
Chapter 7
Heterogeneous Graph Representation for
Recommendation

Abstract With the rapid development of web services, various kinds of useful aux-
iliary data (a.k.a., side information) become available in recommender systems. To
characterize these complex and heterogeneous auxiliary data, heterogeneous graph
(HG) representation methods have been widely adopted due to the flexibility in
modeling data heterogeneity. In this chapter, we introduce three HG representation
based recommendation systems solving the unique challenges existing in diverse
real-world scenarios, including Top-N recommendation (MCRec), cold-start rec-
ommendation (MetaHIN), bibliographic recommendation (ASI). In the field of HG
representation for recommendation, methods mainly contain three key components:
HG constructions, HG representation learning and recommendation based on the
HG representation.

7.1 Introduction

In recent years, recommender systems, which help users discover items of interest
from a large resource collection, have been playing an increasingly important role
in various online services [15], such as item recommendation and collaborator
recommendation. Traditional recommendation methods (e.g., matrix factorization)
mainly aim to learn an effective prediction function for recovering and completing
interaction matrix. With the rapid development of web services, various kinds of
auxiliary data (e.g., side information) becomes available in recommender systems.
Although auxiliary data is likely to contain useful information for recommendation,
it is difficult to model and utilize these heterogeneous and complex information in
recommender systems.

As a promising direction, heterogeneous graph has been proposed as a power-
ful information modeling method [30, 27, 25]. Due to its flexibility in modeling
data heterogeneity, heterogeneous graph (HG) has been adopted in recommender
systems to characterize rich auxiliary data. Under the HG based representation, the
recommendation problem can be considered as a similarity search task over the HG
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[30]. Such a recommendation setting is called as HG based recommendation. HG
based recommendation has been widely adopted in recommender systems due to its
excellence in modeling complex context information [8, 39, 28]. Although existing
HG based recommendation methods have achieved performance improvement to
some extent, they still meet unique challenges existing in diverse applications.

In this chapter, we introduce three HG representation based recommendation
systems solving the challenges in diverse real-world scenarios, including Top-N rec-
ommendation, cold-start recommendation and bibliographic recommendation. First,
to leverage rich meta-path based context for top-# recommendation,Metapath based
Context for Recommendation (named MCRec) is designed as a novel deep neural
network with the co-attention mechanism, explicitly learning the representation of
meta-path and their complex relationships. Second, to better address the cold-start
problem in recommendation, a Meta-learning approach to cold-start recommenda-
tion on Heterogeneous Information Networks (named MetaHIN) is proposed to
capture richer semantics, by exploiting the power of meta-learning at the model level
and HINs at the data level simultaneously. Third, to capture relationships between
authors in bibliographic recommendation, Author Set Identification model (named
ASI) first studies the problem of author set identification, which is to identify an
author set related to an anonymous paper.

7.2 Top-T Recommendation

7.2.1 Overview

Existing heterogeneous graph based recommendation methods can be categorized
into two types. The first type leverages path based semantic relatedness as direct
features for recommendation relevance [8, 39, 28], and the second type performs
some transformation on path based similarities for learning effective transformed
features [39, 42]. These two types of methods both extract meta-path based features
for improving the characterization of two-way user-item interactions, as illustrated
in Fig. 7.1. While these existing methods have two major shortcomings. First, these
models seldom learn an explicit representation for path or meta-path in the recom-
mendation task. Second, they do not consider themutual effect between themeta-path
and the involved user-item pair in an interaction.

A basic idea for the problems is to leverage rich meta-path information from
heterogeneous graph for top-# recommendation in a more principled way. Our main
idea is to: (1) learn explicit representations for meta-path based context tailored for
the recommendation task. (2) characterize a three-way interaction of the form: 〈
user, meta-path, item〉. However, the solution is challenging. We have to consider
three key problems: (1) how to design the base architecture that is suitable for the
complicated heterogeneous graph based interaction scenarios. (2) how to generate
meaningful path instances for constructing high-quality meta-path based context. (3)
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Fig. 7.1 The illustration for heterogeneous graph based recommendation setting (network schema,
meta-path, path instance) and the comparison between our model and previous methods (two-way
interaction v.s. three-way meta-path based interaction).

how to capture the mutual effect between the involved user-item pair and meta-path
based context in an interaction.

In this section, we introduce a novel deep neural network with the co-attention
mechanism by leveraging rich meta-path based context, which is able to learn
interaction-specific representations for users, items and meta-path context. We
present the proposedmodel that leveragesMeta-path basedContext forRecommendation,
called MCRec. To our knowledge, it is the first time that meta-path based context
has been explicitly modeled in a three-way neural interaction model for top-# rec-
ommendation in heterogeneous graph. More details about MCRec are given in the
next section.

7.2.2 The MCRec Model

7.2.2.1 Model Framework

Differing existing heterogeneous graph based recommendation models, which only
learn the representations for users and items, we explicitly incorporate meta-paths
as the context in an interaction between a user and an item. Instead of modeling
the two-way interaction 〈DB4A, 8C4<〉, we aim to characterize a three-way interac-
tion 〈DB4A, meta-paths, 8C4<〉. We present the overall architecture for the proposed
model in Fig. 7.2. As we can see, for learning a better interaction function that
generates the recommendations, we learn the representations (i.e., embedding) for
users, items and their interaction contexts. Besides the components for learning user
and item embeddings, the most important part lies in the embedding of meta-path
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based context. We firstly use a priority based sampling technique to select high-
quality path instances. Hence, the meta-path based context is first modeled into a
low-dimensional embedding using a hierarchical neural network. With the initially
learned embeddings for users, items and meta-path based context, the co-attention
mechanism further improves the three representations through alternative enhance-
ment. Due to the incorporation of meta-path based context, our model is expected to
yield a better performance and also improve the interpretability for recommendation
results.
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Fig. 7.2 The overall architecture of the proposed model.

7.2.2.2 Characterizing Meta-path based Context for Interaction

Sampling Path Instances via Priority based Random Walk. Existing heteroge-
neous graph embedding models mainly adopt a meta-path guided random walk
strategy to generate path instances [7], relying on a uniform sampling over the out-
going nodes. Intuitively, at each step, the walker should wander to a neighbor of
a higher “priority” score with a larger probability, since such an outgoing node
can reflect more reliable semantics by forming a closer link. Hence, we propose to
use a similar pretrain technique to measure the priority degree of each candidate
out-going nodes. Firstly, we train the feature based matrix factorization framework
SVDFeature [5] on all the available historical interaction records to learn a potential
vector for each node that has a history of user-item interactions. We can incorporate
the entities from heterogeneous graph related to an interaction as the context of a
training instance. With the learned latent factors, we can compute the pairwise simi-
larities between two consecutive nodes along a path instance, and then average these
similarities for ranking the candidate path instances. Finally, given a meta-path, we
only keep top  path instances with the highest average similarities.

Meta-path based Context Embedding. After obtaining path instances from
multiple meta-paths, we focus on how to model these meta-path based context as
an informative embedding. Our method naturally follows a hierarchical structure:
embedding a single path instance→ embedding a single meta-path→ embedding
the aggregated meta-paths.
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For path instance embedding, formally, given a path ? from some meta-path d, let
X? ∈R!×3 denote the embeddingmatrix formed by concatenating node embeddings,
where ! is the length of the path instance and 3 is the embedding dimension for
entities. We adopt the commonly used Convolution Neural Network (CNN) to deal
with sequences of variable lengths. The structure of CNN consists of a convolution
layer and a max pooling layer. We learn the embedding of a path instance ? using
CNN as follows:

h? = �## (X?;\). (7.1)

where X? denotes the matrix of the path instance ? and \ denotes all the related
parameters in CNNs.

For meta-path embedding, since a meta-path can produce multiple path instances,
we further apply the max pooling operation to derive the embedding for a meta-path.
Let {h?} ?=1 denote the embeddings for the selected path instances frommeta-path
d. The embedding cd for meta-path d can be given

cd =max-pooling({h?} ?=1). (7.2)

Our max pooling operation is carried out over  path instance embeddings, which
aims to capture the important dimension features from multiple path instances.

For simple average embedding for meta-path based context, we apply the average
pooling operation to derive the embedding for modeling the aggregate meta-path
based context

cD→8 =
1

|MD→8 |
∑

d∈MD→8

cd, (7.3)

where cD→8 is the embedding for meta-path based context and MD→8 is the set
of the considered meta-paths for the current interaction. In this naive embedding
method, each meta-path indeed receives equal attention, and the representation of
meta-path based context fully depends on the generated path instances. It fails to take
the involved user and item into consideration, which lacks the ability of capturing
varying semantics from meta-paths in different interaction scenarios.

7.2.2.3 Improving Embeddings for Interaction via Co-Attention Mechanism

Inspired by the recent progress of attention mechanism made in computer vision and
natural language processing [21, 38], we propose a novel co-attention mechanism to
improve the embeddings of users, items and meta-paths.

Attention forMeta-path basedContext. Since distinct meta-pathsmay have dif-
ferent semantics in an interaction, we learn the interaction-specific attention weights
over meta-paths conditioned on the involved user and item. Given the user embed-
ding xD , item embedding y8 , the context embedding cd for a meta-path d, we adopt
a two-layer architecture to implement the attention
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UUU
(1)
D,8,d

= 5 (W(1)
D xD +W(1)

8
y8 +W(1)

d cd +b(1) ), (7.4)

U
(2)
D,8,d

= 5 (w(2)>UUU (1)
D,8,d
+ 1 (2) ), (7.5)

where W(1)
∗ and b(1) denote the weight matrix and the bias vector for the first layer,

and the w(2) and 1 (2) denote the weight vector and the bias for the second layer. 5 (·)
is set to the ReLU function.

The final meta-path weights are obtained by normalizing the above attentive
scores over all the meta-paths using the softmax function,

UD,8,d =
exp(U (2)

D,8,d
)∑

d′∈MD→8 exp(U
(2)
D,8,d′)

, (7.6)

which can be interpreted as the contribution of the meta-path d to the interaction
between D and 8. After we obtain the meta-path attention scores UD,8,d, the new
embedding for aggregate meta-path context can be given as the following weighted
sum:

cD→8 =
∑

d∈MD→8

UD,8,d · cd, (7.7)

where cd the learned embedding for the meta-path d in Eq. 7.2. Since the attention
weights {UD,8,d} are generated for each interaction, they are interaction-specific and
able to capture varying interaction context.

Attention for Users and Items.Given a user and an item, the meta-path connect-
ing them provide important interaction context, which is likely to affect the original
representations of users and items. Giving original user and item latent embeddings
xD and y8 , and the meta-path based context embedding cD→8 for the interaction be-
tween D and 8, we use a single-layer network to compute the attention vectors VVVD and
VVV8 for user D and item 8 as,

VVVD = 5 (WDxD +WD→8cD→8 +bD), (7.8)
VVV8 = 5 (W′

8y8 +W′
D→8cD→8 +b′8), (7.9)

where W∗ and bD denote the weight matrix and bias vector for user attention layer,
W′
∗ and b′

8
denote the weight matrix and bias vector for item attention layer. Similarly,

5 (·) is set to the ReLU function. Then, the final representations of user and item are
computed by using an element-wise product “�” with the attention vectors:

x̃D = VVVD � xD , (7.10)
ỹ8 = VVV8 � y8 . (7.11)

The attention vectors VVVD and VVV8 are used for improving the original user and item
embeddings conditioned on the calibrated meta-path based context cD→8 (Eq. 7.7).

By combining the two parts of attention components, our model improves the
original representations for users, items and meta-path based context in a mutual en-
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hancement way. We call such an attention mechanism Co-Attention. To our knowl-
edge, few heterogeneous graph based recommendation methods are able to learn
explicit representations for meta-paths, especially in an interaction-specific way.

7.2.2.4 Overall Architecture

Until now, given an interaction between user D and item 8, we have the embeddings for
user D, item 8 and the meta-path connecting them. We combine the three embedding
vectors into a unified representation of the current interaction as below:

x̃D,8 = x̃D ⊕ cD→8 ⊕ ỹ8 , (7.12)

where “⊕” denotes the vector concatenation operation, cD→8 (Eq. 7.7) denotes the
embedding of the meta-path based context for 〈D, 8〉, x̃D (Eq. 7.10) and ỹ8 (Eq. 7.11)
denote the improved embeddings of user D and item 8 respectively. x̃D,8 encodes
the information of an interaction from three aspects: the involved user, the involved
item and the corresponding meta-path based context. Following [11], we feed x̃D,8
into a MLP component in order to implement a nonlinear function for modeling
complicated interactions:

ÂD,8 =MLP(x̃D,8). (7.13)

MLP component involves two hidden layers with ReLU as the activation function
and an output layer with the sigmoid function. With the premise that neural network
models can learn more abstractive features of data via using a small number of
hidden units for higher layers [10], we empirically implement a tower structure for
the MLP component, halving the layer size for each successive higher layer.

Defining a proper objective function for model optimization is a key step for
learning a good recommendation model. Traditional point-wise recommendation
models for the rating prediction task usually adopt the squared error loss [16].
However, in our task, we only have implicit feedback available. Following [11, 31],
we learn the parameters of our model with negative sampling and the objective for
an interaction 〈D, 8〉 can be formulated as follows:

ℓD,8 = − log ÂD,8 −� 9∼%=46 [log(1− ÂD, 9 )], (7.14)

where the first term models the observed interaction, and the second term models
the negative feedback drawn from the noise distribution %=46. In MERec, we set the
distribution %=46 as uniform distribution, which is flexible to extend to other biased
distributions, i.e., popularity based distribution.
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Table 7.1 Statistics of the three datasets. The first row of each dataset corresponds to the number
of users, items and interactions.

Datasets Relations (A-B) #A #B #A-B

Movielens

User-Movie 943 1,682 100,000
User-User 943 943 47,150

Movie-Movie 1,682 1,682 82,798
Movie-Genre 1,682 18 2861

LastFM

User-Artist 1,892 17,632 92,834
User-User 1,892 1,892 18,802
Artist-Artist 17,632 17,632 153,399
Artist-Tag 17,632 11,945 184,941

Yelp

User-Business 16,239 14,284 198,397
User-User 16,239 16,239 158,590

Business-City (Ci) 14,267 47 14,267
Business-Category (Ca) 14,180 511 40,009

Table 7.2 The selected meta-paths used in each dataset.

Dataset Meta-paths
Movielens UMUM, UMGM, UUUM, UMMM
LastFM UATA, UAUA, UUUA, UUA
Yelp UBUB, UBCaB, UUB, UBCiB

7.2.3 Experiments

7.2.3.1 Experimental Settings

Datasets. In experiments, we employe three real datasets from different domains,
namely Movielens 1 movie dataset, LastFM 2 music dataset and Yelp 3 business
dataset. The detailed descriptions of the three datasets are shown in Table 7.1. The
selected meta-paths for each dataset are reported in Table 7.2.

Baselines. In this section, we consider two kinds of representative recom-
mendation methods: CF based methods (ItemKNN[24], BPR[22], MF[16], and
NeuMF[11]) only utilizing implicit feedback, and HIN based methods utilizing rich
heterogeneous information (SVDFeatureℎ4C4[5], SVDFeature<? , HeteRS[20] and
FMGA0=: [42]). To examine the effectiveness of our priority based sampling strategy
and co-attention mechanism, we prepare three variants of MCRec (MCRecA0=3 ,
MCRec0E6 and MCRec<?). MCRecA0=3 employs the random meta-path guided
sampling strategy for path generation. MCRec0E6 employs the naive context em-
bedding strategy for meta-paths. MCRec<? reserves the attention components for
meta-paths and removes the attention component for users and items.

1 https://grouplens.org/datasets/movielens/
2 https://www.last.fm
3 http://www.yelp.com/dataset-challenge
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Parameter Settings. For our method MCRec, we set the batch size to 256, the
learning rate to 0.001, the regularization parameter to 0.0001, the CNN filter size to
3, the dimension of user and item embeddings to 128, the dimension of predictive
factors to 32, and the number of sampled path instances is 5. For MF and NeuMF,
we follow the optimal configuration in [11]. Moreover, we use 10% training data as
the validation set to optimize the parameters for the other methods.

Evaluation Metrics. The top-# recommendation task usually adopts similar
evaluation metrics. Following [39, 11], we use Precision at rank  (Prec@ ),
Recall at rank  (Recall@ ) and Normalized Discounted Cumulative Gain at rank
 (NDCG@ ) as the evaluation metrics. The final results are first averaged over all
the test items of a user and then averaged over all the users. For stability, we perform
ten runs using different random-splitting training/test sets and report the average
results.

7.2.3.2 Comparisons and Analysis

Table 7.3 Results of effectiveness experiments on three datasets. We use “*” to mark the best
performance from the baselines for each comparison. We use “#” to indicate the improvement of
MCRec over the best performance from the baselines is significant based on paired C-test at the
significance level of 0.01.Here we simplify Prec@10 (%) to P@10, Recall@10 (%) to R@10 and
NDCGG@10 (%) to N@10.

Model Movielens LastFM Yelp
P@10 R@10 N@10 P@10 R@10 N@10 P@10 R@10 N@10

ItemKNN 25.8 15.4 56.9 41.6 45.1 79.8 13.9 54.2 53.8
BRP 30.1 19.5 64.6 41.3 44.9 81.0 14.7 55.0 55.5
MF 32.5 20.5 65.1 43.6 46.3 79.2 15.0 53.5 53.2

NeuMF 32.9* 20.9 65.9 45.4 46.8 81.0 15.0 58.6 57.1
SVDFeatureℎ4C4 31.7 20.2 64.5 45.8 48.4 82.9* 14.0 56.1 52.9
SVDFeature<? 31.1 19.3 65.4 43.9 46.5 81.2 15.2 59.3 59.7*

HeteRS 24.9 16.7 59.7 42.8 44.9 80.3 14.2 56.1 56.0
FMGA0=: 32.6 21.7* 66.8* 46.3* 49.2* 82.6 15.4* 59.5* 58.6
MCRecA0=3 32.2 21.0 66.5 45.4 48.0 80.0 15.1 58.4 57.2
MCRec0E6 32.7 21.1 66.3 46.5 49.1 83.1 16.0 59.3 60.2
MCRec<? 34.0 22.0 68.3 46.6 49.2 84.3 16.6 63.0 62.3
MCRec 34.5# 22.6# 69.0# 48.1# 50.7# 85.3# 16.9# 63.3# 63.0#

To evaluate the performance, we randomly split the entire user implicit feedback
records of each dataset into training and test set, i.e., we use 80% feedback records
to predict the remaining 20% feedback records 4. We randomly sample 50 negative
samples that have no interaction records with the target user. Then, we rank the list
consisting of the positive item and 50 negative items.

4 We hold out 10% training data as the validation set for parameter tuning.
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The comparison results of our proposed model and baselines on three datasets are
reported in Table 7.3. There are some observations and analysis. (1) Our complete
model MCRec is consistently better than all the baselines on the three datasets. The
results indicate the effectiveness of MCRec on the task of top-# recommendation,
which has adopted amore principled way to leverage heterogeneous context informa-
tion for improving recommendation performance. (2) Considering the three variants
of MCRec, we can find that the overall performance order is as follows: MCRec
> MCRec<? > MCRec0E6 > MCRecA0=3 . The results show that the co-attention
mechanism is able to better utilize the meta-path based context for recommendation.
First, the importance of each meta-path should depend on a specific interaction in-
stead of being treated equal (i.e., MCRec0E6). Second, meta-paths provide important
context for the interaction between users and items, which has a potential influence
on the learned representations of users and items. Ignoring such influence may not
be able to achieve the optimal performance for utilizing meta-path based context in-
formation (i.e., MCRec<?). In addition, although MCRecA0=3 achieves competitive
performance compared to baselines, it is worse than the complete MCRec. Our com-
plete model adopts the priority based sampling strategy to generate path instances,
while MCRecA0=3 adopts a random sampling strategy.

The more detailed method description and experiment validation can be seen in
[13].

7.3 Cold-start Recommendation

7.3.1 Overview

In recommender systems, the interaction data of new users or new items are often
of high sparsity, leading to the so-called cold-start issue [44] in which it becomes
challenging to learn effective user or item representations. To alleviate this problem,
at the data-level, heterogeneous information network (HIN) [27] have been leveraged
to enrich user-item interactions with complementary heterogeneous information. As
shown in Fig. 7.3a, a toy HIN can be constructed for movie recommendation, which
captures how the movies are related with each other via actors and directors, in
addition to the existing user-movie interactions. On the HIN, higher-order graph
structures like meta-paths [30], a relation sequence connecting two objects, can
effectively capture semantic contexts. For instance, the meta-path User–Movie–
Actor–Movie or UMAM encodes the semantic context of “movies starring the same
actor as a movie rated by the user”. Together with the content-based methods, HIN-
based methods [41, 13] also assume a data-level strategy to alleviate the cold-start
problem, as illustrated in Fig. 7.3b.

On another line, at the model level, the recent episodic meta-learning paradigm
[9] has offered insights into modeling new users or items with scarce interaction
data [34]. Meta-learning focuses on deriving general knowledge (i.e., a prior) across
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different learning tasks, so as to rapidly adapt to a new learning task with the prior
and a small amount of training data. To some extent, cold-start recommendation can
be formulated as a meta-learning problem, where each task is to learn the preferences
of one user. From the tasks of existing users, the meta-learner learns a prior with
strong generalization capacity during meta-training, such that it can be easily and
quickly adapted to the new tasks of cold-start users with scarce interaction data
during meta-testing. As illustrated in Fig. 7.3c, the cold-start user D3 (with only one
movie rating) can be adapted from the prior \ in meta-testing, where the prior is
derived by learning how to adapt to existing users D1 and D2 in meta-training.
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Fig. 7.3 An example of HIN and existing data or model-level alleviation for cold-start recommen-
dation.

In this section, we propose to address the cold-start recommendation at both data
and model levels, in which learning the preference of each user is regarded as a task
in meta-learning, and a HIN is exploited to augment data. One is to augment the task
for each user with multifaceted semantic contexts. That is, in a task of a specific user,
besides considering the items directly interacted with the user, we also introduce
items that are semantically related to the user via higher-order graph structures,
i.e., meta-paths. These related items form the semantic contexts of each task, which
can be further differentiated into multiple facets as implied by different meta-paths.
The other is to propose a co-adaptation meta-learner, which is equipped with both
semantic-wise adaptation and task-wise adaptation. Specifically, the semantic-wise
adaptation learns a unique semantic prior for each facet. While the semantic priors
are derived from different semantic spaces, they are regulated by a global prior to
capture the general knowledge of encoding contexts on a HIN. Furthermore, the task-
wise adaptation is designed for each task (i.e., user), which updates the preference
of each user from the various semantic priors, such that tasks sharing the same facet
of semantic contexts can hinge on a common semantic prior.
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7.3.2 The MetaHIN Model

Before we introduce the framework of MetaHIN, we first define the cold-start prob-
lem on HINs as follows [27].
Definition 1. Cold-start Recommendation. Given a HIN � = {+,�,$, '}, let
+* ,+� ⊂ + denote the set of user and item objects, respectively. Given a set of
ratings between users and items, i.e., R = {AD,8 ≥ 0 : D ∈ +* , 8 ∈ +� , 〈D, 8〉 ∈ �}, we
aim to predict the unknown rating AD,8 ∉R between user D and item 8. In particular,
if D is a new user with only a handful of existing ratings, i.e., |{AD′,8 ∈ R : D′ = D}|
is small, it is known as user cold-start (UC); correspondingly, if 8 is a new item, it
is known as item cold-start (IC); if both D and 8 are new, it is known as user-item
cold-start (UIC).

7.3.2.1 Model Framework

As illustrated in Fig. 7.4, the proposed MetaHIN consists of two components:
semantic-enhanced task constructor in Fig. 7.4a and co-adaptation meta-learner
in Fig. 7.4b. First, we design a semantic-enhanced task constructor to augment the
support and query sets of user tasks with heterogeneous semantic contexts, which
comprise of items related to the user through meta-paths on a HIN. The semantic
contexts are multifaceted in nature, such that each meta-path represents a differ-
ent facet of heterogeneous semantics. Second, compared to task-wise adaptation,
we perform semantic-wise adaptation, in order to adapt the global prior \ to finer-
grained semantic priors for different facets (i.e., meta-paths) in a task. The global
prior \ captures the general knowledge of encoding contexts for recommendation,
and can be materialized in the form of a base model 5\ . Thus, our co-adaptation
meta-learner performs both semantic- and task-wise adaptions on the support set,
and further optimizes the global prior on the query set.
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Fig. 7.4 Illustration of the meta-training procedure of a task in MetaHIN. (a) Semantic-enhanced
task constructor, where the support and query sets are augmented with meta-path based heteroge-
neous semantic contexts. (b) Co-adaptation meta-learner, with semantic- and task-wise adaptations
on the support set, while the global prior \ is optimized on the query set. During meta-testing, each
task follows the same procedure except updating the global prior.
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7.3.2.2 Semantic-enhanced Task Constructor

Given a user D with task TD = (SD ,QD), the semantic-enhanced support set is defined
as

SD = (SR
D ,SP

D ), (7.15)

where SR
D is a set of items that has been rated by user D, and SP

D represents the
semantic contexts based on a set of meta-paths P .

For new users in cold-start scenarios, the set of rated items SR
D is usually small,

i.e., a new user only has a few ratings. For meta-training tasks, we follow previous
work [17] to construct SR

D by sampling a small subset of items rated by D, i.e.,
{8 ∈ +� : AD,8 ∈R}, in order to simulate new users.

On the other hand, the semantic contexts SP
D are employed to encode multifaceted

semantics into the task. Specifically, assume a set of meta-paths P , such that each
path ? ∈ P starts with User–Item and ends with Item with a length up to ;. For
example, in Fig. 7.3a, P = {*",*"�",*"�",*"*"} if we set ; = 3. For
each user-item interaction 〈D, 8〉, we define the semantic context of 〈D, 8〉 induced by
meta-path ? as follows:

C ?
D,8

= { 9 : 9 ∈ items reachable along ? starting from D–8}. (7.16)

For instance, the semantic context of 〈D2,<2〉 induced byUMAM is {<2,<3, . . .}.
Since in each task D may interact with multiple items, we build the ?-induced
semantic context for the task TD as

S ?D =
⋃
8∈SR

D

�
?

D,8
. (7.17)

Finally, accounting for allmeta-paths inP = {?1, ?2, ..., ?=}, the semantic contexts
SP
D of task TD are formulated as

SP
D = (S ?1D ,S ?2D , . . . ,S ?=D ). (7.18)

In essence,SP
D is the set of items that are reachable from user D via all items he/she

has rated along the meta-paths, which incorporates multifaceted semantic contexts
such that each meta-path represents one facet. As shown in Fig. 7.4a, following the
meta-path UMAM, the reachable items of user D2 are {<2,<3, . . .}, which are the
movies starring the same actor of movies that D2 has rated in the past. That is, the
semantic context induced by UMAM incorporates movies starring the same actor as
a facet of user preferences, which makes sense since the user might be a fan of an
actor and prefers most movies played by the actor.

Likewise, we can construct the semantic-enhanced query setQD = (QR
D ,QP

D ). In
particular,QR

D contains items rated by D for calculating the task loss inmeta-training,
or items with hidden rating for making predictions in meta-testing;QP

D captures the
semantic contexts induced by meta-paths P . Note that in a task TD , the items with
ratings in the support and query sets are mutually exclusive, i.e., SR

D ∩QR
D = ∅.
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7.3.2.3 Co-adaptation Meta-learner

Given the semantic-enhanced tasks, the co-adaptation meta-learner with both
semantic- and task-wise adaptations in order to learn fine-grained prior knowledge.
The global prior can be abstracted as a base model to encode the general knowledge
of how to learn with contexts on HINs, which can be further adapted to different
semantic facets within a task.

Base Model. As shown in Fig. 7.4b, the base model 5\ involves context aggre-
gation 6q to derive user embeddings, and preference prediction ℎl to estimate the
rating score, i.e., 5\ = (ℎl , 6q).

In context aggregation, the user embeddings are aggregated from his/her contexts,
which are his/her related items via direct interactions or meta-paths (i.e., semantic
contexts), since user preferences are reflected in items. Following [17], we initialize
the user and item embeddings based their features (or an embedding look up if there
are no features), say eD ∈ R3* for user D and e8 ∈ R3� for item 8 where 3* , 3� are the
embedding dimensions. Subsequently, we obtain user D’s embedding xD as follows:

xD = 6q (D,CD) = f
(
mean({We 9 +b : 9 ∈ CD})

)
, (7.19)

where CD denotes the set of items related to user D via direct interactions (i.e.,
the rated items) or meta-paths (i.e., their induced semantic contexts), mean(·) is
mean pooling, and f is the activation function (we use LeaklyReLU). Here 6q is
the context aggregation function parameterized by q = {W ∈ R3×3� ,b ∈ R3}, which
are trainable to distill semantic information for user preferences. xD can be further
concatenated with D’s initial embedding eD , when user features are available.

In preference prediction, given user D’s embedding xD and item 8’s embedding e8 ,
we estimate the rating of user D on the item 8 as:

ÂD8 = ℎl (xD ,e8) = mlp(xD ⊕ e8), (7.20)

where mlp is a two-layer multilayer perceptron, and ⊕ denotes concatenation. Here
ℎl is the rating prediction function parameterized by l, which contains the weights
and biases in mlp. Finally, we minimize the following loss for user D to learn his/her
preferences:

LD = 1
|RD |

∑
8∈RD
(AD8 − ÂD8)2, (7.21)

where RD = {8 : AD8 ∈ R} denotes the set of items rated by D, and AD8 is the actual
rating of D on item 8.

Note that the basemodel 5\ = (6q , ℎl) is a supervisedmodel for recommendation,
which typically requires a large number of example ratings to achieve reasonable
performance, which is not upheld in the cold-start scenario. As motivated, we recast
the cold-start recommendation as a meta-learning problem. Specifically, we abstract
the base model 5\ = {6q , ℎl} as encoding the prior knowledge \ = {q,l} of how
to learn user preferences from contexts on HINs. Next, we detail the proposed
co-adaptation meta-learner to learn the prior knowledge.
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Co-adaptation. The goal of the co-adaptation meta-learner is to learn the prior
knowledge \ = (q,l), which can quickly adapt to a new user task with just a few
example ratings. As discussed in Fig. 7.4a, each task is augmented with multifaceted
semantic contexts. Thus, the prior should not only encode the global knowledge
shared across tasks, but also become capable of generalizing to different semantic
facets within each task. To this end, we enhance the meta-learner with semantic- and
task-wise adaptations.

For semantic-wise adaptation, the semantic-enhanced support setSD of the taskTD
is associated with semantic contexts induced by different meta-paths (e.g., UMAM
and UMDM in Fig. 7.4), where each meta-path represents one semantic facet. The
semantic-wise adaptation evaluates the loss based on the semantic context induced
by a meta-path ? (i.e., S ?D ). With one (or a few) gradient descent step w.r.t. the
?-specific loss, the global context prior q, which encodes how to learn with contexts
on a HIN, is adapted to the semantic space induced by the meta-path ?.

Formally, given a task TD of user D, the support set SD = (SR
D ,SP

D ) is augmented
with semantic contextsSP

D , comprising various facetsS ?8D induced by different meta-
paths ?8 as in Eq. 7.18. Given a meta-path ? ∈ P , user D’s embedding in the semantic
space of ? is

x?D = 6q (D,S ?D ). (7.22)

In this semantic space of ?, we can further calculate the loss on the support set
of rated items SR

D in task TD as

LTD (l,x
?
D ,SR

D ) = 1
|SR
D |

∑
8∈SR

D
(AD8 − ℎl (x?D ,e8))2, (7.23)

where ℎl (x?D ,e8) represents the predicted rating of user D on item 8 in the meta-path
?-induced semantic space.

Next, we adapt the global context prior q w.r.t. the loss in each semantic space of
? in task TD with one gradient descent step, to obtain the semantic prior q?D . Thus, the
meta-learner learns more fine-grained prior knowledge for various semantic facets:

q
?
D = q−U

mLTD (l,x
?
D ,SR

D )
mq

= q−U
mLTD (l,x

?
D ,SR

D )
mx?D

mx?D
mq

, (7.24)

where U is the semantic-wise learning rate, and x?D = 6q (D,S ?D ) is a function of q.
For task-wise adaptation, in the semantic space of meta-path ? with adapted

semantic prior q?D , the task-wise adaptation further adapts the global prior l, which
encodes how to learn rating predictions of D, to the task TD with one (or a few)
gradient descent step.

The semantic prior q?D subsequently updates user D’ embeddings in the semantic
space of ? on the support set to x? 〈(〉D = 6q?D (D,S

?
D ), which further transforms the

global prior l to the same space:

l? = l� ^(x? 〈(〉D ), (7.25)
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where � is the element-wise product and ^(·) serves as a transformation function
realizedwith a fully connected layer. Intuitively,l is gated into the current ?-induced
semantic space. We then adapt l? to the task TD with one gradient descent step:

l
?
D = l? − V

mLTD (l? ,x
? 〈(〉
D ,SR

D )
ml?

, (7.26)

where V is the task-wise learning rate.
With the semantic- and task-wise adaptations, we have adapted the global prior

\ to the semantic- and task-specific parameters \ ?D = {q?D ,l?D } in the ?-induced
semantic space of task TD . Given a set of meta-paths P , the meta-learner is trained
by optimizing the performance of the adapted parameters \ ?D on the query setQD in
all semantic spaces ofP across all meta-training tasks. That is, as shown in Fig. 7.4b,
the global prior \ = (q,l) will be optimized through backpropgation of the query
loss:

min
\

∑
TD ∈T tr

LTD (lD ,xD ,QR
D ), (7.27)

where lD and xD are fused from multiple semantic spaces (i.e., meta-paths in P).
Specifically,

lD =
∑
?∈P 0?l

?
D , xD =

∑
?∈P 0?x? 〈&〉D , (7.28)

where 0? = softmax(−LTD (l
?
D ,x

? 〈&〉
D ,QR

D )) is theweight of the ?-induced semantic
space, and x? 〈&〉D = 6q?D (D,Q

?
D ) is D’s embedding aggregated on the query set. Since

the loss value reflects the model performance [3], it is intuitive that the larger the
loss value in a semantic space, the smaller the corresponding weight should be.

In summary, the co-adaption meta-learner aims to optimize the global prior \
across several tasks, in such a way that the query loss of each meta-training task
TD using the adapted parameters {\ ?D : ? ∈ P} can be minimized (i.e., “learning to
learn”); it does not directly update the global prior using task data. It particular, with
the co-adaption mechanism, we adapt the parameters not only to each task, but also
to each semantic facet within a task.

7.3.3 Experiments

7.3.3.1 Experimental Settings

Datasets. We conduct experiments on three benchmark datasets, namely, DBook5,
MovieLens6, and Yelp7, from publicly accessible repositories.

5 https://book.douban.com
6 https://grouplens.org/datasets/movielens/
7 https://www.yelp.com/dataset/challenge
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Baselines.We compare our proposedMetaHIN with three categories of methods.
(1) Traditional methods, including FM [23], NeuMF [11] and GC-MC [1]. As they
cannot handle HINs, we take the heterogeneous information (e.g., actor) as the
features of users or items. (2) HIN-based methods, including mp2vec [7] and HERec
[26]. Both methods are based on meta-paths, and we utilize the same set of meta-
paths as in our method. (3) Cold-start methods, including content-based DropoutNet
[35], as well as meta-learning-based MeteEmb [19] and MeLU [17]. Since they
do not handle HINs either, we input the heterogeneous information as user or item
features following the original papers. We follow [17] to train the non-meta-learning
baselines with the union of rated items in all support and query sets from meta-
training tasks. To handle new users or items, we fine-tune the trained models with
support sets and evaluate on query sets in meta-testing tasks.

Evaluation Metrics. We adopt three widely-used evaluation protocols [26, 36,
17], namely, mean absolute error (MAE), root mean square error (RMSE), and
normalized discounted cumulative gain at rank  (nDCG@ ). Here we use  = 5.

7.3.3.2 Comparisons and Analysis

In this experiment, we empirically compare MetaHIN to several state-of-the-art
baselines, in three cold-start scenarios and the traditional non-cold start scenario.
Table 7.4 demonstrates the performance comparison between all methods w.r.t. four
recommendation scenarios.

Cold-start Scenarios. The first three parts of Table 7.4 present three cold-start
scenarios (UC, IC and UIC). Overall, our MetaHIN consistently yields the best
performance among all methods on three datasets. For instance, MetaHIN improves
over the best baseline w.r.t. MAE by 3.05-5.26%, 2.89-5.55%, and 2.22-5.19%
on three datasets, respectively. Among different baselines, traditional methods (e.g.,
MF, NeuMF and GC-MC) are least competitive despite incorporating heterogeneous
information as content features. Such treatment of heterogeneous information is not
ideal as higher-order graph structures are lost. HIN-basedmethods performbetter due
to the incorporation of such structures (i.e., meta-paths). Nevertheless, supervised
learning methods generally cannot perform effectively given limited training data
for new users and items.

On the other hand, meta-learning methods typically cope better in such cases. In
particular, the best baseline is consistently MeLU or MeteEmb. However, they still
underperform our MetaHIN in all scenarios. The reason might be that both of them
only integrate heterogeneous information as content features, without capturing mul-
tifaceted semantics derived from higher-order structures like meta-paths. In contrast,
in MetaHIN, we perform semantic- and task-wise co-adaptions, to effectively adapt
to not only tasks, but also different semantic facets within a task.

Non-cold-start Scenario. In the last part of Table 7.4, we investigate the tradi-
tional recommendation scenario. Our MetaHIN is still robust, outperforming all the
baselines. While this is a traditional scenario, the datasets are still very sparse in
general. Thus, incorporating the semantic-rich HINs can often alleviate the sparsity
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challenge at the data level. MetaHIN further addresses the problem at the model
level with the co-adaptation meta-learner, and thus can better deal with sparse data.
Of course, compared to cold-start scenarios, MetaHIN’s performance lift over the
baselines tend to be smaller as the sparsity issue is not as severe.

Table 7.4 Experimental results in four recommendation scenarios and on three datasets. A smaller
MAE or RMSE value, and a larger nDCG@5 value indicate a better performance. The best method
is bolded, and second best is underlined.

Scenario Model DBook MovieLens Yelp
MAE ↓ RMSE ↓ nDCG@5 ↑ MAE ↓ RMSE ↓ nDCG@5 ↑ MAE ↓ RMSE↓ nDCG@5 ↑

FM 0.7027 0.9158 0.8032 1.0421 1.3236 0.7303 0.9581 1.2177 0.8075
NeuMF 0.6541 0.8058 0.8225 0.8569 1.0508 0.7708 0.9413 1.1546 0.7689
GC-MC 0.9061 0.9767 0.7821 1.1513 1.3742 0.7213 0.9321 1.1104 0.8034

Existing items mp2vec 0.6669 0.8391 0.8144 0.8793 1.0968 0.8233 0.8972 1.1613 0.8235
for new users HERec 0.6518 0.8192 0.8233 0.8691 0.9916 0.8389 0.8894 1.0998 0.8265

(User Cold-start or UC) DropoutNet 0.8311 0.9016 0.8114 0.9291 1.1721 0.7705 0.8557 1.0369 0.7959
MeteEmb 0.6782 0.8553 0.8527 0.8261 1.0308 0.7795 0.8988 1.0496 0.7875
MeLU 0.6353 0.7733 0.8793 0.8104 0.9756 0.8415 0.8341 1.0017 0.8275

MetaHIN 0.6019 0.7261 0.8893 0.7869 0.9593 0.8492 0.7915 0.9445 0.8385
FM 0.7186 0.9211 0.8342 1.3488 1.8503 0.7218 0.8293 1.1032 0.8122

NeuMF 0.7063 0.8188 0.7396 0.9822 1.2042 0.6063 0.9273 1.1009 0.7722
GC-MC 0.9081 0.9702 0.7634 1.0433 1.2753 0.7062 0.8998 1.1043 0.8023

New items mp2vec 0.7371 0.9294 0.8231 1.0615 1.3004 0.6367 0.7979 1.0304 0.8337
for existing users HERec 0.7481 0.9412 0.7827 0.9959 1.1782 0.7312 0.8107 1.0476 0.8291

(Item Cold-start or IC) DropoutNet 0.7122 0.8021 0.8229 0.9604 1.1755 0.7547 0.8116 1.0301 0.7943
MeteEmb 0.6741 0.7993 0.8537 0.9084 1.0874 0.8133 0.8055 0.9407 0.8092
MeLU 0.6518 0.7738 0.8882 0.9196 1.0941 0.8041 0.7567 0.9169 0.8451

MetaHIN 0.6252 0.7469 0.8902 0.8675 1.0462 0.8341 0.7174 0.8696 0.8551
FM 0.8326 0.9587 0.8201 1.3001 1.7351 0.7015 0.8363 1.1176 0.8278

NeuMF 0.6949 0.8217 0.8566 0.9686 1.2832 0.8063 0.9860 1.1402 0.7836
GC-MC 0.7813 0.8908 0.8003 1.0295 1.2635 0.7302 0.8894 1.1109 0.7923

New items mp2vec 0.7987 1.0135 0.8527 1.0548 1.2895 0.6687 0.8381 1.0993 0.8137
for new users HERec 0.7859 0.9813 0.8545 0.9974 1.1012 0.7389 0.8274 0.9887 0.8034

(User-Item Cold-start DropoutNet 0.8316 0.8489 0.8012 0.9635 1.1791 0.7617 0.8225 0.9736 0.8059
or UIC) MeteEmb 0.7733 0.9901 0.8541 0.9122 1.1088 0.8087 0.8285 0.9476 0.8188

MeLU 0.6517 0.7752 0.8891 0.9091 1.0792 0.8106 0.7358 0.8921 0.8452
MetaHIN 0.6318 0.7589 0.8934 0.8586 1.0286 0.8374 0.7195 0.8695 0.8521

FM 0.7358 0.9763 0.8086 1.0043 1.1628 0.6493 0.8642 1.0655 0.7986
NeuMF 0.6904 0.8373 0.7924 0.9249 1.1388 0.7335 0.7611 0.9731 0.8069
GC-MC 0.8056 0.9249 0.8032 0.9863 1.2238 0.7147 0.8518 1.0327 0.8023

Existing items mp2vec 0.6897 0.8471 0.8342 0.8788 1.1006 0.7091 0.7924 1.0191 0.8005
for existing users HERec 0.6794 0.8409 0.8411 0.8652 1.0007 0.7182 0.7911 0.9897 0.8101
(Non-cold-start) DropoutNet 0.7108 0.7991 0.8268 0.9595 1.1731 0.7231 0.8219 1.0333 0.7394

MeteEmb 0.7095 0.8218 0.7967 0.8086 1.0149 0.8077 0.7677 0.9789 0.7740
MeLU 0.6519 0.7834 0.8697 0.8084 0.9978 0.8433 0.7382 0.9028 0.8356

MetaHIN 0.6393 0.7704 0.8859 0.7997 0.9491 0.8499 0.6952 0.8445 0.8477

The more detailed method description and experiment validation can be seen in
[18].

7.4 Author Set Recommendation

7.4.1 Overview

Heterogeneous bibliographic network [29] has also receivedmore andmore attention
in recent years. As an important related task, the problem of author identification
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has been extensively studied, which aims to rank potential authors for an anonymous
paper based on public information. The existing studies mainly employ the network
structure or semantic content of the paper to predict the correlation between the
paper and author, while they usually ignore relationships among authors. Generally,
in many scenarios such as finding a potential author group for a given paper, the rela-
tionships among authors are very significant. Therefore, in this section, we propose
to study a new problem called author set identification. We illustrate the problem
setting in Fig.7.5, in which the heterogeneous bibliographic network and network
schema are given as the input. The goal is to learn a model that can identify the opti-
mal author set for a new anonymous paper. The problem of author set identification
is to acquire an author set with a strong relationship, while the traditional problem
only get an author ranking for the target node of anonymous paper.

A basic idea for the problem is to find a set of closely connected authors that are
related to an anonymous paper. Therefore, we need to characterize the relationship
between anonymous paper and authors, as well as that between authors. However, it
is non-trivial to take both relationships into account simultaneously. Moreover, the
number of subsets of authors is enormous especially when the number of authors
is large. Hence, it is also very difficult to select the optimal one from all subsets.
There are two challenges in this problem. (1) How can we model interactions be-
tween anonymous paper and authors, meanwhile preserving rich inherent structural
information among authors in heterogeneous bibliographic network. (2) How can we
find an optimal set of closely connected authors that are related to the anonymous
paper.

In this section, we propose a novelAuthor Set Identification approach calledASI.
In order to tackle the first challenge, we propose to only emphasize on two types of
nodes including anonymous paper and candidate authors. Therefore, ASI first con-
structs a paper-author interactive network denoted by weighted paper-ego-network,
which only contains the mentioned two types of nodes and corresponding relations
(paper-author and author-author). Then in order to preserve rich inherent structural
information in heterogeneous bibliographic network, the task-guided embedding
method called TaskGE is presented to learn the low-dimensional representations of
nodes, which can be further used to determine the weights of edges in the constructed
network. For the sake of solving the second challenge, we introduce the concept of
quasi-clique in dense subgraph and convert the optimal author set identification to
the quasi-clique discovery in the weighted paper-ego-network. Specifically, we de-
sign the local-search heuristic method under the guidance of a novel density function
to find the optimal quasi-clique (author set). Meanwhile, we regard the anonymous
paper as a constraint and claim the discovered set of closely connected authors must
be related to the anonymous paper.
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Fig. 7.5 The problem of author set identification in heterogeneous bibliographic networks.

7.4.2 The ASI Model

In this section,we study the novel problemof author set identification in bibliographic
network, which can be defined as follows.

Definition 2. Author Set Identification Problem. Given a bibliographic network
� = (+,�), which includes a set of papers and papers’ relevant information (i.e.,
authors, venues, terms and year), the goal is to design a method to acquire an author
set (′

�
from �� for a new anonymous paper ?, such that (′

�
is the optimal set to

collaborate on the paper ? among all subsets of ��, where �� = {01, 02, · · · , 0<}
denotes the set of all candidate authors.

In order to find the optimal author set, we present the proposed method that
leverages quasi-clique for Author Set Identification, called ASI. In order to find the
optimal author set, we introduce the concept of quasi-clique, which can be defined
as follows.

Definition 3. Quasi-Clique [33]. A set of nodes ( is an U-quasi-clique if 4[(] ≥
U
( |( |
2
)
, i.e., if the edge density of the subgraph induced by ( exceeds a threshold

parameter U ∈ (0,1). The edge density is defined as 4[(]/
( |( |
2
)
, where 4[(] is the

size of edges in the subgraph induced by (.

7.4.2.1 Model Framework

The overall architecture of ASI is shown in Fig.7.6. Given a heterogeneous biblio-
graphic network and an anonymous paper (Fig.7.6a), we first construct a weighted
paper-ego-network for each anonymous paper (Fig.7.6b), and then find the optimal
quasi-clique with constraint (OQCC) in the weighted paper-ego-network (Fig.7.6c).
In the following, we will clarify the basic idea and specific details about these
two phases. We aim to find a set of closely connected authors that are related to
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(b) Construct a weighted paper-ego-
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Fig. 7.6 The overall architecture of proposed method ASI (weighted paper-ego-network construc-
tion and optimal quasi-clique with constraint extraction).

the anonymous paper. However, it is challenging to incorporate interactions be-
tween anonymous paper and authors, meanwhile preserve rich inherent structural
information among authors in heterogeneous bibliographic network. We consider to
construct a weighted paper-ego-network only containing the anonymous paper and
authors. Because there are no direct links between anonymous paper and authors,
as well as between authors in bibliographic network, we need to devise an approach
to determine the weight of these two kinds of edges. Hence, we propose the task-
guided embedding method to learn vector representations of nodes, which can be
further used to determine the weights of edges through proper distance function
for constructing the weighted paper-ego-network. Then we transform the author set
identification into the problem of quasi-clique extraction with constraint. The con-
straint condition means that the discovered optimal quasi-clique should contain the
node of anonymous paper, which also implies the close relationship between author
set and anonymous paper. Finally, we propose an approach of local-search heuristic
under the guidance of designed novel density function, so as to discover the optimal
quasi-clique in the constructed network.

7.4.2.2 Weighted Paper-Ego-Network Construction

Because we aim to find a set of closely connected authors that are related to the
anonymous paper, so we just need to focus on two kinds of relationships, including
that between the anonymous paper and author, as well as that between authors.
Therefore, we consider to construct a weighted paper-ego-network, which naturally
should only contain nodes of anonymous paper ? and candidate authors except
for the other types of redundant nodes (V, T and Y). The key of constructing the
network is to determine the weights of edges between anonymous paper and authors,
and that between authors. For edges between authors, we propose the task-guided
embedding (TaskGE) to learn the low-dimensional representations of nodes. Since
the feature representation for the anonymous paper is unknown, we first employ the
weighted combination of feature vectors of its observed neighbors in the network
to calculate its vector. Then we can easily determine the edges between anonymous
paper and authors based on the computed representation of the anonymous paper
and the vectors of authors obtained in TaskGE.
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Specifically, for each anonymous paper ?, we denote the constructed weighted
paper-ego-network by � ? = (+,�,,), where + is a set of nodes, � is a set of edges
and , is a set of the weight on each edge. + includes two types of nodes, that is,
anonymous paper ? and candidate authors. Correspondingly, � contains two types
of edges, namely, the edge between paper ? and any candidate author 0, and the edge
between any two candidate authors 01, 02. We denote the weights of these two types
of edges by F?0 and F0102 , respectively. Different from existing general-purpose
embedding, our embedding method is totally dependent of specific-task. We exploit
two unique characteristics or significant aspects of author set identification task. One
is the proximity between anonymous paper and authors, we model it as paper-author-
aware embedding. The other is the strong relationship between authors, we model it
as author-author-aware embedding.

Paper-Author-Aware Embedding. Intuitively, for a given paper ?, the relevance
score of ? and any one 0 of its true authors should be b larger than that of ? and
other author 0′ who is not the author of ?. Otherwise, a loss penalty will incur. Here,
we employ the hinge loss [40] to define a general function to model the relationship
between paper and author as follows:

L'%v� =
∑

A ∈P%v�
E<?,0,0′> |A [b + 5 (?, 0) − 5 (?, 0′)]+, (7.29)

where [G]+ = <0G(G,0) is the standard hinge loss, b is the safety margin size [2].
< ?,0, 0′ > denotes the triples <paper, positive author, negative author>. A and
P%v� denote any meta path and the set of meta paths between paper and author,
respectively. Generally, we can add any proper meta paths between paper and author
to P%v� for leveraging multiple information. Actually, there exist multiple indirect
relations besides the direct relation between paper and author. For example, P%v� =
{%�,%)%�} denoteswe not only consider the direct author but also take the potential
authors into account. Correspondingly, P%v� = {%�} means we only consider the
direct author of paper. 5 (?, 0) stands for the metric between paper ? and author 0. As
demonstrated by CML [12], distance metric [37] satisfies better triangle inequality
and transition property than inner-product, we use the euclidean distance to define
the metric:

5 (?, 0) = ‖X? −X0‖22, (7.30)

where X? and X0 are the embedding vectors of ? and 0, respectively. For a new
anonymous paper, we adopt similar approach to Chen et al. [4] to calculate its vector
representation. That is, the embedding of a paper is represented as the weighted
combination of the vectors of observed different types of neighbors in the network
as follows:

X? =

=∑
C=1
FCXC? , (7.31)

where = is the number of neighbors’ types of paper ?, XC? is the mean of vectors
of the C-th node type, XC? =

∑
8∈# C?

X8
|# (C )? |

, # (C)? denotes the set of nodes of the C-th
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type. In this section, we do not employ the reference type of nodes due to the lack of
citation data.

Author-Author-Aware Embedding. L'%v� models the relationship between
paper and author, in this subsection, we will consider how to model the relationship
between authors. It is reasonable that there should be strong relationships between
co-authors. In other words, the relevance score between co-authors should be larger
than that of authors who have never collaborated with each other. Correspondingly,
there might exist some potential co-authorship between authors implicitly indicated
by meta paths like �%)%�. Therefore, we also define a general function to formulate
the triple relation < 0∗, 0+, 0− >.

L'�v� =
∑

A ∈P�v�
E(0∗ ,0+ ,0−) |A [b + 5 (0∗, 0+) − 5 (0∗, 0−)]+, (7.32)

where 0+means any co-author of 0∗, 0− denotes any authorwho has never cooperated
with 0∗. 5 is the metric function which has been introduced in Equation 7.30. A
denotes any meta path between authors. P�v� is the set of meta path between
authors. P�v� = {�%�} means we only consider existing co-authors.

Regularization. Recently, Cogswell et al. [6] propose a new regularization tech-
nique called covariance regularization, which is initially used to reduce the correla-
tion between activations in a deep neural network. Afterwards, Hsieh et al. [12] find
that it is useful in de-correlating the dimensions. As covariances can be seen as a
measure of linear redundancy between dimensions, this loss of covariance regular-
ization essentially tries to prevent each dimension from being redundant. Therefore,
we employ loss of covariance regularization as follows:

LA46 =
1
#
(‖�‖ 5 − ‖3806(�)‖22), (7.33)

where ‖ · ‖ 5 is the Froeninus norm, � is covariance matrix between all pairs of
dimensions 8 and 9 , �8 9 = 1

#

∑#
:=1 (X

(8)
:
− D8) (X( 9): − D 9 ), D8 =

1
#

∑#
:=1X(8)

:
, X(8)

:

denotes the 8-th dimension of embedding vector of node : .
Finally, we combine three parts above to get the unified objective function for

task-guided embedding as follows:

L = L'%v� +WL'�v� +_LA46, (7.34)

where LA46 is the regularization term for avoiding over-fitting, _ controls penalty of
regularization, W is a harmonic factor to balance two components. In this section, we
only consider the direct relation %� in L'%v� and �%� in L'�v� .

To minimize L , we design a sampling based mini-batch Adam optimizer [14].
To get the training triples < ?,0, 0′ > and < 0∗, 0+, 0− >, we draw positive samples
according to the proportion of path instances of different meta paths. This sampling
strategy can avoid the problem of under-sampling for relations with a large number
of links or over-sampling for those with a small number of links. For each sampled
positive example < ?,0 >, we first fix vertex ? and the corresponding relation. Then
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we randomly generate negative vertex 0′ which has not the same relation with ?
to construct training triples < ?,0, 0′ >. Similarly, we can fix 0∗ and corresponding
relation to acquire training triples < 0∗, 0+, 0− >. Given the low-dimension represen-
tation learned above, we can easily calculate F?0 and F0102 using distance function
such as cosine.

7.4.2.3 Optimal Quasi-Clique with Constraint Extraction in Weighted
Paper-Ego-Network

For each new paper ?, we construct a weighted paper-ego-network � ? = (+,�,,).
In order to find the optimal author set for the given paper ? in � ? , we propose
a new method called OQCCE which is an adaptation of the local-search heuristic
by Tsourakakis et al. [33]. The algorithm selects ? as initial set. Then under the
guidance of designed novel density function, algorithm iterates two phases of adding
or removing the designated nodes until the quasi-clique with maximum density
function is discovered.What’smore, the novel density function considers twokinds of
heterogeneous relationships, including the close relationship between the anonymous
paper and author, as well as that between authors.

In specific, we regard the node ? as constraint, which means that the extracted
subgraph must contain node ?. In [33], there is only one type of edge. However,
there exist two types of edges in weighted paper ego network. The simplest method
is to assign equal significance to two types of edges. In fact, the importance may
vary. Therefore, we introduce a variable V to adjust the importance of two types of
edges. Meanwhile, we also adapt the density function to accommodate the weighted
network. Accordingly, the proposed novel density function can be defined as follows:

6U,V (() = V
∑

(8, 9) ∈�%�

F8 9 +
∑

(:,;) ∈���

F:; −U
(
|( |
2

)
, (7.35)

where ( represents a subset of vertices of network � ? having ( ⊆ + , |( | denote the
number of nodes in the subgraph induced by (, F8 9 is the weight of edge between
nodes 8 and 9 in the subgraph induced by (. �%� represents the set of edges between
given paper ? and candidate authors in the subgraph induced by (. Likewise, ���
represents the set of edges between authors in the subgraph induced by (. V controls
the importance of paper-author edge. U is a constant. The first two parts in Eq. 7.35
favors subgraphs with abundant edges while the third part penalizes large subgraphs.

Based on the proposed density function above, next we will describe how to
find the optimal quasi-clique with constraint in � ? . The algorithm firstly selects
constrained node ? as the initial set. Then it traverses all nodes one by one and adds
D to ( if 6U,V ((∪{D}) improves. Afterward, the algorithm traverses every vertex E in
( and remove E if 6U,V (( \ {E}) enhances. Note that we cannot remove constrained
node ? during the period of removal. The algorithm repeats these two phases of
addition and removal until an optimum is reached or the number of iterations exceeds
�<0G .
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7.4.3 Experiments

7.4.3.1 Experimental Settings

Datasets. AMiner [32] is a classical academic network. Specifically, we extract two
subsets with different scale, denoted by AMiner-I and AMiner-II. AMiner-I is a small
subset data of some important venues in data mining area, which includes 5 venues,
namely KDD, ICDM, SDM, CIKM and PKDD. AMiner-II is a large subset of four
areas, including Artificial Intelligence (AI), Data Mining (DM), Databases (DB),
and Information System (IS). For each area, we choose some important venues8
which have influential publications.

Baselines. In order to examine the effectiveness of our approach, we compare
against the following three kinds of representative methods. (1) Similarity measure.
We design two kinds of similarity measure methods based on meta paths %)%�
and %�%�, which can indirectly connect the new paper and candidate authors with
term or venue. Then we rank candidate authors according to the similarity scores
(i.e., the number of path instances) between candidate authors and the new paper.
(2) Feature method. Following the work of Chen et al. [4], we extracted 17 features
for each paper-author pair. We choose LR, SVM and Bayes as learning algorithms.
(3) HetNetE. HetNetE is recently proposed in [4] for author identification problem.
It first learns the low-dimensional feature vectors of nodes to predict author of the
given paper.

Parameter Settings. For our method ASI, we set the embedding dimension 3 to
128, the size of negative samples to 2, the margin b to 2, the learning rate to 0.00001,
the batch size to 200, the regularization penalty _ to 10, the trade-off factor W to 1.0, U
to 0.01, V to 0.1. For HetNetE and Feature method, we choose the optimal parameter.
Three meta paths �%�, �%, , �%% are jointly used in HetNetE. In addition, for
fairness comparison, we do not adopt the reference types of nodes when computing
the embedding vectors of papers due to the lack of most citations in HetNetE and
ASI.

Evaluation Metrics. We adopt %A428B8>= (%), '420;; ('), �1 score, �0220A3
index (�), "�% (mean average precision) and '"(� as evaluation metrics. (1) %.
It reflects the accuracy of returned author set, which can be defined as the ratio of the
true authors in the returned author set. % =

|(′
�
∩(� |
|(′
�
| , where (′

�
denotes the returned

author set or the returned top-: author set in %@: . (� means the true author set.
(2) '. It shows the ratio of returned true authors in the whole true author set. It can
be computed as follows: ' =

|(′
�
∩(� |
|(� | , where (′

�
and (� have the same meanings

introduced above. (3) �1. It is the harmony average of % and ', which is defined
as: �1 = 2∗%∗'

%+' . (4) �0220A3 index. It measures similarity between two sets and is
formulated as: � = |(

′
�
∩(� |

|(′
�
∪(� | , which means the ratio of the intersection and the union

of two sets. (5) "�%. It is computed as mean of �% at different : for a paper.

8 AI: ICML, AAAI, ĲCAI, NIPS. DM: KDD, WSDM, ICDM, PKDD. DB: SIGMOD, VLDB,
ICDE. IS: SIGIR, CIKM.
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�% =

∑:
8=1 p@8×A4;8

# of correct author , where A4;8 equals 1 if the result at rank 8 is correct author and
0 otherwise. (6) '"(� . It is a measure of difference between the number of authors

returned by model and the number of true authors. '"(� =

√∑( |(′
�
|− |(� |)2
|< | , where

< is the number of test papers, (′
�
and (� are the number of returned author and

true author, respectively.

Table 7.5 Results of effectiveness experiments on AMiner-I. We use bold to mark the best perfor-
mance for each comparison. ↑ indicates higher is better, ↓ indicates lower is better. “Avg.” means
the average rank of different methods.

Methods
Evaluation

P (↑) R (↑) J (↑) F1 (↑) MAP (↑) RMSE (↓)

Top-5

Similarity
measure

PTPA 0.2716 (2) 0.5007 (7) 0.2310 (2) 0.3356 (2) 0.6109 (1) 0.1714 (2)
PCPA 0.2098 (7) 0.3937 (11) 0.1680 (7) 0.2614 (7) 0.4718 (9) 0.1714 (2)

Feature
method

LR 0.2160 (5) 0.3915 (12) 0.1827 (6) 0.2657 (4) 0.4834 (7) 0.1714 (2)
SVM 0.2493 (3) 0.4562 (9) 0.2154 (4) 0.3081 (3) 0.5451 (3) 0.1714 (2)
Bayes 0.2209 (4) 0.4075 (10) 0.1888 (5) 0.2733 (5) 0.4951 (6) 0.1714 (2)

HetNetE 0.2123 (6) 0.3870 (13) 0.1669 (8) 0.2616 (6) 0.4571 (11) 0.1714 (2)

Top-10

Similarity
measure

PTPA 0.1555 (9) 0.5779 (2) 0.1454 (10) 0.2365 (9) 0.5897 (2) 0.5023 (3)
PCPA 0.1388 (11) 0.5066 (5) 0.1257 (13) 0.2110 (11) 0.4517 (12) 0.5023 (3)

Feature
method

LR 0.1358 (13) 0.5005 (8) 0.1270 (12) 0.2059 (13) 0.4664 (10) 0.5023 (3)
SVM 0.1629 (8) 0.5988 (1) 0.1538 (9) 0.2477 (8) 0.5296 (4) 0.5023 (3)
Bayes 0.1364 (12) 0.5010 (6) 0.1277 (11) 0.2069 (12) 0.4767 (8) 0.5023 (3)

HetNetE 0.1506 (10) 0.5347 (3) 0.2269 (3) 0.2275 (10) 0.4435 (13) 0.5023 (3)
ASI 0.4589 (1) 0.5284 (4) 0.4009 (1) 0.4712 (1) 0.5295 (5) 0.1123 (1)

Table 7.6 Results of effectiveness experiments on AMiner-II. We use bold to mark the best
performance for each comparison. ↑ indicates higher is better, ↓ indicates lower is better. “Avg.”
means the average rank of different methods.

Methods
Evaluation

P (↑) R (↑) J (↑) F1 (↑) MAP (↑) RMSE (↓)

Top5

Similarity
measure

PTPA 0.3391 (2) 0.5899 (6) 0.2886 (2) 0.4108 (2) 0.7165 (3) 0.2880 (2)
PCPA 0.3287 (3) 0.5743 (8) 0.2776 (4) 0.3986 (3) 0.6595 (6) 0.2880 (2)

Feature
method

LR 0.3113 (4) 0.5400 (9) 0.2645 (5) 0.3769 (4) 0.6605 (5) 0.2880 (2)
SVM 0.2202 (7) 0.4553 (12) 0.1674 (11) 0.2803 (9) 0.9948 (1) 0.2880 (2)
Bayes 0.2964 (5) 0.5144 (10) 0.2491 (6) 0.3587 (5) 0.6458 (8) 0.2880 (2)

HetNetE 0.2645 (6) 0.4561 (11) 0.2078 (7) 0.3191 (6) 0.6021 (12) 0.2880 (2)

Top10

Similarity
measure

PTPA 0.1927 (8) 0.6624 (1) 0.1795 (8) 0.2884 (7) 0.6913 (4) 0.8536 (3)
PCPA 0.1913 (9) 0.6531 (2) 0.1778 (9) 0.2860 (8) 0.6363 (10) 0.8536 (3)

Feature
method

LR 0.1857 (10) 0.5779 (7) 0.1729 (10) 0.2775 (10) 0.6382 (9) 0.8536 (3)
SVM 0.1101 (13) 0.4553 (12) 0.0943 (13) 0.1702 (13) 0.9948 (1) 0.8536 (3)
Bayes 0.1786 (11) 0.6157 (4) 0.1661 (12) 0.2673 (11) 0.6227 (11) 0.8536 (3)

HetNetE 0.1720 (12) 0.6350 (3) 0.2858 (3) 0.2564 (12) 0.5602 (13) 0.8536 (3)
ASI 0.5981 (1) 0.6019 (5) 0.4943 (1) 0.5720 (1) 0.6566 (7) 0.2058 (1)
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7.4.3.2 Comparisons and Analysis

To evaluate the performance, we regard papers published before 2014 as training set
and papers published in 2014 and 2015 as test set. Since it is time consuming to
rank all candidate authors for each anonymous paper in the evaluation procedure,
following the strategy in [4], for each paper in the test set, we randomly sample
some negative authors and obtain 100 candidate authors in all. Then, we rank the
100 candidate authors consisting of the positive and sampled negative authors for
each paper. For our method ASI, we also select the same 100 candidate authors to
construct the weighted paper ego network for each test paper. The final results are
averaged over all the test papers for each evaluation metric.

We report the results of performance comparison in Tables 7.5, 7.6. There are
some observations and analysis. (1) Our method ASI achieves better performance
than all baselines on all measures except ' and "�%. It improves the performance
by more than 15% on %, � and �1 averagely. Although ASI does not achieve the best
performance on ', it is also near the best value. (2) ASI can automatically confirm the
appropriate number of authors for a given paper, which can be clearly demonstrated
by the lowest value on metric '"(� . In a word, ASI not only can discover a set of
authors with strong relationship but also can determine the proper number of authors
for an anonymous paper. (3) To our surprise, the similarity measure method based
on PTPA has very good performance, which indicates that the term has a significant
role in finding author set for a given paper.

The more detailed method description and experiment validation can be seen in
[43].

7.5 Conclusions

In recent years, to characterize the complex and heterogeneous auxiliary data in web
services, HG representation techniques have become a very popular approach for
recommender systems. In this chapter, we present three HG representation based rec-
ommendation systems respectively, solving the unique challenges existing in diverse
real-world scenarios. Particularly, we study the Top-N recommendation scenario
and propose the MCRec framework, which is a three-way neural interaction model
based HG representation method. In addition, we study the cold-start problem in the
recommendation and propose a meta-learning based method for HG representation,
named MetaHIN. At Last, we study the author set identification problem in the
bibliographic recommendation and propose ASI method to solve this problem. The
experiments demonstrate the effectiveness of HG representation in each application.

In future work, we will consider how to combine more auxiliary multi-modal in-
formation to improve performance. In addition, we will extend the HG representation
approach to other more challenging applications.
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