
Chapter 9
Heterogeneous Graph Representation for
Industry Application

Abstract Heterogeneous Graph (HG) representation is closely related with the real-
world applications, as heterogeneous objects and interactions are ubiquitous in many
practical systems. HG representation methods deployed in real-world system should
consider capturing the complex interactions among objects as well as solving the
unique challenges existing in real-world systems, such as large-scale, dynamics, and
multi-source information. In this chapter, we focus on summarizing the industrial
level applications with HG representation. Particularly, we introduce several well de-
ployed systems that have demonstrated the success of HG representation techniques
in resolving real-world applications, including cash-out user detection, intent rec-
ommendation, share recommendation, and friend-enhanced recommendation. For
industrial-level applications, we pay more attention on two key components: HG
construction with industrial data and graph representation techniques on the HG.

9.1 Introduction

Heterogeneous objects and their relations are ubiquitous in many industrial-level
applications. For example, in an E-commerce recommendation system, there are
user, item, and shop objects, and the ternary interactions usually exist among these
objects. However, the type information will be inevitably ignored if we utilize a
homogeneous graph to model such data. Fortunately, the heterogeneous graph is a
natural tool to model such complex data without information loss.

Existing methods applied in industrial applications can be roughly concluded into
two categories. The first one focuses on performing subtle feature engineering from
the historical user behavior data. However, this kind of method is labor-consuming.
The other one is that the involved objects and their interaction are usually treated as
a homogeneous graph and a homogeneous graph is adopted to learn node represen-
tation. Therefore, the heterogeneous information is largely ignored by this kind of
method. But the heterogeneous information is very important for some scenarios.

1

2

In this chapter, we will introduce several successful cases which have applied HG
representation methods on two categories of important industrial applications. The
first category of task is the cash-out user detection which aims to predict whether
a user will do cash-out transactions or not. And a novel Hierarchical Attention
mechanism based Cash-out User Detection model (named HACUD) is proposed
to learn the users’ features from the constructed HG. And the second category of
task is the recommendation. We first study intent recommendation, where a novel
Metapath-guidedEmbeddingmethod for IntentRecommendation (namedMEIRec)
is proposed to aggregate node information through multiple meta-paths in the triple-
interacted HG. Moreover, share recommendation, aiming to predict whether a user
will share an item with his friend, is first studied by theHeterogeneousGraph neural
network based Share Recommendation model (named HGSRec) method. Finally,
a novel friend-enhanced recommendation is studied, which multiplies the influence
of friends in social recommendation. Unlike previous mentioned methods which
need predefined meta-paths, we propose a novel Social Influence Attentive Neural
network (named SIAN), which does not require any manual selection of meta-paths.
Next, we will introduce each case in detail.

9.2 Cash-out User Detection

9.2.1 Overview

Cash-out frauds, which are to pursue cash gains with illegal or insincere means,
have seriously influenced the security of credit payment services and have become
major frauds on various kinds of credit payment services. The goal of cash-out user
detection is to predict whether a user will do cash-out transactions or not in the
future. Thus this problem can be formulated as a binary classification problem.

Conventional solutions first perform subtle feature engineering for each user, and
then a classifier, such as tree-based model or neural network, is trained based on
these features. However, this kind of methods make prediction mainly based on the
statistical features of a certain user, but seldom fully exploit the interaction relations
between users, which may be beneficial to the cash-out user detection problem.
In fact, interactions between users are important to the cash-out user detection
problem. Fig. 9.1a demonstrates a general scenario of credit payment service, where
there are three types of objects: users, merchants, and devices. Besides the attribute
information, these objects also have rich interaction information, e.g., the fund
transfer relation among users, the login relation between users and devices, and the
transaction relation between users and merchants. The cash-out users not only have
abnormal features, but also behave abnormally in interaction relations.

In order to tackle these problems, we propose a novel Hierarchical Attention
mechanism basedCash-outUserDetection model (namedHACUD), an HGmethod
to predict whether a user will do cash-out transactions or not in the future. The basic

3

Login Fund Transfer Transaction

Mary
Bob

Tom

Merchant1

Merchant2

Device1

Device2

Device3 Device4

Devices

Merchants

Users Age Gender …Name
25 Female …Mary
20 Male …Tom
35 Male …Bob
… … ……

(a) Scenario of credit payment service

User Merchant

Device

Transaction

Login
Login

Fund Transfer

Fund Transfer

Fund Transfer

User Merchant User
Transaction

User User
Fund Transfer

UMU

UU

Transaction

Network Schema

Meta-paths

Age
Gender
ŏ

(b) Network schema andmeta-
path examples

Fig. 9.1 The AHG of the scenario of credit payment service.

idea of HACUD is to significantly enhance the feature representation of objects
through fully exploiting interaction relations, i.e., with the help of meta-path based
neighbors in Attributed Heterogeneous Graph (AHG). HACUD assumes that the
feature representations of objects, besides intrinsic features, are also constituted
by the features of their neighbors. We propose the concept of meta-path based
neighbors to exploit rich structure information inAHG.Nextwewill explainHACUD
specifically.

9.2.2 Preliminaries

Definition 1. Attributed Heterogeneous Graph (AHG). An AHG is denoted as
G = {V ,E , -} consisting of an object set V , a link set E and an attribute information
matrix1 - ∈ R |V |×: . An AHG is also associated with a node type mapping function
q : V→A and a link type mapping function k : E→R.A andR denote the sets of
predefined object and link types, where |A| + |R| > 2.

Definition 2. Meta-path based Neighbors. Given a user D and a metapath d (start
form D) in an AHG, the meta-path based neighbors is defined as the set of all visited
objects when the object D walks along the given metapath d.

Example 1. As shown in Fig. 9.1a, we construct an AHG to model the scenario of
credit payment service in which cash-out fraud usually happens. It consists of multi-
ple types of objects(i.e. User (*), Merchant ("), Device (�)) with rich attributes and

1 In this work, the original attributes are discretized to the same dimension.

4

relations (i.e. fund transfer relation between users and transaction relation between
users and merchants). Fig. 9.1b is the corresponding network schema and metapath
example. In the AHG, two users can be connected via multiple meta-paths, “User-
(fund transfer) -User” (**) and “User-(transaction) -Merchant-(transaction)-User” (*"*).
In addition, the meta-path based neighbor of Marry under meta-path *"* could
be merchant and Bob.

9.2.3 The HACUD Method

Feature
Attention

Path
Attention

ŷu

Loss

yu

Feature Fusion Hierarchical Attention Mechanism PredictionMeta-Path based
Neighbors Aggregation

xu

x⇢1
u

x⇢n
u

hu

h⇢1
u

h⇢n
u f⇢n

u

f⇢1
u

↵⇢1
u

↵⇢n
u

f̃⇢n
u

f̃⇢1
u

�u

eu
Features of Path ⇢n

based Neighbors

Features of Path ⇢1

based Neighbors

User Features

Fig. 9.2 The architecture of the proposed model.

9.2.3.1 Model Framework

Weshow the overall architecture of themodel in Fig. 9.2. Firstly, themodel aggregates
neighbors for each user based on different meta-paths to integrate multiple aspects
of structure information in AHG, and then transforms and fuses the original features
for better representation learning. Considering that different features and meta-paths
have different importances, a hierarchical attention mechanism is also used to model
user preferences towards features and meta-paths.

9.2.3.2 Meta-path based Neighbors Aggregation

Similar to attributed network representation [18, 36], HACUD adopts to represent a
node w.r.t. a certain meta-path via aggregating features of its neighbors rather than

5

the one-hot representation of its neighbors. For each user D, the aggregated features
based on meta-path d can be get from the formula as below:

G
d
D =

∑
9∈N d

D

F
d

D 9
∗ G 9 , (9.1)

where N d
D is the neighbors of node D based on meta-path d and G 9 represents the

attribute information vector associated with node 9 .

9.2.3.3 Feature Fusion

For each user D, we can obtain its own feature {GD} as well as a set of its neighbor
aggregation features based onmultiplemeta-paths {GdD}d∈P . For better representation
learning, a feature fusion part is used to transform and fuse the original features.

Firstly, the original sparse features are projected to the low-dimensional dense
representations in order to obtain the latent representations of user D and his/her
neighbors based on different meta-paths (i.e., ℎD and ℎdD), respectively:

ℎD =,GD + 1, ℎ
d
D =,

dG
d
D + 1d, (9.2)

where,∗ ∈ R�×3 and 1∗ ∈ R3 are the weight matrix and bias vector, respectively. �
is the dimension of original feature space2 and 3 is the dimension of latent representa-
tions. Next, the model fuses the latent representations of a user and his/her neighbors
based on each meta-path and adds a fully-connected layer for more complicated
interaction. For a meta-path d, the above procedure to get fusional representation
5
d
D w.r.t. meta-path d is formulated as below,

5
d
D = ReLU(,d

�
6(ℎD , ℎdD) + 1d�). (9.3)

Here,Wd

�
∈ R3×23 and 1d

�
∈ R3 represent the weight matrix and bias vector based

on meta-path d, respectively.

9.2.3.4 Hierarchical Attention

Intuitively, different users are likely to have different preferences over the features
based on different meta-paths as well as attribute information. Concretely, a user
may place different importance to different-aspect features based on meta-paths.
Moreover, features also have different importance for the prediction task. Therefore,
hierarchical attention mechanism is applied to capture user preferences towards
features and meta-paths.

Feature Attention. Since different features might not contribute to the prediction
task equally, given the user latent representation ℎD and latent representation of

2 The original attributes are discretized to sparse �-dimensional feature as the model input

6

his/her neighbors 5 dD based on meta-path d , a two-layer neural network is adopted
to implement the attention.

EEE
d
D = ReLU(,1

5 [ℎD; 5 dD] + 11
5), (9.4)

UUU
d
D = ReLU(,2

5 EEE
d
D + 12

5), (9.5)

where ,∗
5
and 1∗

5
denote the weight matrix and bias vector, respectively and [·; ·]

represents the concatenation of two vectors. The following is the standard setting of
neural attention networks with the softmax function.

Û
d

D,8
=

exp(Ud
D,8
)∑

9=1 exp(Ud
D, 9
)
. (9.6)

Then, the final representation of user D w.r.t. a meta-path d can be computed as
follows,

5̃
d
D = ÛUU

d
D � 5 dD , (9.7)

where “�” denotes the element-wise product.
Path Attention. Following [23], the attention weights over different meta-paths

for collaboration can be learned. Firstly, there are the attention weight of meta-path
d for user D using a softmax unit as follows:

VD,d =
exp(IdT · 5̃ �D)∑

d′∈P exp(Id′T · 5̃ �D)
, (9.8)

where Id ∈ R |P |∗3 is the attention vector for meta-path d and 5̃ �D is the concatenation
of user D’s representations. After obtaining the path attention scores VD,d, the final
representation aggregating all meta-paths is given as follows:

4D =
∑
d∈P

VD,d ∗ 5̃ dD , (9.9)

where 5̃
d
D is the representation of neighbors for user D based on meta-path d in

Eq. 9.7.

9.2.3.5 Model Learning

In the end, the obtained final representation (i.e. 4D) are fed into multiple fully
connected neural networks as follows,

ID = ReLU(W! · · ·ReLU(,14D + 11) + 1!), (9.10)

where,∗ and 1∗ respectively denote the weight matrix and the bias vector for each
layer. The predicted cash-out probability is obtained via a regression layer with a

7

sigmoid unit:
?D = sigmoid(F)? ID + 1?). (9.11)

Here F? and 1? are the weight vector and the bias, respectively. The objective
function is maximum likelihood estimation, which can be formulated as follows:

L(Θ) =
∑

〈D,HD 〉∈D
(HD log(?D) + (1− HD) log(1− ?D)) +_ | |Θ| |22, (9.12)

where HD and ?D represent the ground truth and the predicted cash-out probability
of user D, respectively. Θ is the parameter set of the proposed model and _ is the
regularizer parameter.

9.2.4 Experiments

9.2.4.1 Experimental Settings

Dataset. The datasets in this section are real-world data in Ant Credit Pay.We extract
two sub-datasets for the evaluation, namelyTenDaysDataset andOneMonthDataset.
For both datasets, the model can predict the cash-out probability of users some day
in the future. In the datasets, the positive samples are users who have involved in
suspected cash-out transactions within one month and the negative samples are users
who have never involved in suspected cash-out transactions within one month. After
preprocessing, an attributed HG based on the two datasets is constructed, consisting
of 56.75 million users and 0.51 million merchants. In addition, the AHG contains
77.40 million fund transfer relations between users and 20.64 million transaction
relations between users and merchants.

Metrics. The metric is AUC (i.e. Area Under the ROC Curve), a widely used
metric for the performance of cash-out user detection.

Implementation Details. HACUD utilizes two hidden layers for prediction and
randomly initializes the parameters with a xavier initializer [10]. RMSProp [27] is
used as the optimizer. The batch size is set to 256, the learning rate to 0.002 and set
the regularizer parameter _ = 0.01 to prevent overfitting.

9.2.4.2 Performance Comparison

We report the comparison results of the HACUD and baselines w.r.t. the dimension
of latent representation 3 in Table 9.1. The major findings from the experimental
results can be summarized as follows:

(1) HACUD outperforms all the baselines, which indicates that the model adopts
a more principled way to leverage interaction relations and attribute information for
improving prediction performance.

8

Table 9.1 Results of effectiveness experiments on two datasets w.r.t. the dimension of latent
represantation 3. A larger value indicates a better performance.

Algorithm
AUC

Ten Days Dataset One Month Dataset
3 = 16 3 = 32 3 = 64 3 = 128 3 = 16 3 = 32 3 = 64 3 = 128

Node2vec [11] 0.5893 0.5913 0.5926 0.5930 0.5980 0.6063 0.6009 0.6021
Metapath2vec [6] 0.5914 0.5903 0.5917 0.5920 0.6005 0.5976 0.5995 0.5983
Node2vec + Feature 0.6455 0.6464 0.6510 0.6447 0.6541 0.6561 0.6607 0.6518

Metapath2vec + Feature 0.6456 0.6429 0.6469 0.6485 0.6550 0.6552 0.6523 0.6545
Structure2vec [5] 0.6537 0.6556 0.6598 0.6545 0.6641 0.6632 0.6657 0.6678

GBDT [9] 0.6389 0.6389 0.6389 0.6389 0.6467 0.6467 0.6467 0.6467
GBDT(CAD2C 0.6948 0.6948 0.6948 0.6948 0.6968 0.6968 0.6968 0.6968
HACUD 0.7066 0.7115 0.7056 0.7049 0.7132 0.7160 0.7109 0.7154

(2) Among these baselines, we can find that the overall performance order is as fol-
lows: (label + attribute + structure) based methods (i.e. GBDT(CAD2C , Structure2vec)
> (attribute + structure) based methods (i.e. Node2vec + Feature, Metapath2vec +
Feature) > structure or attribute only based method (i.e. Node2vec, Metapath2vec,
GBDT). It indicates that the better performances can be achieved through fusing
more information. In addition, structure information (i.e. interaction relations) is
really helpful for performance improvement.

(3) Compare the two variants of GBDT (i.e. traditional GBDT and GBDT(CAD2C),
we can find that GBDT(CAD2C significantly outperforms traditional GBDT and other
baselines, which further demonstrates the contribution of structural features provided
by meta-path based neighbors in AHG.

9.2.4.3 Effects of Hierarchical Attention

One of themajor contributions ofHACUD is hierarchical attentionmechanismwhich
learns the user preference towards features and meta-paths. In order to examine its
effectiveness, we compare the model with its two variants, namely HACUD\%0Cℎ�CC
(HACUD without path attention) and HACUD\%0Cℎ�CC+�40�CC (HACUD without
path and feature attention). For the performance comparison in Fig. 9.3, we can
find that the overall performance order is as follows: HACUD > HACUD\%0Cℎ�CC >
HACUD\%0Cℎ�CC+�40�CC . The results show that the hierarchical mechanism is able
to better utilize the user feature and features generated by meta-paths in two aspects.
First, different meta-paths have different contributions to cash-out user prediction,
which cannot be treated equally (i.e. HACUD\%0Cℎ�CC). Second, each user tends to
place different importance to the various attributes for each meta-path. Ignoring such
influence may not be able to achieve the promising performance for fully exploiting
attribute and structure information (i.e. HACUD\%0Cℎ�CC+�40�CC).

9

16 32 64 128

0.7

0.71

A
U

C

HACUD
\PathAtt+FeaAtt

HACUD
\PathAtt

HACUD

(a) Ten Days Dataset
16 32 64 128

0.7

0.71

0.72

A
U

C

HACUD
\PathAtt+FeaAtt

HACUD
\PathAtt

HACUD

(b) One Month Dataset

Fig. 9.3 Performance comparison of hierarchical attention w.r.t. the dimension of latent represen-
tation 3.

UMU UU UM
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

A
U

C

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

A
tt

. V
al

u
e

AUC
Att. Value

(a) Ten Days Dataset
UMU UU UM

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

A
U

C
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

A
tt

. V
al

u
e

AUC
Att. Value

(b) One Month Dataset

Fig. 9.4 Performances comparison on different meta-paths and corresponding attention values.

9.2.4.4 Impact of Different Meta-paths

Furthermore, there is another experiment about the performances based on single
meta-path and corresponding average attention value in Fig. 9.4. As we have ob-
served, the performances of HACUD with different meta-paths and the correspond-
ing attentions are positively correlated (i.e. important meta-paths tend to attract
more attentions). In other words, the proposed HACUD model is potential to let
different users focus on the proper meta-paths.

The more detailed method description and experiment validation can be seen
in [12].

9.3 Intent Recommendation

9.3.1 Overview

With the development of mobile Internet, a novel recommendation service, named
intent recommendation, in many e-commerce Apps (e.g., Taobao and Amazon)

10

have emerged, which automatically recommends user intent (presented as several
words) in a search box according to users’ historical behaviors when users open
an e-commerce App. Fig. 9.5a illustrates an intent recommendation example on
the Taobao mobile App. According to user historic information, an intent (e.g.,
presented as “air jordan”) will be automatically recommended in the search box
when a user opens the App. If the user clicks the search button, he/she will jump to
the corresponding item list page.

Recommend

Search

Userdata

Predict

Log

Taobao App Homepage Item List Page

Intent

Item

(a) Intent recommendation

User Item Query

Shoes

Ladies Bag

Hand Bag

Search Click Guide

(b) Heterogeneous graph

Fig. 9.5 Intent recommendation example on Taobao mobile application and the corresponding
heterogeneous graph.

In this chapter, we define the intent recommendation as follows: automatically
recommend a personalized intent for a user according to his/her historical behaviors
without query input. Here, in our application scenario, intent is presented as a
query, consisting of several words or terms simply and directly reflecting user intent.
Existing methods for intent recommendation used in industry, such as Taobao and
Amazon, usually extract handcrafted features, and then feed these features to a
classifier, e.g., GBDT [9] and XGBoost [4]. These methods heavily rely on domain
knowledge and need laboring feature engineering. They only utilize attribute and
statistic information of users and queries, and fail to take full advantage of the rich
interaction information among objects. However, the interaction information is very
abundant in real systems, and it is really critical to capture user intent.

As a general information modeling method, heterogeneous graph, consisting of
multiple types of objects and links, has been widely applied to many data mining
tasks [25, 24, 12]. In this chapter, we firstly propose to model the intent recommen-
dation system with an HG, through which we can flexibly exploit its rich interaction
information. As shown in Fig. 9.5b, obviously, HG clearly demonstrates objects in
intent recommendation (e.g., users, items and queries) and their interaction rela-
tions. Furthermore, we present a novel Metapath-guided Embedding method for
Intent Recommendation (named MEIRec). In order to fully utilize rich interaction
information in intent recommendation, we propose to learn structural feature repre-
sentations of users and queries with Heterogeneous Graph Neural Network (HGNN).
Concretely, we present the metapath-guided neighbours to aggregate rich neighbour
information, where different aggregation functions are designed according to the

11

characteristics of different types of neighboring information. In addition, a uniform
term embedding mechanism is designed to significantly reduce the parameter space.
With the static features used in existing systems, as well as the embeddings of users
and queries learned from interaction information, we build a prediction model for
intent recommendation.

9.3.2 Problem Formulation

Definition 3. Intent Recommendation. Given a set < U , I, Q, W , A, B >, where
U = {D1, · · · , D?} denotes the set of ? users, I = {81, · · · , 8@} denotes the set of @
items, Q = {@1, · · · , @A } denotes the set of A queries, W = {F1, · · · ,F=} denotes the
set of = terms, A denotes the attributes associated with objects, and B denotes the
interaction behaviors between different types of objects. In our application, a query
@ ∈ & or an item 8 ∈ �, is constituted by several terms F ∈W . The purpose of intent
recommendation is to recommend the most related intent (i.e., query) @ ∈Q to a user
D ∈ U .

Example 2. Taking Fig. 9.5a for example, for a user D ∈ U , when he refreshes the
App, we can utilize information from A and B to calculate the preference score of
D for a candidate query @ ∈ Q, and recommend the query with the highest score as
user intent to the user D. It is worth noting that the recommended query reflects user
intent through exploiting user historical interaction information.

9.3.3 The MEIRec Method

9.3.3.1 Model Framework

The basic idea of the proposed model MEIRec is to design a heterogeneous GNN for
enriching the representations of users and queries. With the help of HG built from
intent recommendation system, MEIRec leverages metapaths to guide the selection
of different-step neighbors and designs a heterogeneous GNN to obtain the rich
embeddings of users and queries. Moreover, we represent different types of objects
with uniform term embedding for less parameters learning, since queries and titles
of items are constituted by a small number of terms.

Fig. 9.6 shows the overall framework of MEIRec. First, we use the triple-object
HG containing < DB4A, 8C4<, @D4AH > as input. Second, we use the uniform term em-
bedding to generate the initial embeddings of items and queries. Third, we aggregate
the information of metapath-guided neighbors to learn the embeddings of users and
queries via heterogeneous GNN. After that, we fuse the embeddings of users and
queries based on different metapaths, respectively. Finally, with the fused embed-
dings of users and queries, accompanying with static features of users and queries,

12

we predict the probability that a user will search a specific query. We illustrate these
steps in detail in the following sections.

0
1
.
..

..
.

0

W
o

rd

S
eg

m
en

ter

W
o

rd

S
eg

m
en

ter

1
.
..

1
0

...
0

1
1

...
0

W
o

rd

S
eg

m
en

ter

W
o

rd

S
eg

m
en

ter

loss

Ground -

Truth label

1

(a)Input (b)Term Embedding

Layer

Lookup

(c)Metapath-guided

Heterogeneous GNN Layer

(d) Fusion

Layer

(e)Output

Layer

static features

user/item/query

embedding

term embedding

element-wise +

..
.

..
.

..
.

..
.

..
.

..
.

.
.
.

..
.

..
.

..
.

..
.

.
.
.

.
.
.

.
..

..
.

..
.

.
.
.

.
..

..
.

..
.

..
.

.
..

..
.

UIQ

UQI

QIQ

QUI

MLP layers

User Item Query

Shoes

Ladies Bag

Hand Bag

Predict value

..
.

Air Jordan
shoes

LV
Hand Bag

Search

Click

Guide

0
1

0
1

1

Fig. 9.6 The framework of MEIRec.

9.3.3.2 Uniform Term Embedding

In previous neural-network based recommendation, every user or query should have
an unique embedding. In the intent recommendation scenario, there are billions
of users and queries. If we employ traditional collaborative filtering or neural-
network based methods to represent all users and queries, it will make the number
of parameters tremendous. Note that queries and titles of items are constituted by
terms and the number of terms is not many. So we propose to represent the queries
and items with a small number of term embeddings. And thus we only need to learn
the term embeddings, rather than all object embeddings. This method is able to
significantly reduce the number of parameters.

Specifically, we extract terms from the queries and items’ titles 3, and build a term
lexicon W = {F1,F2, · · · ,F=−1,F=}. Note that queries and items (i.e., their titles)
are the combination of several terms. For example, as shown in Fig 9.6a and b, query
“Hand Bag" is constituted by terms “Hand" and “Bag", and item “LV Hand Bag" is
constituted by terms “LV", “Hand" and “Bag". Since the number of the lexiconW is
far less than the number of the queries and users, the uniform term embedding can

3 Terms are important words or phrases. We use the AliWS (Alibaba Word Segmenter) to segment
the queries and items’ titles and select important words or phrases which contains rich meanings

13

significantly reduce the number of learned parameters. More importantly, the new
queries that have never been searched before can be represented by these terms.

9.3.3.3 Metapath-guided Heterogeneous Graph Neural Network

Inspired by the basic idea of the GCNs which generates node embeddings based on
local neighbors [16, 34], we first propose a metapath-guided heterogeneous GNN.
That is, we leverage metapaths to obtain different-step neighbors of an object, and
the embeddings of users and queries are the aggregation of their neighbors under
different metapaths.

...

...

UIQ path UQI path

Fig. 9.7 A toy example of metapath-guided information aggregation.

We present a toy example in Fig. 9.7 to illustrate this process. Here we describe
how to obtain the embedding U2 of user D2 based on multiple metapaths, such as
�& and&�. We first illustrate how we aggregate neighbor information along path
*�&.We use the uniform term embedding to obtain the initial embeddings of queries.
And then we aggregate the metapath-guided neighbors to get the metapath-guided
embedding of user D2. According to the network structure in Fig. 2(a), we get the 1-st
step neighbors set of D2 , N 1

UIQ (D2) = {81, 82}. For each node 8: in the neighbors set
N 1

UIQ (D2), we extract the 2-nd step neighbor set N 2
UIQ (D2) = {@1, @2, @3}. After we

obtain the 1-st step and 2-nd step neighbors set of D2, we aggregate the embeddings
of 2-nd step neighbors to obtain the 1-st step neighbors’ embeddings. Finally, we
aggregate the embeddings of 1-st step neighbors {81, 82} to obtain embedding *UIQ

2
of user D2. Following this process, we can get different metapath-guided embeddings
of D2, such as *UQI

2 . Then we aggregate all the metapath-guided embeddings to get
final embedding of D2 (i.e.,*2).

14

9.3.3.4 User Modeling

In our model, we aggregate the information of different-step neighbors to obtain
the representation *8 of user D8 via metapath-guided heterogeneous GNN. In this
section, we show how MEIRec models user embedding in detail.

As shown in the upper box in Fig 9.6c, in order to get the embedding*8 of user D8 ,
we select metapaths starting from target user. We first search different-step neighbors
along the metapath, and then aggregate the embeddings of neighbors step by step.
Taking the metapath*�& (meaning user clicks the items which had been guided by
queries) for example, we can obtain different-step neighbors of a user D8 . After we
get the 1-st step and 2-nd step neighbors set, we aggregate the embeddings of 2-nd
step neighbors (query) to obtain the 1-st step neighbors’ (item) embeddings and the
embedding �UIQ

9
of item 8 9 in N 1

UIQ (D8) based on the metapath*�& is:

�
UIQ
9

= 6(�@1 , �@2 , · · ·), (9.1)

where 6(·) is the average aggregation function. And the queries {@1, @2, · · ·} are the
neighbors of item 8 9 .

Next, we aggregate 1-st step neighbors’ (item) embeddings to obtain the embed-
ding*UIQ

8
of user D8:

*
UIQ
8

= 6(�UIQ1 , �
UIQ
2 , · · ·), (9.2)

where the items {81, 82, · · · } are the neighbors of user D8 . Since users click queries or
items with timestamp, we model the neighbors of users (i.e., items or queries) as a
sequence data and utilize LSTM [2] to aggregate them.

Then we obtain the fused user embedding by aggregating embeddings based on
different metapaths {d1, d2, · · · , d: }:

*8 = 6(*d1
8
,*

d2
8
, · · · ,*d:

8
), (9.3)

where the d is metapath starting from user.

9.3.3.5 Query Modeling

Similar to user information aggregation, we also obtain the fused query embedding
&8 based on metapaths {d1, d2, · · · , d: }:

&8 = 6(&d1
8
,&

d2
8
, · · · ,&d:

8
), (9.4)

where the d is the metapath starting from query.

15

9.3.3.6 Optimization Objective

In our model, we predict the probability Ĥ8 9 of user D8 search the query @ 9 which
is in the range of [0,1] to ensure that the output value is a probability. Through
aggregating the neighbors of user and query, we obtain the fused user embedding
*8 for user D8 and fused query embedding & 9 for query @ 9 . In addition, there are
raw static features used in traditional methods, include attributes of users (queries)
and static features from interaction information. We feed these static features to a
Multi-Layer Perceptron for obtaining the representation of the static features (8 9 .
Then, we concatenate the embeddings of user, query and static features to fuse them.
Finally, we feed the fused embeddings into MLP layers to get the predict score Ĥ8 9 .
Then we have:

Ĥ8 9 = B86<>83 (5 (*8 ⊕& 9 ⊕ (8 9)), (9.5)

where the 5 (·) is the MLP layers with only one output, B86<>83 (·) is the sigmoid
layer, and ⊕ is the embedding concatenate operation.

The loss function of our model is a point-wise loss function in Eq. 9.6.

� =
∑

8, 9∈Y∪Y−

(
H8 9 ;>6Ĥ8 9 + (1− H8 9);>6(1− Ĥ8 9)

)
, (9.6)

where H8 9 is the label of the instance (i.e. 1 or 0) and theY and theY− are the positive
and negative instances set, respectively.

9.3.4 Experiments

9.3.4.1 Experimental Settings

Dataset.We collect a real-world large-scale dataset from Taobao mobile application
from Android and IOS online. We first extract static features for user and query. And
we construct an HG based on interaction data collected during 10 days. For offline
experiments, we utilize the interaction data during 5 days. Specifically, each raw in-
teraction record in the collected dataset contains < DB4A, @D4AH, C8<4BC0<?, ;014; >
representing that the recommended query has been shown to user at timestamp. And
the label indicates whether the user clicks the recommended query. Moreover, we
use training data for different time periods (from 1 to 5 days) to predict the next
one-day. Therefore, we have three datasets with different scales marked as 1-day,
3-day and 5-day. The detailed statistics of the data are shown in Table 9.2.

16

Table 9.2 The statistics of the datasets.
Dataset 1-day 3-day 5-day

Training size (positive) 2,000,000 6,000,000 9,999,999
Training size (all) 8,000,000 23,999,998 39,999,997

Validation size (positive) 2,000,000 2,000,000 1,949,143
Validation size (all) 7,999,997 8,000,000 7,949,142

Train users 4,792,621 11,489,531 16,419,735
Train queries 871,133 1,653,865 2,163,574

Validation users 4,819,489 4,809,497 4,790,912
Validation queries 876,636 859,488 787,672

New users in validation set 3,666,692 2,613,695 2,064,564
Density 4.8×10−7 3.1×10−7 2.8×10−7

Baselines and Evaluation Metrics. To validate the effectiveness of our pro-
posed model, we use the popular models used in industry (i.e., LR, DNN, and
GBDT) with different feature settings and a popular neural network based model
NeuMF. In particular, LR/DNN/GBDT + DW/MP means that we feed the static
features of users and queries, as well as the pre-training embeddings learned by
DeepWalk (DW) [21]/MetaPath2vec (MP) [6] from structural information, into
LR/DNN/GBDT model. In our experiments, we use AUC [19] to evaluate the per-
formance of different models for comparison. The large AUC value means better
performance.

9.3.4.2 Offline Performance Evaluation

The performances of MEIRec and the baselines are reported in Table 9.3. The major
findings from the experimental results can be summarized as follows:

(1) MEIRec significantly outperforms all the compared baselines. Compared to
the best performance of baselines (i.e., GBDT +MP or GBDT + DW, indicated with
“*” at Table 9.3), MEIRec offers an improvement of 2.1%~4.3% in the three datasets.
The results show thatMEIRec achieves best results by using both static and structural
features. It indicates that our model adopts a more comprehensive way to leverage
static features and interaction relations for improving prediction performance.

(2) Among these baselines, we find that the order of overall performances is as
follows: at the method level, GBDT > DNN > LR > NeuMF. Due to that NeuMF
cannot learn the embeddings of new users and new queries appeared in the valida-
tion set, new objects’ embeddings will be random variables, which makes the worst
performances of NeuMF. And at the feature level, (static features + heterogeneous
embeddings) based methods > (static features + homogeneous embeddings) based
methods > static features based methods. This ranking indicates that fusing more
information could usually get better performances. At both levels, we conclude that
choosing a model plays a key role in intent recommendation, and adopting appropri-
ate methods to fuse more information could significantly improve the performance.
As a consequence, theMEIRec achieves best performances, due to the heterogeneous
GNN model and utilization of rich heterogeneous interactions.

17

(3) As the scale of data increasing, our model outperforms the best baselines with
an increased margin (from 2.1% to 4.3%). The result further confirms that our model
is more scalable for large-scale datasets.

Table 9.3 The AUC comparisons of different methods. The * indicates the best performance of the
baselines. Best results of all methods are indicated in bold. The last row indicates the percentage
of improvements gained by the proposed method compared to the best baseline.

Method 1-day 3-day 5-day
40% 60% 80% 100% 40% 60% 80% 100% 40% 60% 80% 100%

NeuMF 0.6014 0.6066 0.6136 0.6143 0.6168 0.6218 0.6249 0.6291 0.6172 0.6224 0.6246 0.6295
LR 0.6854 0.6838 0.6884 0.6889 0.6844 0.6863 0.6857 0.6865 0.6817 0.6831 0.6827 0.6836

LR+DW 0.6878 0.6904 0.6898 0.6930 0.6888 0.6896 0.6898 0.6900 0.6838 0.6842 0.6863 0.6867
LR+MP 0.6918 0.6936 0.6950 0.6969 0.6919 0.6930 0.6933 0.6933 0.6874 0.6890 0.6898 0.6899
DNN 0.6939 0.6981 0.6991 0.6997 0.6966 0.6985 0.6999 0.7008 0.6996 0.7011 0.7017 0.7029

DNN+DW 0.6962 0.6980 0.7003 0.7024 0.7005 0.7017 0.7024 0.7030 0.7017 0.7029 0.7040 0.7047
DNN+MP 0.6984 0.6992 0.7024 0.7057 0.7025 0.7040 0.7051 0.7057 0.7017 0.7044 0.7060 0.7069
GBDT 0.7071 0.7071 0.7067 0.7073 0.7070 0.7071 0.7072 0.7071 0.7067 0.7068 0.7072 0.7066

GBDT+DW 0.7114 0.7119 0.7112∗ 0.7118∗ 0.7109 0.7106 0.7106 0.7104 0.7109 0.7112 0.7109 0.7114
GBDT+MP 0.7122∗ 0.7127∗ 0.7110 0.7111 0.7123∗ 0.7122∗ 0.7122∗ 0.7124∗ 0.7118∗ 0.7114∗ 0.7114∗ 0.7120∗
MEIRec 0.7273 0.7302 0.7339 0.7346 0.7352 0.7369 0.7380 0.7390 0.7372 0.7401 0.7409 0.7425

Improvement 2.1% 2.5% 3.2% 3.2% 3.2% 3.5% 3.6% 3.7% 3.6% 4.0% 4.1% 4.3%

9.3.4.3 Online Experiments

To furtherly evaluate the proposed model, we conduct online experiments in Taobao
mobile App. We conduct a bucket testing (i.e., A/B testing) online to test the users’
response to our model against baseline. We select one bucket for baseline, and
another bucket for our model. And we select the GBDT model for comparison for
that GBDT is used in real system.We use the metric CTR, Unique Click4, and UCTR
to evaluate the online performance, where CTR and UCTR=Unique Click/Unique
Visitor indicate change of the click ratio and visit ratio.

The results are shown in Table 9.4. We can see that, compared to the GBDT,
MEIRec achieves performance improvement in all metrics, which indicates that in-
corporating interaction information can better capture user latent intent. Our model
gains the improvement of 0.70%, 4.79% and 1.54% for Android, IOS and Total
respectively in CTR. Since the CTR is to measure the ratio of clicks against im-
pressions, the improvement of CTR shows that our model can greatly improve the
user’s search experience. In addition, the metric UCTR indicates how many unique
visitors click the recommended query, and it gains an improvement of 2.07%, 5.43%
and 2.66% for Android, IOS and Total. The improvement of UCTR shows that our
model has an advantage in attracting new users to search queries.

4 The number of visitors who performed a click

18

Table 9.4 Online A/B testing experiments results.

Data Methods CTR Unique Click UCTR

Android
GBDT 1.746% 256,116 13.939%
MEIRec 1.758% 260,634 14.229%

Improvement 0.70% 1.76% 2.07%

IOS
GBDT 0.7687% 62,462 5.2579%
MEIRec 0.8056% 65,895 5.5436%

Improvement 4.79% 5.50% 5.43%

Total
GBDT 1.4035% 318,578 10.5252%
MEIRec 1.4252% 326,529 10.8052%

Improvement 1.54% 2.50% 2.66%

The more detailed method description and experiment validation can be seen
in [8].

9.4 Share Recommendation

9.4.1 Overview

With the development of social e-commerce, a new recommendation paradigm, share
recommendation, has sprung up recently. In particular, share recommendation aims
to predict whether a user will share an item with his friend. Such recommendation
demand is ubiquitous in social e-commerce. The share recommendation is signif-
icantly different from traditional recommendations, such as item recommendation
[29] and friend recommendation [32]. As shown in Fig. 9.8, we can find that item
recommendation aims to recommend an item to a user (i.e., essentially maximize
the probability %(82 |D2)) and friend recommendation aims to recommend a friend
to a user (i.e., maximize the probability %(D4 |D2)). Significantly different from the
above binary recommendations, the goal of share recommendation is to predict the
ternary interactions among 〈*B4A, �C4<,�A84=3〉, i.e., whether a user will share an
item with his friend, maximizing the probability %(D3 |D2, 83).

19

Fig. 9.8 Share recommendation V.S. previous recommendations.

Fig. 9.9 A typical example for share recommendation.

Deliberately considering the characteristics of share recommendation, we need
to address the following challenges for modeling share recommendation. Rich Het-
erogeneous Information. Share recommendation usually contains complex hetero-
geneous information, including complex interactions among users and items, as well
as rich feature information of users and items. Complex ternary interaction. Dif-
ferent from simple binary interaction in traditional recommendations, exemplified
as 〈D2, 82〉 interaction in the item recommendation and 〈D2, D4〉 interaction in friend
recommendation in Fig. 9.8, share recommendation faces complex ternary interac-
tion (e.g., 〈D2, 83, D3〉 in Fig. 9.8). We need to consider the suitability of a share
action, which evaluates the matching degree of three objects (e.g., D2, 83, D3) in the
share action. According to the characteristic of the recommended item, a user will
recommend it to an appropriate friend, and thus how the item influence the user (or
the friend) should be considered. Asymmetric Share Action. The share action is
asymmetric and irreversible, which means the share action may not happen if we
swap the roles of the user and the friend.

In this section, we first study the problem of share recommendation and pro-
pose a novel Heterogeneous Graph neural network based Share Recommendation
model (HGSRec). We model the share recommendation system as an attributed het-
erogeneous graph to integrate rich heterogeneous information, and then we design

20

HGSRec to learn the embeddings of D, 8, E and predict the probability of share action
〈D, 8, E〉 happening. Specifically, after initializing node embedding via encoding rich
node features, a tripartite heterogeneous GNNs is designed to learn the embeddings
of D, 8, E, respectively, via aggregating their meta-path based neighbors, which en-
ables HGSRec flexibly fuse different aspects of information. Furthermore, a dual
co-attention mechanism is proposed to dynamically fuse the multiple embeddings
of D (or E) under different meta-paths, considering the influence of item 8 to user D
(or E), to improve the suitability of 〈D, 8, E〉. Finally, a transitive triplet representation
of 〈D, 8, E〉 is employed to predict whether share action happens.

9.4.2 Problem Formulation

Definition 4. Share Recommendation. Given an attributed heterogeneous graph
G = (V ,E , -) representing a share recommendation system, share recommendation
aims to predict a share action 〈D, 8, E〉 (formulated with 〈*B4A, �C4<,�A84=3〉, or
abbreviated with 〈*, �,+〉). Specifically, the purpose of share recommendation is
to recommend the most likely �A84=3 E ∈ F (D) to *B4A D ∈ V* who would like to
share the �C4< 8 ∈ V� (〈D, 8〉 ∈ E$), i.e., argmaxE %(E |D, 8). The label HD,8,E ∈ {0,1}
indicates whether share action happens.

Example 3. Fig. 9.9a shows the attributed heterogeneous graph of share recommen-
dation. Here D2 has two friends denoting asF (D2) = {D1, D3}. Meta-path [26], a com-
posite relation connecting two nodes, is able to extract rich semantics. As shown in
Fig. 9.9b,*B4A 1DH �C4< 1DH

*B4A (U-b-I-b-U for short) meaning the co-buying rela-
tions,*B4A B>280;*B4A (U-s-U for short) meaning the social relations,*B4A 1DH �C4<
(U-b-I for short) meaning buy relations, and *B4A E84F �C4< E84F*B4A (U-v-I-v-U
for short) meaning the co-viewing relations. As shown in Fig. 9.8c, share recommen-
dation will recommend a most likely friend, like D3 ∈ F (D2), to a user D2 who would
like to share the shoes 83, which essentially maximizes the probability %(D3 |D2, 83).

9.4.3 The HGSRec Method

9.4.3.1 Model Framework

The overall framework of HGSRec is shown in Fig. 9.10. Given a share action
< D,8, E >, the basic idea of HGSRec is to learn the embeddings of D, 8, E to predict
the probability of the action happening, with the help of delicate designs, such as
tripartite heterogeneous GNNs, dual co-attention mechanism, and transitive triplet
representation.

21

(b) (c) (d)

Fig. 9.10 The overall framework of the proposed HGSRec. (a) Initializing user and item embedding
via feature embedding. (b) Updating node embedding via tripartite heterogeneous graph neural
networks. (c) Fusing embedding dynamicially via the dual co-attention mechanism. (d) Modeling
asymmetric share action via transitive triplet representation.

9.4.3.2 Initialization with Feature Embedding

Firstly, we initialize node embedding via embedding their features. Different from ID
embedding, feature embedding has two-fold benefits: (1) In real applications, there
are numerous of newly coming nodes every day. The feature embedding effectively
generates embeddings for previously unseen nodes by utilizing their features. (2)
The number of features is much less than the number of nodes, which significantly
reduces the number of learnable parameters.

For the :-th node feature 5: ∈ R | 5: |∗1, we initialize a feature embedding matrix
M 5: ∈ R3∗| 5: | , where | 5: | means the number of values of feature 5: and 3 is the
dimension of feature embedding. The embedding of D’s :-th feature is shown as
follows:

4
5 *
:
D = " 5 *

: ·D 5 *: . (9.1)

Considering all the features of user D, we can get the initial user embedding GD , as
follows:

GD = f

(
,* ·

(| 5 * |
‖
:=1

4
5 *
:
D

)
+ 1*

)
, (9.2)

where | | denotes the concatenation operation, ,
*

and 1
*

denote the weight ma-
trix and bias vector, respectively. The same process can be done for item/friend
embedding.

22

9.4.3.3 Tripartite Heterogeneous Graph Neural Networks

Herewe propose tripartite heterogeneousGNNs to learn embeddings of D, 8, E via cor-
responding heterogeneous GNN (i.e.,�4C4�##* ,�4C4�## � , and�4C4�##+),
respectively. Heterogeneous GNN usually follows a hierarchical manner: It first ag-
gregates information from one kind of neighbors via one meta-path and learns
the semantic-specific node embeddings in node-level. Then, it aggregates multi-
ple semantics from different meta-paths and fuses a set of semantic-specific node
embeddings in semantic-level.

Specifically, given one user D and :1 user-related meta-paths {Φ*1 ,Φ
*
2 , · · · ,Φ

*
:1
},

�4C4�##* is able to get :1 semantic-specific user embeddings {GΦ
*
1

D , G
Φ*2
D , · · · , G

Φ*
:1

D }.

G
Φ*1
D , G

Φ*2
D , · · · , G

Φ*
:1

D = �4C4�##* (D). (9.3)

Note that the number of meta-path based neighbors of different nodes could be
quite different, so we need to sample fixed number of neighbors. Random sampling
strategy causes heavy computation consumption and missing important nodes. Here
we propose a top-# semantic sampling strategy: (1) If the number of meta-path
based neighbors is more than fixed number # , we sample top-# meta-path based
neighbors based on connection strength (e.g., how many times a user view an item).
(2) Or else, we adopt resample to get # meta-path based neighbors.

Given a user D and corresponding meta-path Φ* , we propose a novel semantic
aggregator (4<�66Φ*D to aggregate sampled neighbors NΦ*

D and obtain the meta-

path based embedding GN
Φ*

D
D , as follows:

G
NΦ*

D
D = (4<�66Φ

*

D ({G= |∀= ∈NΦ*

D }). (9.4)

Considering the time efficiency, we adopt "40=%>>;8=6 to accelerate aggregating
processing for faster prediction. To emphasize the property of user D explicitly, we

concatenate initial embedding GD and meta-path based embedding GN
Φ*

D
D and get the

semantic-specific user embedding GΦ*D ,

GΦ
*

D = f(,Φ* · (GD | |GN
Φ*

D
D) + 1Φ*), (9.5)

where ,Φ* and 1Φ* denote the weight matrix and bias vector for meta-path Φ* ,
respectively. Given a set of user-related meta-paths {Φ*1 ,Φ

*
2 , · · · ,Φ

*
:1
}, we can

get :1 semantic-specific user embeddings {GΦ
*
1

D , G
Φ*2
D , · · · , G

Φ*
:1

D } which describe the
characteristics of user D from different aspects. The same process can be done via

�4C4�##+ to learn multiple semantic-specific embeddings {GΦ
+
1
E , G

Φ+2
E , · · · , G

Φ+
:2

E }
of friend E. Since the characteristic of the item is much simple and stable than
the user, we only adopt one meta-path Φ� to get the embedding GΦ�

8
of item 8 via

�4C4�## � .

23

9.4.3.4 Dual Co-Attention Mechanism

After obtaining a set of semantic-specific node embeddings (e.g., {GΦ
*
1

D , G
Φ*2
D , · · · , G

Φ*
:1

D }),
we aim to fuse them properly based on the complex ternary interactions 〈D, 8, E〉. So
a dual co-attention mechanism is designed to dynamically fuse the embeddings of
D (or E) under different meta-paths, considering the effect of item 8, which con-
sists of co-attention mechanism �>�CC*,� for 〈*, �〉 and co-attention mechanism
�>�CC+ ,� for 〈+, �〉. Specifically, it learns the interaction-specific attention values
of meta-paths for 〈D, 8, E〉 and get the most appropriate embedding of D, E, with the
following benefits: (1) It reinforces the dependency of 〈D, 8, E〉, making HGSRec
more integrated. (2) It dynamically fuses the embeddings of D (or E), improving
share suitabilities.

Taking 〈*, �〉 as an example, the co-attention mechanism �>�CC*,� aims to learn

a set of interaction-specific co-attention weights {FΦ
*
1

D,8
,F

Φ*2
D,8
, · · · ,F

Φ*
:1

D,8
} for user D,

F
Φ*1
D,8
,F

Φ*2
D,8
, · · · ,F

Φ*
:1

D,8
= CoAtt*,� (G

Φ*1
D , · · · , GΦ

*
:1

D , GΦ
�

8). (9.6)

Specifically, we concatenate the semantic-specific embedding of D and 8 and project
them into co-attention space. Then, we adopt a co-attention vector @*,� to learn the
importances of meta-paths for user D. The importance of meta-path Φ*< for D in the
interaction 〈D, 8〉, denoted as UΦ

*
<

D,8
,

U
Φ*<
D,8

= @)*,� ·f(,*,� · (GΦ
*
<

D | |GΦ
�

8) + 1*,�), (9.7)

where,*,� and 1*,� denote the weight matrix and bias vector, respectively. After
obtaining the importances of meta-paths, we normalize them via softmax to get the
co-attention weight FΦ

*
<

D,8
of meta-path Φ*< , shown as follows:

F
Φ*<
D,8

=
exp(UΦ

*
<

D,8
)∑:1

<=1 exp(UΦ
*
<

D,8
)
, (9.8)

where FΦ
*
<

D,8
reflects the contribution of meta-pathΦ*< in improving share suitability.

With the learned weights as coefficients, we can obtain the fused embedding ℎD of
D, shown as follows:

ℎD =

:1∑
<=1

F
Φ*<
D,8
· GΦ

*
<

D . (9.9)

Similar to�>�CC*,� ,�>�CC+ ,� learns a set of co-attentionweights {F
Φ+1
E,8
,F

Φ+2
E,8
, · · · ,F

Φ+
:2
E,8
}

for friend E and gets the fused friend embeddings ℎE . Since we only select one meta-
path for item, the fused embedding ℎ8 of item 8 is actually GΦ�

8
.

24

9.4.3.5 Transitive Triplet Representation

To predict the share action 〈D, 8, E〉, we need to construct a triplet representation AD,8,E
based on ℎD , ℎ8 , ℎE . We first project all types of nodes in 〈*, �,+〉 into the same space
via three type-specific MLPs, shown as follows:

ID = "!%
* (ℎD), I8 = "!%� (ℎ8), IE = "!%+ (ℎE). (9.10)

A simple way to construct the triplet representation AD,8,E is to concatenate all
node embeddings (a.k.a., ID | |I8 | |IE). However, the simple concatenation cannot
explicitly capture the remarkable characteristics of share action. Inspired by relational
translation [1], we propose a transitive triplet representation AD,8,E to explicitly model
the characteristics of share action via item-translating, shown as follows:

AD,8,E = |ID + I8 − IE |, (9.11)

where | · | denotes the absolute operation. Then, we feed AD,8,E into MLP and get the
predict score ĤD,8,E , as follows:

ĤD,8,E = f(, · AD,8,E + 1), (9.12)

where , and 1 denote the weight vector and bias scalar, respectively. Finally, we
calculate the cross-entropy loss,

! =
∑

D,8,E∈D
(HD,8,E log ĤD,8,E + (1− HD,8,E) log (1− ĤD,8,E)), (9.13)

where HD,8,E is the label of the triplet, D denotes the dataset.

9.4.4 Experiments

9.4.4.1 Experimental Settings

Dataset. We collect data from Taobao platform, ranging from 2019/10/09 to
2019/10/14, and construct an AHG (shown in Fig. 9.9). Each sample contains a
share action 〈D, 8, E〉 and corresponding label HD,8,E ∈ {0,1}.We select four meta-
paths including U-s-U, U-b-I-b-U and U-v-I-v-U for the user and U-b-I for the
item. In offline experiments, we use the last day (i.e., 2019/10/14) as validation set
and the previous 3/4/5 days as training sets, marked as 3-days, 4-days, and 5-days,
respectively. The details of the datasets are shown in Table 9.5.

25

Table 9.5 The statistics of the datasets.
Dataset 3-days 4-days 5-days

#Train 〈D, 8, E 〉 3,324,367 4,443,996 5,611,531
#Train*B4AB 1,064,426 1,315,126 1,546,017
#Train � C4<B 537,048 679,784 818,290
#Valid 〈D, 8, E 〉 1,401,395
#Valid*B4AB 539,959
#Valid � C4<B 247,907

Table 9.6 The AUC comparisons of different methods.

Model 3-days 4-days 5-days
40% 60% 80% 100% 40% 60% 80% 100% 40% 60% 80% 100%

LR 67.56 67.62 67.26 67.69 67.58 67.65 67.68 67.72 67.62 67.67 67.72 67.74
XGBoost 72.04 72.14 72.13 72.18 72.08 72.11 72.15 72.49 72.72 72.54 71.78 72.14
DNN 71.30 71.20 71.67 72.03 71.04 71.33 71.48 71.80 70.96 71.12 71.46 71.51
SAGE 70.55 70.97 70.86 70.89 69.82 69.69 70.46 71.03 69.11 69.66 71.25 71.06
IGC 62.23 61.78 62.20 62.25 61.87 62.30 63.11 63.17 62.60 62.91 63.11 63.15
IGC+ 73.15 73.37 73.92 74.34 73.87 73.99 74.22 74.51 74.14 74.22 74.53 74.79

MEIRec 64.94 65.10 65.30 65.53 65.45 65.55 65.66 65.72 65.19 65.58 66.20 65.63
MEIRec+ 76.82 77.40 77.06 78.29 76.97 77.75 76.87 76.36 76.58 77.29 76.63 77.66

HGSRec\0CC 86.63 86.95 87.16 87.26 87.00 87.27 87.31 87.51 87.11 87.23 87.34 87.59
HGSRec\CA0 78.17 79.10 79.50 79.95 76.40 79.12 77.09 79.63 78.22 78.89 78.83 81.37
HGSRec 86.84 87.20 87.36 87.45 87.05 87.39 87.43 87.69 87.27 87.53 87.72 87.92
Impro(%). 13.0 12.7 13.4 11.7 13.1 12.4 13.7 14.8 14.0 13.2 14.5 13.2

Baselines. We select feature based models (i.e., LR, DNN, and XGBoost) and
GNN models (i.e., GraphSAGE, IGC, and MEIRec) as baselines. Since IGC and
MEIRec cannot handle ternary recommendation, we also provide tripartite versions
(i.e., IGC+ and MEIRec+) for share recommendation. To validate delicate designs
in HGSRec, we also test two variants of HGSRec (HGSRec\0CC and HGSRec\CA0).

Evaluation Metrics and Hyperparameter Settings. We select AUC as the
evaluation metric, RMSProp as optimizer. We uniformly set feature embedding to
8, node embedding to 128, batch size to 1024, learning rate to 0.01 and dropout rate
to 0.6 for deep models. For XGBoost, we set tree depth to 6, tree number to 10. For
LR, we set the L1 reg to 1. For HeteGNNs, we sample 5, 10, 2 neighbors via U-s-U,
U-v-I-v-U , U-b-I-b-U to learn multiple user embeddings and sample 50 neighbors
via U-b-I to learn item embedding.

9.4.4.2 Offline Performance Evaluation

As shown in Table 9.6, we have the following observations: (1) HGSRec consis-
tently performs better than all baselines with significant improvements. Compared
to the best baseline, the improvements are up to 11.7%-14.5%, indicating the su-

26

periority of HGSRec. (2) Most of GNNs (i.e., GraphSAGE, IGC, and MEIRec)
outperform feature based methods (i.e., LR, DNN, and XGBoost), indicating the
importance of structure information. When deeper insight into these methods, we
can find, if employing ternary interactions, the tripartite versions (i.e., IGC+ and
MEIRec+) significantly outperform the original versions. It further confirms the
benefits of modeling ternary interaction for share recommendation. (3) Comparing
the performance of HGSRec with its variants, we can find HGSRec achieves the best
performance. The degradation of HGSRec\0CC indicates the effectiveness of the dual
co-attention mechanism, while the degradation of HGSRec\CA0validates the superi-
ority of transitive triplet representation. Note that the degradation of HGSRec\CA0 is
much more significant than that of HGSRec\0CC , which implies that transitive triple
representation may make higher contribution than dual co-attention mechanism.

9.4.4.3 Attention Analysis

The dual co-attentionmechanism can dynamically fusemultiple embeddings of*B4A
and �A84=3 with regard to different �C4<B and improve the share suitabilities. We
first present the macro-level analysis via the box-plot figure of attention distributions
over*B4A on 3-day dataset in Fig. 9.11a. Note that attention values distributions over
�A84=3 also show similar phenomenons. As can be seen, the attention distributions
of meta-paths are different, and the attention values ofU-b-I-b-U is the largest with a
higher variance, which illustrates that this meta-path is the most important for most
users. The reason is that U-b-I-b-U is related to user purchasing behavior which
reflects the strongest user preference. The higher variance of U-b-I-b-U also implies
its importances varies greatly for different users. We further test HGSRec with single
meta-path and show their performances with the corresponding averaged attention
values in Fig 9.11b. Consistent with attention distribution, U-b-I-b-U is the most
useful meta-path which achieves the highest AUC and gets the largest attention value.

C
o-

at
te

nt
io

n
w

ei
gh

ts

0

0.2

0.4

0.6

0.8

U-v-I-v-U U-s-U U-b-I-b-U

(a) Attention distributions.

AUC Averaged attention values

0

0.2

0.4

0.6

0.8

U-v-I-v-U U-s-U U-b-I-b-U

(b) Performance & averaged attention values.

Fig. 9.11 The attention analysis on 3-days dataset.

27

9.4.4.4 Online Experiments

We deploy HGSRec on Taobao APP for online share recommendation and compare
HGSRec with XGBoost via online A/B testing. Online service need to satisfy the
following requirements: (1) Storage and processing for massive data. Share recom-
mendation system is stored onMaxCompute as adjacency list for memory efficiency.
(2) Abnormal share action. We filter abnormal share actions (e.g., a user shares more
than thousands of items with his friend within 24 hours). (3) New feature and miss-
ing feature. New features comes everyday, so we leverage hash function to map all
features, leading a slight loss of performance when hash collision happens. Missing
features are padded with a specific C>:4=.

The online results range from 2020/01/08 to 2020/02/02 (25 days) are shown in
Fig. 9.12. Here we select UCTR (UCTR=Unique Click/Unique Visitor) for online
evaluation. The larger UCTR, the better performance. The long-term observations
show that HGSRec consistently outperformsXGBoost with a significant gap, demon-
strating the high industrial practicability and stability of HGSRec.

XGBoost HGSRec

U
C
T
R

0.006

0.007

0.008

0.009

0.010

0.011

0.012

Date

0
1
0
8

0
1
0
9

0
11
0

0
111
0
11
2

0
11
3

0
11
4

0
11
5

0
11
6

0
11
7

0
11
8

0
11
9

0
1
2
0

0
1
2
1

0
1
2
2

0
1
2
3

0
1
2
4

0
1
2
5

0
1
2
6

0
1
2
7

0
1
2
8

0
1
2
9

0
1
3
0

0
1
3
1

0
2
0
1

0
2
0
2

Fig. 9.12 The results of Online A/B testing.

The more detailed method description and experiment validation can be seen in
[13].

9.5 Friend-Enhanced Recommendation

9.5.1 Overview

Nowadays, with the thriving of online social networks, people are more willing to
actively express their opinions and share informationwith friends on social platforms.
Friends become essential information sources and high-quality information filters.
Impressed by the great successes of social influence in recommendation, a novel

28

scenario named Friend-Enhanced Recommendation (FER) is proposed, which
multiplies the influence of friends in social recommendation. FER has two major
differences from the classical social recommendation: (1) FER only recommends
to the user what his/her friends have interacted with, regarding friends as high-
quality information filters to provide more high-quality items. (2) All friends who
have interacted with the item are explicitly displayed to the user attached to the
recommended item, which highlights the critical importance of explicit social factors
and improves the interpretability for user behaviors.

Apple Inc.

Friend Referral

Jack

Disneyland Inc.

Jerry
Airpods

Only friend referral
items

Tom
(expert)

Lily
(spouse)

Friends explicitly
displayed to Jerry

Friend-enhanced
Recommendation

Disneyland

Tom Lily

Will Tom Lily

�
Ten must-play items
at Disneyland!

Apple reveals
new AirPods Pro,
available Oct. 30!

Tom is a tech expert,
and I wanna go to

Disneyland with my
spouse Lily.

Fig. 9.13 A typical illustration of the friend-enhanced recommendation. The left shows the scenario
that Jerry is recommended two articles, with friends (e.g., Tom) who have interacted with (shared,
liked, etc.) them explicitly shown underneath. The right shows the formalization of the FERproblem,
where only friend referral items will be recommended and friends who interacted with the item are
explicitly displayed to user.

In recent years, FER systems are blooming and have beenwidely-used by hundreds
of millions of users. Fig. 9.13 gives a typical illustration of a real-world FER. For
each user-item pair, FER explicitly shows the friend set having interacted with the
item, which is defined as the Friend Referral Circle (FRC) of the user to the
item. In FER, multiple factors contribute to user clicks. The reasons for a user
clicking an article may come from (1) his interests in item contents (item), (2) the
recommendation of an expert (item-friend combination), or even (3) the concerns
on his friends themselves (friend). In FER, users have the tendency to see what their
friends have read, rather than to merely see what themselves are interested in. It
could even say that social recommendation focuses on bringing social information
to better recommend items, while FER aims to recommend the combination of both
items and friend referrals.

29

As the critical characteristic of FER, the explicit FRC brings in two challenges: (1)
How to extract key information from multifaceted heterogeneous factors? (2) How
to exploit explicit friend referral information? To solve these issues, we propose
a novel Social Influence Attentive Neural network (named SIAN). Specifically,
we define the FER as a user-item interaction prediction task on a heterogeneous
social graph, which flexibly integrates rich information in heterogeneous objects
and their interactions. First, we design an attentive feature aggregator with both
node- and type-level aggregations to learn user and item representations, without
being restricted to pre-defined meta-paths in some previous efforts [30, 6]. Next,
we implement a social influence coupler to model the coupled influence diffusing
through the explicit friend referral circles, which combines the influences of multiple
factors (e.g., friends and items) with an attentive mechanism. Overall, SIAN captures
valuable multifaceted factors in FER, which successfully distills the most essential
preferences of users from a heterogeneous graph and friend referral circles. In
experiments, SIAN significantly outperforms all competitive baselines in multiple
metrics on three large, real-world datasets. Further quantitative analyses on attentive
aggregation and social influence also reveal impressive sociological discoveries.

9.5.2 Preliminaries

Definition 5. Heterogeneous Social Graph (HSG). A heterogeneous social graph
is denoted as G = (V ,E), where V = V* ∪V� and E = E� ∪E' are the sets of nodes
and edges. Here V* and V� are the sets of users and items. For D, E ∈ V* , 〈D, E〉 ∈ E�
represents the friendship between users. For D ∈ V* and 8 ∈ V� , 〈D, 8〉 ∈ E' is the
interaction relation between D and 8.

Example 4. Fig. 9.13 shows an HSG containing three types of nodes, i.e., {User,
Article, Media}, and multiple relations, e.g., {User-User, User-Article, User-Media,
Article-Media}.

Definition 6. Friend Referral Circle (FRC). Given an HSG G = (V ,E), we define
the friend referral circle of a user D w.r.t. a non-interacting item 8 (i.e., 〈D, 8〉 ∉ E')
as CD (8) = {E |〈D, E〉 ∈ E� ∩ 〈E, 8〉 ∈ E'}. Here E is called an influential friend of user
D.

Example 5. Taking Fig. 9.13 as an example, the friend referral circle of Jerry w.r.t.
the non-interacting article about AirPods is {Tom, Lily, Jack}, while the FRC in
terms of the article about Disneyland is CJerry (Disneyland) = {Will, Tom, Lily}.

Definition 7. Friend-EnhancedRecommendation (FER).Given anHSGG = (V ,E)
and the FRC CD (8) of a user D w.r.t. a non-interacting item 8, the FER aims to predict
whether user D has a potential preference to item 8. That is, a prediction function
ĤD8 = F (G,CD (8);Θ) is to be learned, where ĤD8 is the probability that user D will
interact with item 8, and Θ is the model parameters.

30

…

Jack

…

…

Airpods

Article Friend

Nodel-level
Attention

Jerry

Disneyland
Inc.… …

…User Media

Nodel-level
Attention

Disneyland

LilyTom

?

Will

Influence Coupler

Type-level
Attention

Type-level
Attention

Attention
Network

hu
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hi
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hui
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Friend Referral
Circle

Coupled Influence
Representation

Predictor

A
tt

en
tiv

e
Fe

at
ur

e
A

gg
re

ga
to

r
So

ci
al

 I
nf

lu
en

ce
 C

ou
pl

er
Pr

ed
ic

to
r

Fig. 9.14 The overall architecture of SIAN. The attentive feature aggregator hierarchically ag-
gregates heterogeneous neighbour features with node- and type-level attention, and outputs the
representations of users and items (i.e., ℎD and ℎ8). The social influence coupler couples the in-
fluence of each influential friends and the item, to encode the explicit social influence into the
representation (i.e., ℎD8).

9.5.3 The SIAN Model

9.5.3.1 Model Framework

As illustrated in Fig. 9.14, SIAN models the FER with an HSG. In addition to the
user and item representations (e.g., ℎD for Jerry and ℎ8 for the Disneyland article),
SIAN learns a social influence representation (e.g., ℎD8) by coupling each influential
friend (e.g., Tom) with the item. They are jointly responsible for predicting the
probability ĤD8 of interaction between user D and item 8. First, each user or item
node is equipped with an attentive feature aggregator with node- and type-level
aggregations, which is designed to exploit multifaceted information. Second, the

31

influence from an influential friend (e.g., Tom) and an item (e.g., the Disneyland
article) is jointly captured with a social influence coupler, which quantifies the
degree of their coupled influence.

9.5.3.2 Attentive Feature Aggregator

Given an HSG G = {V ,E}, attentive feature aggregator aims to learn user and item
representations (i.e., ℎD and ℎ8 , D, 8 ∈ V). Considering that different neighbours of
the same type might not equally contribute to the feature aggregation, and different
types entail multifaceted information, we design a hierarchical node- and type-level
attentive aggregation. Node-level aggregation separately models user/item features
in a fine-grained manner, while type-level aggregations capture heterogeneous in-
formation.

Node-levelAttentiveAggregation.Formally, given a user D, letND =N C1
D ∪N C2

D ∪
· · · ∪N C|T |

D denotes his/her neighbours, which is a union of |T | types of neighbour
sets. For neighbours of type C ∈ T (i.e., N C

D), we represent the aggregation in the C
type space as the following function:

?CD = ReLU(,? (
∑

:∈N C
D

U:DG:) + 1?), (9.1)

where ?CD ∈ R3 is the aggregated embeddings of user D in C type space. G: ∈ R3
is the initial embedding of the neighbour : , which is randomly initialized. Here
,? ∈ R3×3 and 1? ∈ R3 are the weight and bias of a neural network. U:D is the
attentive contribution of neighbour : to the feature aggregation of D,

U:D =
exp(5 ([G: ⊕ GD]))∑

:′∈N C
D

exp(5 ([G:′ ⊕ GD]))
, (9.2)

where 5 (·) is a two-layer neural network activated with ReLu function and ⊕ denotes
the concatenation operation. Obviously, the larger U:D , the greater contribution of
neighbour : to the feature aggregation of user D.

Given multiple types of neighbours, we can get multiple embeddings for D in
various type spaces, denoted as {?C1D , · · · , ?

C|T |
D }.

Type-level Attentive Aggregation. Intuitively, different types of neighbours indi-
cate various aspects of information and a node is likely to have different preferences
for multiple aspects. Given a user D and his/her node-level aggregated embeddings
in different type spaces, we aggregate them as follows:

ℎD = ReLU(,ℎ

∑
C ∈T

VCD ?
C
D + 1ℎ), (9.3)

where ℎD ∈ R3 is the latent representation of user D. {,ℎ ∈ R3×3 , 1ℎ ∈ R3} are
parameters of a neural network. VCD is the attentive preferences of type C w.r.t. the
feature aggregation of user D, as various types of neighbours contain multifaceted
information and are expected to collaborate with each other. For user D, we concate-

32

nate the aggregated representations of all neighbour types, and define the following
weight:

VCD =
exp(0>C [?

C1
D ⊕ ?C2D ⊕ · · · ⊕ ?

C|T |
D])∑

C′∈T exp(0>
C′ [?

C1
D ⊕ ?C2D ⊕ · · · ⊕ ?

C|T |
D])

, (9.4)

where 0C ∈ R |T |3 is a type-aware attention vector shared by all users. With Eq. 9.4,
the concatenation of various neighbour types captures multifaceted information for
a user, and 0C encodes the global preference of each type.

Similarly, for each item 8, the attentive feature aggregator takes the neighbours of
8 as input, and outputs the latent representation of 8, denoted as ℎ8 .

9.5.3.3 Social Influence Coupler

To exploit the FRCs and capture the effects of influential friends, we propose a
social influence coupler. The different impact of the influential friends and the item
on social behaviors is first coupled together, and then we attentively represent the
overall influence in the FRC.

Coupled Influence Representation. Following [14], human behaviors are af-
fected by various factors. In FER, whether D interacts with 8 is not simply driven by
only the item itself or only the friends. More likely, the co-occurrence of friends and
the item have a significant impact. As in the previous example (Fig. 9.13), when it
is technology-related, the coupling between the expert (e.g. Tom) and the item (e.g.
AirPods) has a greater impact than the coupling between the spouse and a tech-item,
but the opposite scenario may happen for entertainment-related items. Hence, given
user D, item 8, and the FRC CD (8), we couple the influence of each friend E ∈ CD (8)
and item 8 as following:

2 〈E,8〉 = f(,2q(ℎE , ℎ8) + 12), (9.5)

where ℎE and ℎ8 are aggregated representations of user E and item 8. q(·, ·) serves as a
fusion function, which can be element-wise product or concatenation (here we adopt
concatenation). f is the ReLU function. Obviously, Eq. 9.5 couples the features of
item 8 and the influential friend E, capturing the influence of both.

Attentive InfluenceDegree.With the coupled influence representation 2 〈E,8〉 , our
next goal is to obtain the influence degree of 2 〈E,8〉 on the user D. Since the influence
score depends on user D, we incorporate the representation of user D (i.e., ℎD) into
the influence score calculation with a two-layer neural network parameterized by
{,1,,2, 11, 12}:

3 ′
D←〈E,8〉 = f(,2 (f(,1q(2E,8 , ℎD) + 11)) + 12). (9.6)

Then, the attentive influence degree is obtained by normalizing 3 ′
D←〈E,8〉 , which can

be interpreted as the impact of the influential friend E on the user behavior:

33

3D←〈E,8〉 =
exp(3 ′

D←〈E,8〉)∑
E′∈CD (8) exp(3 ′

D←〈E′,8〉)
. (9.7)

Since the influences of friends propagate from the FRC, we attentively sum the
coupled influences of the influential friends and item E on user D:

ℎD8 =
∑

E∈CD (8)
3D←〈E,8〉2 〈E,8〉 . (9.8)

As the coupled influence representation 2 〈E,8〉 incorporates the latent factors of
the influential friend and the item, Eq. 9.8 guarantees that the social influence
propagating among them can be encoded into the latent representation ℎD8 .

9.5.3.4 Behavior Prediction and Model Learning

With the representations of user, item and the coupled influence (i.e., ℎD , ℎ8 and
ℎD8), we concatenate them and then feed it into a two-layer neural network:

ℎ> = f(,>2 (f(,>1 ([ℎD ⊕ ℎD8 ⊕ ℎ8]) + 1>1) + 1>2). (9.9)

Then, the predicted probability of a user-item pair is obtained via a regression layer
with a weight vector FH and bias 1H:

ĤD8 = sigmoid(F>H ℎ> + 1H). (9.10)

Finally, to estimate model parameters Θ of SIAN, we optimize the following
cross-entropy loss, where HD8 is the ground truth and _ is the L2-regularization
parameter for reducing overfitting:

−
∑

〈D,8〉∈E'

(HD8 log ĤD8 + (1− HD8) log (1− ĤD8)) +_ | |Θ | |22. (9.11)

9.5.4 Experiments

9.5.4.1 Experimental Settings

Datasets. Yelp and Douban are classical open datasets widely used in recommenda-
tion, for which we build FRCs for each user-item pair to simulate the FER scenarios.
FWD is extracted from a deployed live FER system with real FRCs displayed to
users. The detailed statistics of datasets are shown in Table 9.7.

34

Table 9.7 Statistics of datasets.

Datasets Nodes #Nodes Relations #Relations

Yelp User (U)
Item (I)

8,163
7,900

User-User
User-Item

92,248
36,571

Douban User (U)
Book (B)

12,748
13,342

User-User
User-Book

169,150
224,175

FWD
User (U)
Article (A)
Media (M)

72,371
22,218
218,887

User-User
User-Article
User-Media
Article-Media

8,639,884
2,465,675
1,368,868
22,218

• Yelp5 is a business reviewdataset containing both interactions and social relations.
We first sample a set of users. For each user D, we construct a set of FRCs based
on the given user-user relations and user-item interactions.

• Douban6 is a social network related to sharing books, which including friendships
between users and interaction records between users and items. As pre-processes
done for Yelp, we construct a set of FRCs based on the given user-user relations
and user-item interactions.

• Friends Watching Data (FWD) is extracted from a real-world live FER system
named WeChat Top Stories after data masking, where FRCs are explicitly dis-
played. Based on FWD, we construct an HSG containing nearly 313 thousand
nodes and 12 million edges.

Baselines. We compare the proposed SIAN against four types of methods, in-
cluding feature/structure-based methods (i.e., MLP, DeepWal [22], node2vec [11]
and metapath2vec [7]), fusion of feature/structure-based methods (i.e., Deep-
Walk+fea, node2vec+fea and metapath2vec+fea), graph neural network methods
(i.e., GCN [17], GAT [28] and HAN [31]) and social recommendation methods (i.e.,
TrustMF [35] and DiffNet [33]).

Hyperparameters Settings. For each dataset, the ratio of training, validation and
test set is 7:1:2. We adopt Adam optimizer [15] with the PyTorch implementation.
The learning rate, batch size, and regularization parameter are set to 0.001, 1,024
and 0.0005 using grid search [3], determined by optimizing AUC on the validation
set. For random walk based baselines, we set the walk number, walk length and
window size as 10, 50, and 5, respectively. For graph neural network based methods,
the number of layers is set to 2. For DiffNet, we set the regularization parameter as
0.001. The depth parameter is set to 2 as recommended in [33]. For other parameters
of baselines, we optimize them empirically under the guidance of literature. Finally,
for all methods except MLP, we set the size of feature vector as 64 and report
performances under different embedding dimensions {32,64}.

5 https://www.yelp.com/dataset/challenge
6 https://book.douban.com

35

Table 9.8 Results on three datasets. The best method is bolded, and the second best is underlined.
* indicate the significance level of 0.01.

Dataset Model AUC F1 Accuracy

3=32 3=64 3=32 3=64 3=32 3=64

Yelp

MLP 0.6704 0.6876 0.6001 0.6209 0.6589 0.6795
DeepWalk 0.7693 0.7964 0.6024 0.6393 0.7001 0.7264
node2vec 0.7903 0.8026 0.6287 0.6531 0.7102 0.7342

metapath2vec 0.8194 0.8346 0.6309 0.6539 0.7076 0.7399

DeepWalk+fea 0.7899 0.8067 0.6096 0.6391 0.7493 0.7629
node2vec+fea 0.8011 0.8116 0.6634 0.6871 0.7215 0.7442

metapath2vec+fea 0.8301 0.8427 0.6621 0.6804 0.7611 0.7856

GCN 0.8022 0.8251 0.6779 0.6922 0.7602 0.7882
GAT 0.8076 0.8456 0.6735 0.6945 0.7783 0.7934
HAN 0.8218 0.8476 0.7003 0.7312 0.7893 0.8102

TrustMF 0.8183 0.8301 0.6823 0.7093 0.7931 0.8027
DiffNet 0.8793 0.8929 0.8724 0.8923 0.8698 0.8905

SIAN 0.9486* 0.9571* 0.8976* 0.9128* 0.9096* 0.9295*

Douban

MLP 0.7689 0.7945 0.7567 0.7732 0.7641 0.7894
DeepWalk 0.8084 0.8301 0.7995 0.8054 0.8295 0.8464
node2vec 0.8545 0.8623 0.8304 0.8416 0.8578 0.8594

metapath2vec 0.8709 0.8901 0.8593 0.8648 0.8609 0.8783

DeepWalk+fea 0.8535 0.8795 0.8347 0.8578 0.8548 0.8693
node2vec+fea 0.8994 0.9045 0.8732 0.8958 0.8896 0.8935

metapath2vec+fea 0.9248 0.9309 0.8998 0.9134 0.8975 0.9104

GCN 0.9032 0.9098 0.8934 0.9123 0.9032 0.9112
GAT 0.9214 0.9385 0.8987 0.9103 0.8998 0.9145
HAN 0.9321 0.9523 0.9096 0.9221 0.9098 0.9205

TrustMF 0.9034 0.9342 0.8798 0.9054 0.9002 0.9145
DiffNet 0.9509 0.9634 0.9005 0.9259 0.9024 0.9301

SIAN 0.9742* 0.9873* 0.9139* 0.9429* 0.9171* 0.9457*

FWD

MLP 0.5094 0.5182 0.1883 0.1932 0.2205 0.2302
DeepWalk 0.5587 0.5636 0.2673 0.2781 0.1997 0.2056
node2vec 0.5632 0.5712 0.2674 0.2715 0.2699 0.2767

metapath2vec 0.5744 0.5834 0.2651 0.2724 0.4152 0.4244

DeepWalk+fea 0.5301 0.5433 0.2689 0.2799 0.2377 0.2495
node2vec+fea 0.5672 0.5715 0.2691 0.2744 0.3547 0.3603

metapath2vec+fea 0.5685 0.5871 0.2511 0.2635 0.4698 0.4935

GCN 0.5875 0.5986 0.2607 0.2789 0.4782 0.4853
GAT 0.5944 0.6006 0.2867 0.2912 0.4812 0.4936
HAN 0.5913 0.6025 0.2932 0.3011 0.4807 0.4937

TrustMF 0.6001 0.6023 0.3013 0.3154 0.5298 0.5404
DiffNet 0.6418 0.6594 0.3228 0.3379 0.6493 0.6576

SIAN 0.6845* 0.6928* 0.3517* 0.3651* 0.6933* 0.7018*

36

9.5.4.2 Experimental Results

We adopt three widely used metrics AUC, F1 and Accuracy to evaluate performance.
The results w.r.t. the dimension of latent representation are reported in Table 9.8,
from which we have the following findings.

(1) SIAN outperforms all baselines in all metrics on three datasets with statistical
significance (? < 0.01) under paired C-test. It indicates that SIAN can well capture
user core concerns frommultifaceted factors in FER. The improvements derive from
both high-quality node representations generated from node- and type-level attentive
aggregations, and the social influence coupler that digs out what users are socially
inclined to.

(2) Compared with the graph neural network methods, the impressive improve-
ments of SIAN proves the effectiveness of the node- and type-level attentive ag-
gregations. Especially, SIAN achieves better performances than HAN which is also
designed for heterogeneous graphs with a two-level aggregation. It is because that
the type-level attentive aggregation in SIAN captures heterogeneous information in
multiple aspects, without being limited by the predefined meta-paths used in HAN.
Moreover, the improvements also indicate the significance of our social influence
coupler in FER.

(3) Social recommendation baselines also achieve promising performances, which
further substantiates the importance of social influence in FER. Compared with
baselines which only treat social relations as side information, the improvements
imply that the friend referral factor may take the dominating position in FER, which
should be carefully modeled. In particular, our SIAN achieves the best performance,
reconfirming the capability of our social influence coupler in encoding diverse social
factors for FER.

9.5.4.3 Analysis on Social Influence in FER

We have verified that FRC is the most essential factor in FER. However, a friend
could impact user from different aspects (e.g., authority or similarity). Next, we show
how different user attributes affect user behaviors in FER.

Evaluation Protocol. The attention in social influence coupler reflects the impor-
tance of different friends. We assume that the friend E having the highest attention
value (i.e., 3D←〈E,8〉 in Eq. 9.6) is the most influential friend w.r.t. item 8 for user D,
and all of E’s attribute values are equally regarded as contributing to the influence.
Given a user attribute and a user group, we define the background distribution by
counting the attribute values of all friends in FRCs of users in this group, and also
define the influence distribution by counting the attribute values of the most influ-
ential friends of users in the group. Thus, the background distribution represents the
characteristics of general friends of this user group, while the influence distribution
represents the characteristics of the most influential friends of this user group. If the
two distributions perfectly agree with each other, this attribute is not a key social
factor in influencing this user group. In contrast, the differences between the two

37

distributions imply howmuch this attribute is a key social factor, and how its different
values affect user behaviors.

 User group 
 (C) Gender

Male in Influence
Female in Influence

Male in Background
Female in Background

FemaleMale

Pr
op

or
tio

n
of

 e
ac

h
ge

nd
er

0.0

0.2

1.0

0.4

0.6

0.8

 User group 
 (d) Location

Location-1 in Influence
Location-2 in Influence

Location-1 in Background
Location-2 in Background

Location-2Location-10.0

0.2

1.0

0.4

0.6

0.8

 User group 
 (a) Authority

Low-authority in Influence
Mid-authority in Influence
High-authority in Influence

Low-authority in Background
Mid-authority in Background
High-authority in Background

Mid-authorityLow-authority High-authority

Pr
op

or
tio

n
of

 e
ac

h
le

ve
l

0.0

0.2

1.0

0.4

0.6

0.8

 User group 
 (b) Age

Youth in Influence
Mid-aged in Influence
Elderly in Influence

Youth in Background
Mid-aged in Background
Elderly in Background

Mid-agedYouth Elderly0.0

0.2

1.0

0.4

0.6

0.8

1

Fig. 9.15 Social influence analysis w.r.t user attributes. For each attribute and user group (e.g., the
authority and the low-authority group in (a)), the left is the influence distribution while the right
is the background distribution. In each bar, the height of each different-colored segment means the
proportion of an attribute value in the influence or background distribution. Best read in color.

Results and Analysis. As shown in Fig. 9.15, we find out the following:
(1) In Fig. 9.15a, we observe that user behaviors are more influenced by their

friends who are more authoritative, regardless of what authority the user him/herself
has. In all three user groups of varying authority, the proportion of high-authority
in the influence distribution is larger than that in the background distribution. For
instance, in themid-authority user group, the top red block (high-authority influence)
is larger than the top blue one (high-authority background), which implies that
high-authority friends are more influential for mid-authority users. The result is
not surprising as users are usually more susceptible and easy to be affected by
authoritative persons, which is consistent with common sense.

(2) We also conduct several analyses on influences w.r.t. other user attributes.
We find that users are easy to be influenced by their friends which are similar to
themselves. Specifically, Fig. 9.15b shows that people like items recommended by
their peers, especially for the youth and the elderly; meanwhile, Fig. 9.15c and d
show that users tend to watch articles recommended by their friends with the same
gender or location. Recommendation with user similarity, which has been widely
assumed in collaborative filtering, is still classical even in FER.

38

The more detailed method description and experiment validation can be seen
in [20].

9.6 Conclusions

As HG representation has a great power to fuse heterogeneous information, it has
become one of the major techniques to apply HG analysis to real-world applica-
tions. This chapter presents several advanced HG representation methods applying
to E-commercial systems and online social networks. Particularly, we first study
the cash-out user detection problem and propose the HACUD, which is a hierar-
chical heterogeneous GNN method. The model could extract the user’s structural
features through a hierarchical attention mechanism. In addition, we study a newly
emerged problem in E-commercial system, named intent recommendation, and pro-
pose a novel metapath-guided heterogeneous GNN method, called MEIRec. The
MEIRec model learns users’ and queries’ embeddings through multiple predefined
meta-paths. Furthermore, we study the share recommendation problem, which is a
unique recommendation paradigm in social e-commerce, and propose a tripartite
heterogeneous GNN, named HGSRec. Different fromMEIRec model concatenating
multiple learned embeddings, the proposed method aggregates multiple embed-
dings through a co-attention mechanism. Apart from E-commerce, we also study the
friend-Enhanced recommendation problem in online social networks and propose
a novel social influence attentive neural network method. The experiments of these
methods solidly validate the effectiveness of HG embedding methods on real-world
applications.

More interesting future applications are worth being exploited on HG represen-
tation. For example, in the biological area, there are multiple relations between gene
expression and phenotype, which can be naturally constructed as an HG. Besides,
in the software engineering area, there are complex relations among test sample,
requisition form, and problem form, which can be naturally modeled as an HG.
Therefore, HG representation is expected to open up broad prospects for these new
application areas and become a promising analytical tool.

References

1. Antoine, B., Nicolas, U., Alberto, G.D., Jason, W., Oksana, Y.: Translating embeddings for
modeling multi-relational data. In: NeurIPS, pp. 2787–2795 (2013)

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and
translate. ICLR (2015)

3. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization.
In: NeurIPS, pp. 2546–2554 (2011)

4. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: KDD, pp. 785–794
(2016)

39

5. Dai, H., Dai, B., Song, L.: Discriminative embeddings of latent variable models for structured
data. In: ICML, pp. 2702–2711 (2016)

6. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: Scalable representation learning for het-
erogeneous networks. In: KDD, pp. 135–144 (2017)

7. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: Scalable representation learning for het-
erogeneous networks. In: KDD (2017)

8. Fan, S., Zhu, J., Han, X., Shi, C., Hu, L., Ma, B., Li, Y.: Metapath-guided heterogeneous graph
neural network for intent recommendation. In: KDD, pp. 2478–2486 (2019)

9. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Annals of
statistics pp. 1189–1232 (2001)

10. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural net-
works. In: AISTATS, pp. 249–256 (2010)

11. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: KDD, pp.
855–864 (2016)

12. Hu, B., Zhang, Z., Shi, C., Zhou, J., Li, X., Qi, Y.: Cash-out user detection based on attributed
heterogeneous information network with a hierarchical attention mechanism. In: AAAI, pp.
946–953 (2019)

13. Ji, H., Zhu, J., Wang, X., Shi, C., Wang, B., Tan, X., Li, Y., He, S.: Who you would like to
share with? a study of share recommendation in social e-commerce. In: AAAI (2021)

14. Jolly, A.: Lemur social behavior and primate intelligence. Science pp. 501–506 (1966)
15. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: ICLR (2015)
16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.

In: ICLR (2017)
17. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.

In: ICLR (2017)
18. Liang, J., Jacobs, P., Sun, J., Parthasarathy, S.: Semi-supervised embedding in attributed

networks with outliers. In: SDM, pp. 153–161 (2018)
19. Lobo, J.M., Jiménez-Valverde, A., Real, R.: Auc: a misleading measure of the performance of

predictive distribution models. Global ecology and Biogeography 17(2), 145–151 (2008)
20. Lu, Y., Xie, R., Shi, C., Fang, Y., Wang, W., Zhang, X., Lin, L.: Social influence attentive

neural network for friend-enhanced recommendation. In: ECML-PKDD (2020)
21. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In:

KDD, pp. 701–710 (2014)
22. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In:

KDD, pp. 701–710 (2014)
23. Qu, M., Tang, J., Shang, J., Ren, X., Zhang, M., Han, J.: An attention-based collaboration

framework for multi-view network representation learning. In: CIKM, pp. 1767–1776 (2017)
24. Shi, C., Hu, B., Zhao, W.X., Philip, S.Y.: Heterogeneous information network embedding for

recommendation. TKDE 31(2), 357–370 (2019)
25. Shi, C., Li, Y., Zhang, J., Sun, Y., Philip, S.Y.: A survey of heterogeneous information network

analysis. IEEE Transactions on Knowledge and Data Engineering 29(1), 17–37 (2017)
26. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: Meta path-based top-k similarity search

in heterogeneous information networks. In: VLDB, pp. 992–1003 (2011)
27. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: Divide the gradient by a running average of its

recent magnitude. COURSERA: Neural networks for machine learning 4(2), 26–31 (2012)
28. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention

networks. In: ICLR (2018)
29. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative filtering. In:

SIGIR, pp. 165–174 (2019)
30. Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., Yu, P.S.: Heterogeneous graph attention

network. In: WWW, pp. 2022–2032 (2019)
31. Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., Yu, P.S.: Heterogeneous graph attention

network. In: WWW, pp. 2022–2032 (2019)

40

32. Wang, Z., Liao, J., Cao, Q., Qi, H., Wang, Z.: Friendbook: a semantic-based friend recommen-
dation system for social networks. IEEE transactions on mobile computing 14(3), 538–551
(2014)

33. Wu, L., Sun, P., Fu, Y., Hong, R., Wang, X., Wang, M.: A neural influence diffusion model for
social recommendation. In: SIGIR, pp. 235–244 (2019)

34. Xiao, W., Houye, J., Chuan, S., Bai, W., Peng, C., P., Y., Yanfang, Y.: Heterogeneous graph
attention network. In: WWW (2019)

35. Yang, B., Lei, Y., Liu, J., Li, W.: Social collaborative filtering by trust. IEEE transactions on
pattern analysis and machine intelligence pp. 1633–1647 (2016)

36. Zhang, Z., Yang, H., Bu, J., Zhou, S., Yu, P., Zhang, J., Ester, M., Wang, C.: Anrl: Attributed
network representation learning via deep neural networks. In: ĲCAI, pp. 3155–3161 (2018)

	9 Heterogeneous Graph Representation for Industry Application
	9.1 Introduction
	9.2 Cash-out User Detection
	9.2.1 Overview
	9.2.2 Preliminaries
	9.2.3 The HACUD Method
	9.2.4 Experiments

	9.3 Intent Recommendation
	9.3.1 Overview
	9.3.2 Problem Formulation
	9.3.3 The MEIRec Method
	9.3.4 Experiments

	9.4 Share Recommendation
	9.4.1 Overview
	9.4.2 Problem Formulation
	9.4.3 The HGSRec Method
	9.4.4 Experiments

	9.5 Friend-Enhanced Recommendation
	9.5.1 Overview
	9.5.2 Preliminaries
	9.5.3 The SIAN Model
	9.5.4 Experiments

	9.6 Conclusions
	References

