.17)

where,,,A ∈ R3×3 denotes the relation-wise projection matrix. Under the type-fusion
strategy, the average information in :-th batch over all types is given by

`̀̀@ =
1
|���: |

∑
E8 ∈���:

666′E8 =
1
|���: |

∑
E9

@(E 9 |·)
∑
A ∈R

∑
E8 ∈���:

?(E 9 |E8 , A)F(E8 , E 9 , A)ℎℎℎE9,A
@(E 9 |·)

,

(6.18)
As shown in Fig. 6.2c, the different-typed neighborhoods are sampled according to
the type-fusion sampling distribution. Similar to that in Section 6.3.2.3, the corre-
sponding sampler is defined as follows.

@B (E 9 ) =
∑
A ∈R

∑
E8
?(E 9 |E8 , A)2∑

A ∈R
∑
E9

∑
E8 ∈���: ?(E 9 |E8 , A)2

, (6.19)

where @B (E 9 ) is the structure-based type-fusion sampler.
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While the above sampling strategies only consider link-based weight as the impor-
tance of nodes but ignoring the attributed-based importance on edges, we further pay
attention to the edge features within HIGs and propose the corresponding sampler
as follows

@0 (E 9 ) =
∑
A ∈R

∑
E8
?(E 9 |E8 , A) 5 (GGG(E8 , E 9 , A))∑

A ∈R
∑
E9

∑
E8 ∈���: ?(E 9 |E8 , A) 5 (GGG(E8 , E 9 , A))

, (6.20)

where @0 (E 9 ) denotes the adaptive sampler, 5 (GGG(E8 , E 9 , A)) denotes the importance
of edge features which is calculated by f(GGG(E8 , E 9 , A),,, G,A ) and,,, G,A ∈ R3A×1 is the
type-A learnable parameter.

6.3.2.5 Heterogeneous Self-Normalized and Adaptive Estimators

In type-dependent or type-fusion strategies, the batch-wise estimator is

6̂66E8 =
1
=

∑
A ∈R

∑
E9 ∈N̂���: ,A

?(Ê 9 |·)
@(Ê 9 |·)

F(E8 , Ê 9 , A)ℎℎℎ Ê9,,,A , (6.21)

where 6̂66E8 is the approximated information, = is the number of samples, N̂���: ,A is the
sampled type-A neighborhoods in this batch, ?(Ê 9 |·) is equal to 1

|NE8 ,A
| and @(Ê 9 |·)

denotes the heterogeneous samplers, such as @A , @B and @0. However, this could
increase the variance resulted from the imbalance of ?(Ê 9 |·) and @(Ê 9 |·).

To address such problem, for structure-based @B (E 9 ), a promising way is to
balance the weights based on self-normalized importance, similar to that in [23].
The corresponding estimator can be computed as

6̂66B=,E8 =
∑
A ∈R

∑
Ê9 ∈N̂E8 ,A

c(Ê 9 )∑
Ê′
9
∈N̂E8 ,A

c(Ê′
9
)FE8 ,E9 ,A ℎ

ℎℎ 9,,,A , (6.22)

where 6̂66B=,E8 denotes the self-normalized information, c(E 9 ) =
? (E9 | ·)
@ (E9 | ·) , N̂A is the

sampled neighborhoods of type A . Besides, for the adaptive sampling, we add the
variance to the loss function and explicitly minimize the variance during training to
achieve a better @0 (E 9 ).

6.3.2.6 Optimization Framework

The overall loss function consists of four parts

!: = !C0B:,: +U!4?,: + VΩ(�) + b+0A@0 ,: ( ˆ̀@), (6.23)
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where !: is the loss value in :-th batch, !C0B:,: is the loss from supervised learning
in the same batch, !4?,: is the embedding propagation loss with sampling in the
:-th batch, +0A@0 ,: ( ˆ̀@) is the variance of sampled information, Ω(�) is the regu-
larization of all latent parameters, and U, V and b are three hyper-parameters. Notice
that, for type-dependent sampling and structure-based type-fusion sampling, b is 0.

6.3.3 Experiments

6.3.3.1 Experimental Settings

Datasets. We evaluate the empirical performance of our method on two real-world
heterogeneous graphs, including the small Aminer graph consisting of 41,523 nodes
and 199,429 edges, and the large Alibaba graph consisting of 4,527,222 nodes and
49,785,900 edges.

Baseline. We first compare our various importance sampling strategies with the
general HIGE model and HAN [32] without any sampling. We also compare our
model with state-of-the-art sampling algorithms on GCNs including Fast-GCN [17]
and AS-GCN [5] to showcase our advantage of effectiveness and scalability, whereas
the sampling-basedmodels not only achieve superior accuracy, but also scale to large
graphs. Finally, to study the performance of our proposed variance reduction, we
also substitute our variance reduction sampler with a uniform sampler.

Parameter Settings. For all baselines and our methods, we set V = 0.1, W = 0.1,
k = 0.1, U = 0.4. The maximum iteration is 100 for Aminer and 5 for Alibaba. We
adopt Micro-F1 and Macro-F1 as the evaluation metrics for node classification on
Aminer while adopting F1 and AUC as the evaluation metrics for link prediction on
Alibaba. All the metrics are positively related to the performance of methods.

6.3.3.2 Empirical Validation

We perform empirical validation on the small Aminer graph for node classification
and the much larger Alibaba interaction graph for link prediction. Notice that the
non-HIGE-based baselines, GraphsAGE, Fast-GCN and AS-GCN are to deal with
node classification, and these baselines can only work on Aminer; they cannot
perform on Alibaba graph when the task is link prediction and this graph is too
large. Furthermore, they are likely to suffer from insufficient memory on the large-
scale Alibaba graph even if we implement the modified models for the task of link
prediction.
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(a) Aminer Memory (b) Alibaba Memory (c) Aminer Time (d) Alibaba Time

Fig. 6.3 Average memory cost and running time per iteration of training.

6.3.3.3 Effectiveness

We report the results in Table 6.4 and Table 6.5, respectively. We progressively
sample more neighbors per batch and the sampling rate ranges from about 3% to
24% on smaller Aminer and 1.25% to 10% on the larger Alibaba graph. We make
the following observations.

First, VarR-TF-AS generally achieves the best performance, whereas VarR-TF-
SN comes as a close competitor. In particular, VarR-TF-AS performs as well as
or even better than the original HIGE. This phenomenon is reasonable. On the
one hand, HIGE aggregates information from all neighbors which may introduce
noisy information while our sampling strategies are to sample valuable neighbors
for training. On the other hand, we optimize the sampler by reducing the variance
loss which enhances the similarity limitation between the sampled neighbors and its
target nodes.

Second, compared to the corresponding uniform samplers, the variance reduction
samplers guarantee more stable estimators and thus produce better results. In the
VarR-* methods, type-fusion strategies outperform type-dependent methods, as the
former consider all types jointly rather than independently, and reduce the variance
of the whole batch rather than a single type.

Third, our proposed general HIGE can perform competitively with or even better
than HAN. However, HAN has higher time complexity. For Alibaba dataset, the time
cost of HAN (about 1 day) is quite larger than HIGE (about 5 hours).

Forth, all sampling strategies for HIGE perform significantly better than GCN-
based models and GraphsAGE. On the one hand, sampling for HIGE takes the graph
heterogeneity into consideration, whereas the two GCN-based models do not make
use of such information. On the other hand, the sampling size or number of layers of
Fast-GCN and AS-GCN may be not enough. However, even under current settings,
Fast-GCN and AS-GCN are already several times slower than our method, as we
shall see in the efficiency study.
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Table 6.4 Micro/Macro-F1 scores for node classification on Aminer. Excluding HIGE and HAN,
the best method is bolded and the second best is underlined.

Micro-F1 Macro-F1
Sampling size 128 256 512 1024 128 256 512 1024
per batch ∼ 3% ∼ 6% ∼ 12% ∼ 24% ∼ 3% ∼ 6% ∼ 12% ∼ 24%
HIGE-Nil 0.1990 0.1961
HIGE 0.9646 0.9593
HAN 0.9512 0.9508

GraphSAGE 0.2022 0.2039 0.2125 0.2119 0.1989 0.2023 0.2036 0.2073
Fast-GCN 0.2117 0.2244 0.2318 0.2361 0.1850 0.1898 0.2116 0.2119
AS-GCN 0.2361 0.2307 0.2390 0.2390 0.2005 0.2028 0.2004 0.2068
Unif-TD 0.3043 0.4123 0.4256 0.4221 0.2638 0.3907 0.3553 0.3962
Unif-TF 0.1780 0.2229 0.3785 0.6296 0.1266 0.1952 0.3081 0.5727
VarR-TD 0.8086 0.7990 0.8971 0.9123 0.7913 0.7894 0.8945 0.9133
VarR-TF 0.9461 0.9671 0.9712 0.9675 0.9424 0.9651 0.9696 0.9664

VarR-TF-SN 0.9659 0.9643 0.9612 0.9684 0.9637 0.9629 0.9631 0.9603
VarR-TF-AS 0.9650 0.9676 0.9705 0.9687 0.9649 0.9667 0.9602 0.9671

Table 6.5 F1 and AUC scores for purchase prediction on the Alibaba graph. Excluding HIGE and
HAN, the best method is bolded and the second best is underlined.

F1 ROC-AUC
Sampling size 512 1024 2048 4096 512 1024 2048 4096
per batch ∼ 1.25% ∼ 2.5% ∼ 5% ∼ 10% ∼ 1.25% ∼ 2.5% ∼ 5% ∼ 10%
HIGE-Nil 0.3994 0.5134
HIGE 0.5663 0.7715
HAN 0.5618 0.7704

Unif-TD 0.4017 0.4226 0.4352 0.4371 0.5768 0.5826 0.5908 0.5924
Unif-TF 0.4008 0.4122 0.4125 0.4451 0.5731 0.5790 0.5862 0.5977
VarR-TD 0.4841 0.5003 0.5274 0.5682 0.6207 0.6504 0.6925 0.7475
VarR-TF 0.5769 0.5908 0.5709 0.5833 0.7648 0.7671 0.7653 0.7796

VarR-TF-SN 0.5780 0.5883 0.5802 0.5798 0.7669 0.7625 0.7660 0.7742
VarR-TF-AS 0.5729 0.5913 0.5806 0.5844 0.7674 0.7641 0.7676 0.7799

6.3.3.4 Efficiency

We first investigate the efficiency of our sampling strategies in memory cost. As
shown in Fig. 6.3a and Fig. 6.3b, our models incur by up to 92.48% less memory.
Further note that the differences in both the number of edges and memory cost are
more prominent on the larger Alibaba graph, indicating excellent scalability of our
sampling strategies. Second, in terms of the running time, as shown in Fig. 6.3c and
Fig. 6.3d, VarR-TF-AS and VarR-TF-SN require less time than HIGE to attain close
performance on the two datasets. Compared to HIGE, our models incur by up to
84.39% less time cost. Notice that when dealing with large-scale Alibaba dataset,
the time cost is quite larger (about 1 day) than HIGE (about 5 hours).

The specific designs of HeteSamp can be found in [19].
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6.4 Hyperbolic Representation

6.4.1 Overview

HG embedding has attracted considerable research attention recently. Most HG
embedding methods choose Euclidean spaces to represent HG graphs, which is
because Euclidean spaces are the natural generalization of our intuition-friendly,
and visual three-dimensional space. However, a fundamental problem is that what
are the appropriate or intrinsic underlying spaces of HGs? Therefore, we wonder
whether Euclidean spaces are the intrinsic spaces of HGs?

Recently, hyperbolic spaces have gained momentum in the context of network
science [20]. Hyperbolic spaces are spaces of constant negative curvature [3]. A
superiority of hyperbolic spaces is that they expand faster that Euclidean spaces [22].
Therefore, it is easy to model complex data with low-dimensional embedding in
hyperbolic spaces. Due to the characteristic of hyperbolic spaces, [20] assumes
hyperbolic spaces underlie complex network and finds that data with power-law
structure is suitable to be modeled in hyperbolic spaces. Also, some researchers
begin to embed different data in hyperbolic spaces. For instance, [7] embeds text in
hyperbolic spaces. [22] and [11] learn the hyperbolic embeddings of homogeneous
networks. However, it is unknown whether HGs are suitable to be embedded in
hyperbolic spaces.

In this section, we analyze the relation distribution in HGs and propose HHNE,
which is able to preserve the structure and semantic information in hyperbolic spaces.
HHNE leverages the meta-path guided random walk to generate heterogeneous
neighborhoods to capture the structure and semantic relations in HGs. Then the
proximity between nodes is measured by the distance in hyperbolic spaces. Also,
HHNE is able to maximize the proximity between the neighborhood nodes while
minimize the proximity between the negative sampled nodes. The optimization
strategy of HHNE is derived to optimize hyperbolic embeddings iteratively.

6.4.2 The HHNE model

6.4.2.1 Model Framework

HHNE leverages the meta-path guided random walk to obtain neighbors for each
node to capture the structure and semantic relations in HGs. Also, HHNE learns
the embeddings by maximizing the proximity between the neighborhood nodes and
minimizing the proximity between the negative sampled nodes. Moreover, we derive
the optimization strategy of HHNE to upgrade the hyperbolic embeddings.
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6.4.2.2 Hyperbolic HG Embedding

TodesignHGembeddingmethods in hyperbolic spaces,wemakes use of the Poincaré
ball model to describe hyperbolic spaces. Let D3 = {G ∈ R3 : ‖G‖ < 1} be the open
3-dimensional unit ball. The Poincaré ball model is defined by the manifold D3
equipped with the following Riemannian metric tensor 6DG :

6DG = _
2
G6
E where _G :=

2
1− ‖G‖2

, (6.24)

where G ∈ D3 , 6E = � denotes the Euclidean metric tensor.
HHNE aims to learn the representation of nodes to preserve the structure and

semantic correlations in hyperbolic spaces. Given an HG � = (+,�,), q,k) with
|)+ | > 1, HHNE is interested in learning the embeddings Θ = {\8} |+ |8=1 , \8 ∈ D

3 .
HHNE preserves the structure by facilitating the proximity between a node and its
neighborhoods. HHNE uses meta-path guided random walks [8] to obtain hetero-
geneous neighborhoods of a node. In meta-path guided random walks, the node
sequences are restrained by the node types which are defined by meta-paths. Specifi-
cally, let CE8 and C48 as the types of node E8 and edge 48 , respectively, given ameta-path

P = CE1

C41−−→ . . . CE8
C48−−→ . . .

C4=−1−−−−→ CE= , the transition probability at step 8 is defined as
follows:

? (E8+1 |E8CE8 ,P)=
{ 1
|#CE8+1 (E

8
CE8
)| (E

8+1, E8CE8
) ∈�, q (E8+1)= CE8+1

0 otherwise,
(6.25)

where E8CE8 is node E ∈ + with type CE8 , and #CE8+1 (E
8
CE8
) denotes the CE8+1 type of

neighborhood of node E8CE8 . The meta-path guided random walk strategy ensures
that the semantic relationships between different types of nodes can be properly
incorporated into HHNE.

In order to preserve the proximity between nodes and its neighborhoods in hyper-
bolic spaces, HHNEuses distances in Poincaré ball model tomeasure their proximity.
Given nodes embeddings \8 , \ 9 ∈ D3 , the distance in Poincaré ball is given by:

3D (\8 , \ 9 ) = cosh−1

(
1+2

‖\8 − \ 9 ‖2

(1− ‖\8 ‖2) (1− ‖\ 9 ‖2)

)
. (6.26)

It is worth noting that as the Poincaré ball model is defined in metric spaces, the
distance in Poincaré ball meets the triangle inequality and can well preserve the
transitivity in HG. Then, HHNE uses a probability to measure the node 2C is a
neighborhood of node E as follows:

?(E |2C ;Θ) = f[−3D (\E , \2C )],

where f(G) = 1
1+exp(−G) . Then the object of HHNE is to maximize the probability as

follows:
argmax

Θ

∑
E∈+

∑
2C ∈�C (E)

log ?(E |2C ;Θ). (6.27)
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To achieve efficient optimization, HHNE leverages the negative sampling proposed
in [21], which basically samples a small number of negative objects to enhance
the influence of positive objects. For a given node E, HHNE aims to maximize the
proximity between E and its neighborhood 2C while minimizes the proximity between
E and its negative sampled node =. Therefore, the objective function Eq. (6.27) can
be rewritten as follows:

L(Θ) = logf[−3D (\2C , \E )] +
"∑
<=1
E=<∼% (=) {logf[3D (\=< , \E )]}, (6.28)

where %(=) is a pre-defined distribution from which a negative node =< is drew
from for " times. HHNE builds the node frequency distribution by drawing nodes
regardless of their types.

6.4.2.3 Optimization

As the parameters of the model live in a Poincaré ball which has a Riemannian
manifold structure, the back-propagated gradient is a Riemannian gradient. It means
that the Euclidean gradient based optimization, such as \8← \8 +[∇�\8L(Θ), makes
no sense as an operation in the Poincaré ball, because the addition operation is not
defined in this manifold. Instead, HHNE can optimize Eq. (6.28) via a Riemannian
stochastic gradient descent (RSGD) optimization method [1]. In particular, let T\8D3
denote the tangent space of a node embedding \8 ∈ D3 , and HHNE can compute
the Riemannian gradient ∇'

\8
L(Θ) ∈ T\8D3 of L(Θ). Using RSGD, HHNE can be

optimized by maximizing Eq. (6.28), and a node embedding can be updated in the
form of:

\8← exp\8 ([∇
'
\8
L(Θ)), (6.29)

where exp\8 (·) is exponential map in the Poincaré ball. The exponential map is given
by [11]:

exp\8 (B) =

_\8

(
cosh(_\8 ‖B‖) + 〈\8 , B

‖B ‖ 〉 sinh(_\8 ‖B‖)
)

1+ (_\8 −1) cosh(_\8 ‖B‖) +_\8 〈\8 , B
‖B ‖ 〉 sinh(_\8 ‖B‖)

\8

+
1
‖B ‖ sinh(_\8 ‖B‖)

1+ (_\8 −1) cosh(_\8 ‖B‖) +_\8 〈\8 , B
‖B ‖ 〉 sinh(_\8 ‖B‖)

B.

(6.30)

As the Poincaré ball model is a conformal model of hyperbolic spaces, i.e., 6DG =
_2
G6
E, the Riemannian gradient ∇' is obtained by rescaling the Euclidean gradient

∇� by the inverse of the metric tensor, i.e., 1
6DG

:

∇'\8L =
(

1
_\8

)2
∇�\8L. (6.31)
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Furthermore, the gradients of Eq. (6.28) can be derived as follows:

mL
m\D<

=
4

U
√
W2−1

[
IE [D<] −f(−3D (\2C , \D< ))

]
·
[
\2C

V<
−
‖\2C ‖2−2〈\2C , \D<〉 +1

V2
<

\D<

]
,

(6.32)

mL
m\2C

=

"∑
<=0

4
V<

√
W2−1

[
IE [D<] −f(−3D (\2C , \D< ))

]
·
[
\D<

U
−
‖\D< ‖2−2〈\2C , \D<〉 +1

U2 \2C

]
,

(6.33)

where U = 1− ‖\2C ‖2, V< = 1− ‖\D< ‖2, W = 1+ 2
UV
‖\2C − \D< ‖2 and when < = 0,

D0 = E. IE [D] is an indicator function to indicate whether D is E. Then, HHNE can be
updated by using Eq. (6.32)-(6.33) iteratively.

6.4.3 Experiments

6.4.3.1 Experimental Setup

Datasets. The basic statistics of the two HGs used in our experiments are shown in
Table 6.6.

Table 6.6 Statistics of datasets.

DBLP # A # P # V # P-A # P-V
14475 14376 20 41794 14376

MovieLens # A # M # D # M-A # M-D
11718 9160 3510 64051 9160

Baselines. HHNE is compared with the following state-of-the-art methods: (1)
the homogeneous graph embedding methods, i.e., DeepWalk [25], LINE [28]
and node2vec [13]; (2) the heterogeneous graph embedding methods, i.e., meta-
path2vec [8]; (3) the hyperbolic homogeneous graph embedding methods, i.e.,
PoincaréEmb [22].
Parameter Settings. For random walk based methods DeepWalk, node2vec, metap-
ath2vec and HHNE, we set neighborhood size as 5, walk length as 80, walks per node
as 40. For LINE, metapath2vec, PoincaréEmb and HHNE, we set the number of neg-
ative samples as 10. For methods based on meta-path guided random walks, we use
“APA” for relation “P-A” in network reconstruction and link prediction experiments
in DBLP; “APVPA” for relation “P-V” in above experiments in DBLP; “AMDMA”
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for all relation in above experiments in MovieLens. In visualization experiment, in
order to focus on analyzing the relation of “A” and “P”, we use “APA”.

6.4.3.2 Network Reconstruction

Table 6.7 AUC scores for network reconstruction.
Dataset Edge Dimension Deepwalk LINE(1st) LINE(2nd) node2vec metapath2vec PoincaréEmb HHNE

DBLP

P-A

2 0.6933 0.5286 0.6740 0.7107 0.6686 0.8251 0.9835
5 0.8034 0.5397 0.7379 0.8162 0.8261 0.8769 0.9838
10 0.9324 0.6740 0.7541 0.9418 0.9202 0.8921 0.9887
15 0.9666 0.7220 0.7868 0.9719 0.9500 0.8989 0.9898
20 0.9722 0.7457 0.7600 0.9809 0.9623 0.9024 0.9913
25 0.9794 0.7668 0.7621 0.9881 0.9690 0.9034 0.9930

P-V

2 0.7324 0.5182 0.6242 0.7595 0.7286 0.5718 0.8449
5 0.7906 0.5500 0.6349 0.8019 0.9072 0.5529 0.9984
10 0.8813 0.7070 0.6333 0.8922 0.9691 0.6271 0.9985
15 0.9353 0.7295 0.6343 0.9382 0.9840 0.6446 0.9985
20 0.9505 0.7369 0.6444 0.9524 0.9879 0.6600 0.9985
25 0.9558 0.7436 0.6440 0.9596 0.9899 0.6760 0.9985

MoiveLens

M-A

2 0.6320 0.5424 0.6378 0.6402 0.6404 0.5231 0.8832
5 0.6763 0.5675 0.7047 0.6774 0.6578 0.5317 0.9168
10 0.7610 0.6202 0.7739 0.7653 0.7231 0.5404 0.9211
15 0.8244 0.6593 0.7955 0.8304 0.7793 0.5479 0.9221
20 0.8666 0.6925 0.8065 0.8742 0.8189 0.5522 0.9239
25 0.8963 0.7251 0.8123 0.9035 0.8483 0.5545 0.9233

M-D

2 0.6626 0.5386 0.6016 0.6707 0.6589 0.6213 0.9952
5 0.7263 0.5839 0.6521 0.7283 0.7230 0.7266 0.9968
10 0.8246 0.6114 0.6969 0.8308 0.8063 0.7397 0.9975
15 0.8784 0.6421 0.7112 0.8867 0.8455 0.7378 0.9972
20 0.9117 0.6748 0.7503 0.9186 0.8656 0.7423 0.9982
25 0.9345 0.7012 0.7642 0.9402 0.8800 0.7437 0.9992

A good HG embedding method should ensure that the learned embeddings can
preserve the original HG structure. The reconstruction error in relation to the embed-
ding dimension is then a measure for the capacity of the model. More specifically, we
use network embedding methods to learn feature representations. Then for each type
of links in the HG, we enumerate all pairs of objects that can be connected by such
a link and calculate their proximity [18], i.e., the distance in Poincaré ball model for
HHNE and PoincaréEmb. Finally, we use the AUC [9] to evaluate the performance
of each embedding method. For example, for link type “write”, we calculate all pairs
of authors and papers in DBLP and compute the proximity for each pair. Then using
the links between authors and papers in real DBLP network as ground-truth, we
compute the AUC value for each embedding method.

The results are shown in Table 6.7. As we can see, HHNE consistently performs
the best in all the tested HGs. The results demonstrate that HHNE can effectively
preserve the original network structure and reconstruct the network, especially on
the reconstruction of P-V and M-D edges. Also, please note that HHNE achieves
very promising results when the embedding dimension is very small. This suggests
that regarding hyperbolic spaces underlying HG is reasonable and hyperbolic spaces
have strong ability of modeling network when the dimension of spaces is small.
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Table 6.8 AUC scores for link prediction.
Dataset Edge Dimension Deepwalk LINE(1st) LINE(2nd) node2vec metapath2vec PoincaréEmb HHNE

DBLP

P-A

2 0.5813 0.5090 0.5909 0.6709 0.6536 0.6742 0.8777
5 0.7370 0.5168 0.6351 0.7527 0.7294 0.7381 0.9041
10 0.8250 0.5427 0.6510 0.8469 0.8279 0.7699 0.9111
15 0.8664 0.5631 0.6582 0.8881 0.8606 0.7743 0.9111
20 0.8807 0.5742 0.6644 0.9037 0.8740 0.7806 0.9106
25 0.8878 0.5857 0.6782 0.9102 0.8803 0.7830 0.9117

P-V

2 0.7075 0.5160 0.5121 0.7369 0.7059 0.8257 0.9331
5 0.7197 0.5663 0.5216 0.7286 0.8516 0.8878 0.9409
10 0.7292 0.5873 0.5332 0.7481 0.9248 0.9113 0.9619
15 0.7325 0.5896 0.5425 0.7583 0.9414 0.9142 0.9625
20 0.7522 0.5891 0.5492 0.7674 0.9504 0.9185 0.9620
25 0.7640 0.5846 0.5512 0.7758 0.9536 0.9192 0.9612

MoiveLens

M-A

2 0.6278 0.5053 0.5712 0.6349 0.6168 0.5535 0.7715
5 0.6353 0.5636 0.5874 0.6402 0.6212 0.5779 0.8255
10 0.6680 0.5914 0.6361 0.6700 0.6332 0.5984 0.8312
15 0.6791 0.6184 0.6442 0.6814 0.6382 0.5916 0.8319
20 0.6868 0.6202 0.6596 0.6910 0.6453 0.5988 0.8318
25 0.6890 0.6256 0.6700 0.6977 0.6508 0.5995 0.8309

M-D

2 0.6258 0.5139 0.6501 0.6299 0.6191 0.5856 0.8520
5 0.6482 0.5496 0.6607 0.6589 0.6332 0.6290 0.8967
10 0.6976 0.5885 0.7499 0.7034 0.6687 0.6518 0.8984
15 0.7163 0.6647 0.7756 0.7241 0.6702 0.6715 0.9007
20 0.7324 0.6742 0.7982 0.7412 0.6746 0.6821 0.9000
25 0.7446 0.6957 0.8051 0.7523 0.6712 0.6864 0.9018

6.4.3.3 Link Prediction

Link prediction aims to infer the unknown links in an HG given the observed HG
structure, which can be used to test the generalization performance of a network
embedding method. The experimental setting is similar to [34]. For each type of
edge, 20% of edges are removed randomly from the network while ensuring that
the rest network structure is still connected. The proximity of all pair of nodes are
calculated in the test. AUC is used as the evaluation metric.

From the results in Table 6.8, HHNE outperforms the baselines upon all the di-
mensionality, especially in the low dimensionality. The results can demonstrate the
generalization ability of HHNE. In DBLP dataset, the results of HHNE in 10 di-
mensionality exceed all the baselines in higher dimensionality results. In MovieLens
dataset, HHNE with only 2 dimensionality surpasses baselines in all dimension-
ality. Besides, both of LINE(1st) and PoincaréEmb preserve proximities of node
pairs linked by an edge, while LINE(1st) embed network into Euclidean spaces and
Poincaré embed network into hyperbolic spaces. PoincaréEmb performs better than
LINE(1st) in most cases, especially in dimensionality lower than 10, suggesting
the superiority of embedding network into hyperbolic spaces. Because HHNE can
preserve high-order network structure and handle different types of nodes in HG,
HHNE is more effective than PoincaréEmb.

More detailed introduction of HHNE can be found in [33].
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6.5 Conclusion

In this chapter, we have introduced three emerging HG embedding topics, as well as
the related HG embedding methods. For adversarial learning, HeGAN is designed
for learning semantic-preserving and robust HG embedding based on the adver-
sarial principle. Besides, for importance sampling, HeteSamp studies the problem
of accelerating large-scale HG embedding with importance sampling. Moreover,
for hyperbolic representation, HHNE makes the efforts to embed HGs in hyperbolic
spaces, and the optimization strategies are derived to optimize the hyperbolic embed-
ding. We hope more HG embedding methods with deeper insights can be proposed
to discover the abundant semantic of HG in the future.
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