
Chapter 7
Schema-Rich Heterogeneous Network
Mining

Abstract Traditional heterogeneous information network usually has simple
network schema, where there are a small number of types of nodes and links and
meta paths are easily enumerated. However, in many real applications, some het-
erogeneous information networks have a huge number of types of nodes and links,
and it is hard to depict their network schema. We call this kind of networks as
schema-rich heterogeneous information network. For example, knowledge graph,
constructed with< object, relation, object > tuples, can be considered as a schema-
rich heterogeneous network, where there are usually tens of thousands of types of
nodes and links. In this chapter, we introduce two data mining tasks on schema-rich
heterogeneous network: link prediction and entity set expansion. Through these two
tasks, we illustrate the challenges and potential solutions onmining this kind of more
complex and popular heterogeneous networks.

7.1 Link Prediction in Schema-Rich Heterogeneous
Network

7.1.1 Overview

Link prediction is a fundamental data mining problem that attempts to estimate
the likelihood of the existence of a link between two nodes, based on observed
links and the attributes of nodes. Link prediction is the base of many data mining
tasks, such as data clearness and recommendation. Some works have been done to
predict link existence in heterogeneous information network (HIN). As a unique
semantic characteristic of HIN, meta path [24], a sequence of relations connecting
two nodes, is widely used for link prediction. Utilizing the meta path, these works
usually employ a two-step process to solve link prediction problem in HIN. The first
step is to extract meta path-based feature vectors, and the second step is to train a
regression or classification model to compute the existence probability of a link [4,
21, 23, 28]. For example, Sun et al. [21] proposed PathPredict to solve the problem
of co-author relationship prediction, Cao et al. [4] proposed an iterative framework
to predict multiple types of links collectively in HIN, and Sun et al. [23] modeled
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Fig. 7.1 A snapshot of the RDF structure extracted from DBpedia

the distribution of relationship building time to predict when a certain relationship
will be formed. These works usually have a basic assumption: the meta paths can be
predefined or enumerated in a simple HIN. When the HIN is simple, we can easily
and manually enumerate some meaningful and short meta paths [24]. For example,
a bibliographic network with star schema is used in [21, 23, 28] and only several
meta paths are enumerated.

However, in many real networked data, the network structures are more com-
plex, and meta paths cannot be enumerated. Knowledge graph is the base of the
contemporary search engine [19], where its resource description framework (RDF)
[25] < object, relation, object > naturally constructs an HIN. In such an HIN,
the types of nodes and relations are huge. For example, DBpedia [2], a kind of
knowledge graph, has recorded more than 38 million entities and 3 billion facts.
In this kind of networks, it is hard to describe them with simple schema, so we
call them schema-rich HIN. Figure7.1 shows a snapshot of the RDF structure
extracted from DBpedia. You can find that there are many types of objects and
links in such a small network, e.g., Person, City, and Country. Moreover, there
are many meta paths to connect two object types. For example, for Person and

Country types, there are two meta paths: Person
bornin−−−→ City

locatedIn−−−−→ Country and

Person
Diedin−−−→ City

hasCapital−1

−−−−−−→ Country. Note that Fig. 7.1 is one extreme little part
of the whole DBpedia network, and there will be huge number of meta paths that can
connect Person and Country in a real network. So that the meta paths in this kind of
schema-rich HIN are too many to enumerate and it is hard to analyze them.

To be specific, the challenges of link prediction in schema-rich HIN are mainly
from two aspects. (1) The meta path cannot be enumerated. As mentioned above,
there are tens of thousands of nodes and links in such schema-rich HIN and the meta
paths in the network have the same order of magnitude. It is impossible to enumerate
meta paths between two node types. (2) It is also not easy to effectively integrate
these meta paths. Even though masses of meta paths can be found between target
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nodes, most of them are meaningless or less important for link prediction. So that we
need to learn weight for each meta path, where the weight represents the importance
of paths for link prediction.

In this chapter, we study the link prediction in schema-rich HIN and propose the
Link Prediction with automatic meta Paths method (LiPaP). The LiPaP designs a
novel algorithm, called Automatic Meta Path Generation (AMPG), to automatically
extract meta paths from schema-rich HIN. And then, we design a supervised method
with likelihood function to learn the weights of meta paths. On a real knowledge
base Yago, we do extensive experiments to validate the performances of LiPaP.
Experiments show that LiPaP can effectively solve link prediction in schema-rich
HIN through automatically extracting important meta paths and learning the weights
of paths.

7.1.2 The LiPaP Method

In this section, we firstly define the link prediction in schema-rich HIN problem and
then present a novel link prediction method named LiPaP. This method includes two
steps: Firstly, we design an algorithm called AMPG to discover useful meta paths
with training pairs automatically. Secondly, we use a supervised method to integrate
meta paths to form a model for further prediction.

7.1.2.1 Problem Definition

Heterogeneous information network [10] is a kind of information network that
includes different types of nodes and links. Traditional HIN usually has a simple
network schema, such as bipartite [29] and star schema [17]. However, in some com-
plex HINs, there are so many node types or link types that are hard to describe their
network schema. We call the HIN with many types of nodes and links as schema-
rich HIN. In simple HIN, the meta paths can be easily enumerated, but it is difficult
to do the same in the schema-rich HIN. Data mining in schema-rich HIN will face
new challenges. Specifically, we define a new task as follows:

Link prediction in schema-richHIN. Given a schema-rich HING and a training
set of entity node pairs φ = {(si, ti)|1 ≤ i ≤ k}, search a set of meta paths Υ =
{∏i |1 ≤ i ≤ e} which can exactly describe the pairs. With these meta paths, we
design amodel η(s, t|Υ ) to do link prediction on the test setψ = {(ui, vi)|1 ≤ i ≤ r}.

7.1.2.2 Automatic Meta Path Generation

In order to extract the appropriate and relevant meta paths as model features for link
prediction, we would like to show the AMPG algorithm, which can generate useful
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Fig. 7.2 Subgraph example of schema-rich HIN

meta paths smartly in schema-rich HIN. We would illustrate AMPG through a toy
example in Fig. 7.2, where the training pairs are {(1, 8), (2, 8), (3, 9), (4, 9)}.

The main goal of AMPG is, given the training set of entity pairs, to find all the
useful and relevant meta paths connecting them. These paths which to be found
would not only connect more training pairs, but also show much closer relationship

to present implicit features of the training set. For example,
isCitizenOf−−−−−→ is the meta

path initially found by our method in Fig. 7.3, and it is not only the shortest relation
but also the one connecting most training pairs. Besides, the meta paths to be found
are still most relevant in the candidate paths. Basically, we start to search from the
source nodes step by step to find out the useful meta paths greedily. At each step,
we select the meta path that is most relevant and maybe reaching more target nodes.
Then we check whether the path connects the training pairs or not. If so, we pick out
the meta path, otherwise make a move forward until the unchecked meta paths are
irrelevant enough. It guarantees that the generated meta paths all well describe the
relationship between each training pair and the selected paths are not too many to
add noise paths.

The AMPG method is a greedy algorithm that heuristically chooses the optimal
paths at each step. For judging the priority of meta paths for selection, AMPG utilizes
a similarity score S as a selection criterion based on a similarity measurement Path-
ConstrainedRandomWalk (PCRW) [11], which is to calculate the relevance between
the given entity pairs in the meta paths. A meta path with the higher the similarity
score S is more likely to be chosen.

Specifically, in AMPG, we use a data structure to record the situation of each
step. The structure records a meta path passed by, a set of entity pairs reached and
their PCRW values, and the similarity score S of the current structure, as shown in
Fig. 7.3. Besides, we create a candidate set to record the structure to be handled.

The similarity score S of the structure mentioned above is for judging the priority
of the structure. S measures the similarity of the whole arrival pairs in the structure.
The highest S means the most relevant relationship and the most promising meta
paths, so we get the structure with the highest S at every step. The definition of
similarity score S is as follows:

S =
∑

s

1

T

∑

t

[σ(s, t|
∏

) • r(s)], (7.1)



7.1 Link Prediction in Schema-Rich Heterogeneous Network 185

Fig. 7.3 An example of meta-path automatic generation

where s and t are source and reaching entity node, respectively, on meta path
∏
, T

is the number of reaching entity nodes, and σ(s, t|∏) is the PCRW value. r(s) =
1 − α • N is the contribution of s to the current structure for training pairs selection
balance, where α is the decreasing coefficient of the contribution as 0.1 because of
the good performance on it, andN is the number of the target nodes that s has reached
through other selected paths. It means, if one of source nodes in

∑
s has more target

nodes matched before, N will be larger and S will be reduced due to the smaller r(s).
So that the structure with other source nodes which have fewer matches will get high
priority to be traversed greedily.

In order to get rid of the unimportant or the low-pair-matched meta paths, we set
a threshold value l to judge the structures whether being put to the candidate set or
not.

l = ε • |A|, (7.2)

where ε is a limited coefficient and |A| is the number of entity pairs in the structure.
If S is no less than l, add this structure into the candidate set, otherwise delete it.

Furthermore, we explain AMPGwith a case study shown in Fig. 7.3. The training
pairs are (1, 8), (2, 8), (3, 9), and (4, 9) and sources nodes are 1, 2, 3, and 4. The case
starts with creating an initial structure No.1 and inserts it into the candidate set as
shown in Fig. 7.3a. The entity pair is composed of the source node and itself and no
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meta path is generated at this step. Our algorithm will read candidate set iteratively
and choose the structure with highest S at each step. For each selected structure, it
will be checked if any training pairs are matched. If not, we move one step in HIN,

as shown in Fig. 7.3b. We can pass by three edge types
isCitizenOf−−−−−→,

wasBornIn−−−−−→, and
WorkAt−−−−→. For each passed edge type, we create new structures such as No.2 and No.4.
Then, we check the new structures whether fit the conditions of expanding further
and insert them into the candidate set. Remove the used structure No.1 and read next
structure. Otherwise, as shown in Fig. 7.3c, four pairs are matched, so a new relevant

meta path
isCitizenOf−−−−−→ is generated and its similarity value vector is recorded. Remove

the used structure No.2 and continue to read next. The algorithm terminates when
the candidate set is empty. The detail process of AMPG is found in [6].

7.1.2.3 Integration of Meta Paths

Eachmeta path found byAMPG is important but has different importances for further
link prediction. It is necessary to find a solution of measuring the importance for each
meta path and integrating them into a link prediction model.

The link prediction can be considered as a classification problem. So we use the
positive and negative samples to train a model to predict whether the link exists
between the given pairs or not. Positive samples are the training pairs, while negative
samples are generated by replacing the target nodes of the training pairs with the
same-typed nodes without the same relations. Thus, a positive value is the similarity
value vector of each positive pair on all selected meta paths, while a negative value
is the vector of negative pair.

For training model, we assume that the weight of each meta path
∏

i is 	i(i =
1, · · · ,N), 	i ≥ 0, and

∑N
i=1 	i = 1. In order to train the appropriate path weights,

we use the log-likelihood function. The specific formula is as follows:

max h =
∑

x+∈q+

ln(t(	, x+))

|q+| +
∑

x−∈q−

ln(1 − t(	, x−))

|q−| − ||	 ||2
2

, (7.3)

where t(	, x) is the Sigmoid function (i.e., t(	, x) = e	 T x

e	 T x + 1
). x is similarity value

vector of sample pair in all selected paths, x+ is positive sample, and x− is negative
sample. q+ is similarity matrix of positive pairs made of x+. And q− is similarity

matrix of negative pairs made of x−.
||	 ||2

2
is the regularizer to avoid overfitting.

After learning weights of relevant meta paths Υ , we use a logistic regression
model to integrate meta paths for link prediction.

η(s, t|Υ ) = (1 + e−(
∑

x∈Υ 	x•σ(s,t| ∏x)+	0))−1, (7.4)

where (s, t) is the pair we should do link prediction, and x is each selected meta path
feature, while	x is the weight of x we learn above. And Υ is the set of selected meta
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paths. If η(s, t|Υ ) is larger than a specific value, we judge they would be connected
by the link predicted.

7.1.3 Experiments

In order to verify the superiority of our designedmethod of link prediction in schema-
rich HIN, we conduct a series of relevant experiments and validate the effectiveness
of LiPaP from four aspects.

7.1.3.1 Experiment Settings

In our experiments, we use Yago to conduct relevant experiments and it is a large-
scale knowledge graph, which is derived fromWikipedia, WordNet, and GeoNames
[20]. The dataset includes more than ten million entities and 120 million facts made
from these entities. We only adopt “COREFact” of this dataset, which contains
4484914 facts, 35 relationships, and 1369931 entities of 3455 types. A fact is a
triple: < entity, relationship, entity >, e.g., < NewYork, locatedin,UnitedStates >.

We use receiver operating characteristic curve known as ROC curve to evaluate
the performance of different methods. It is defined as a plot of true positive rate
(TPR), as the y coordinate versus false positive rate (FPR), and as the x coordinate.
TPR is the ratio of the number of true positive decisions and actual positive cases
while FPR is the ratio of the number of false positive decisions and actual negative
cases. The area under the curve is referred to the AUC. The larger the area is, the
larger the accuracy in prediction is.

7.1.3.2 Effectiveness Experiments

This section will validate the effectiveness of our prediction method LiPaP on accu-
rately predicting links existing in entity pairs. Since there are no existing solutions
for this problem, as a baseline (called PCRW [11]), we enumerate all meta paths,
and the same weight learning method with LiPaP is employed. Because meta paths
with length more than 4 are most irrelevant, the PCRW enumerates the meta paths
with the length no more than 1, 2, 3, and 4, and the corresponding methods are called
PCRW-1, PCRW-2, PCRW-3, and PCRW-4, respectively. Based on Yago dataset, we

randomly and, respectively, select 200 entity pairs from two relations
isLocatedIn−−−−−→ and

isCitizenOf−−−−−→. Note that, we assume that these two types of links are not available in the
prediction task. In this experiment, 100 entity pairs of them are used as the training
set; the others are used as the test set. In LiPaP, we set ε in Eq.7.2 as 0.005 and the
max path length is also limited to 4.
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Fig. 7.4 Prediction accuracy of different methods on two link prediction tasks

Table 7.1 Most relevant 4 meta paths for isCitizenOf

Meta path Weight

Person
wasBornIn−−−−−−→ City

islocatedIn−−−−−−→ County 0.1425

Person
livesIn−−−→ County 0.0819

Person
livesIn−−−→ City

islocatedIn−−−−−−→ County 0.0744

Person
wasBornIn−−−−−−→ City

isLeaderOf←−−−−−−Person
graduatedFrom−−−−−−−−→ university

islocatedIn−−−−−−→ County 0.0609

The results of two link prediction tasks are shown in Fig. 7.4. It is clear that
LiPaP has better performances than all PCRW methods, which implies that LiPaP
can effectively generate useful meta paths. Moreover, the PCRWgenerally has better
performance when the path length is longer, since it can exploit more useful meta
paths. However, it will take more cost to search more meta paths, most of which
are irrelevant. For example, PCRW-3 generates more than 80 paths and PCRW-4
finds more than 600 paths with lots of irrelevant paths. On the contrary, LiPaP only

generates 30 meta paths for the
isCitizenOf−−−−−→ task.

In order to intuitively observe the effectiveness of meta paths found, Table7.1
shows the top four generated meta paths and the corresponding training weights

for the
isCitizenOf−−−−−→ task. It is obvious that four meta paths are all relevant to the link

isCitizenOf−−−−−→. The most relevant one is the first meta path which shows the fact that a
person is born in a city and the city is located in a country. It describes the citizen
relationship in fact. The last one with length 4 seems not to be close, but actually has

certain logistic relation with the link
isCitizenOf−−−−−→. However, these long and important

meta paths can be missed if the maximum length of meta path was limited too short,
as PCRWdoes.While our method can automatically find these paths and assign them
a high importance.
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Fig. 7.5 Influence of different sizes of training set

7.1.3.3 Influence of the Size of Training Set

In this section, we evaluate the influence of the size of training set on the prediction
performances. The sizes of training set are set with {2, 6, 10, 20, 40, 60, 80, 100}.
Besides our LiPaP, we choose PCRW-2 as baseline, since it can generate most of
usefulmeta paths and achieve good performances compared to other PCRWmethods.
As illustrated in Fig. 7.5, when the number of training pairs is smaller than 10,
the performances of both methods improve rapidly with the size of pairs growing.
However, when the size is more than 10, the size of training set has little effect on the
performances of both methods. We think the reason lies in that too small training set
cannot discover all useful meta paths, while large training set may introduce much
noise. When the size of training set is from 10 to 20 in this dataset, it is good enough
to discover all useful meta paths and avoid much noise. Furthermore, it can save
space and time to learn model and make the performance of our method better.

7.1.3.4 Impact of Weight Learning

To illustrate the benefit of weight learning, we redone the experiments on the
isCitizenOf−−−−−→ task mentioned above. We run LiPaP with the weight learning or ran-
dom weights, and with average weights. Figure7.6 shows the performances of these
methods. It is obvious that the weight learning can improve prediction performances.
The model with random weight performs worst, owing to giving the more relevant
paths low weights. The model with weight just has a little better performance than
the model with average weight, because the meta path features generated by AMPG
are all relevant and important, the most important feature also has not got a very
low weight in the model with average weight. So the performance of the model with
average weight is also not poor in spite of being inferior to the model with weight.
Therefore, the weight learning can adjust the importance of different meta paths so
as to integrate them well and make the model better.
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Fig. 7.6 Effectiveness of
weight learning
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different methods
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7.1.3.5 Efficiency Experiments

In this section,we choose five different sizes of training set, i.e., {20, 40, 60, 80, 100},
to validate the efficiency of finding meta paths of different methods. Figure7.7

demonstrates the running time on different models for the
isLocatedIn−−−−−→ task. It is obvi-

ous that the running times of these models approximate an linear increase with the
increase in the size of the training set. In spite of the small running time, the short
meta paths found by PCRW-1 and PCRW-2 restrict their prediction performances.
Our LiPaP has smaller running time than PCRW-3 and PCRW-4, since it only finds
a small number of important meta paths. In this way, LiPaP has a better balance on
effectiveness and efficiency.

7.2 Entity Set Expansion with Meta Path in Knowledge
Graph

7.2.1 Overview

Entity Set Expansion (ESE) refers to the problem of expanding a small set with a few
seed entities into a more complete set, entities of which belong to a particular class.
For example, given a few seeds like “China,” “America,” and “Russia” of country
class, ESE will leverage data sources (e.g., text or Web information) to obtain other
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country instances, such as Japan and Korea. ESE has been used inmany applications,
e.g., dictionary construction [7], query refinement [9], and query suggestion [5].

Amounts of methods have been proposed for ESE and most of them are based
on the text or Web environment [8, 12, 16, 26, 27]. These methods utilize distribu-
tion information or context pattern of seeds to expand entities. For instance, Wang
and Cohen [26] propose a novel approach that can be applied to semi-structured
documents written in any markup language and in any human language. Recently,
knowledge graph has become a popular tool to store and retrieve fact information
with graph structure, such as Wikipedia and Yago. Among those texts or Web based
methods, some ones also began to leverage knowledge graph as auxiliary for the
performance improvement of ESE. For example, Qi et al. [15] useWikipedia seman-
tic knowledge to choose better seeds for ESE. However, seldom work only utilizes
knowledge graph as an individual data source for ESE.

In this chapter, we firstly study the entity set expansion with knowledge graph.
Since knowledge graph is usually constituted by< object, relation, object > tuples,
we can consider it as a heterogeneous information network (HIN) [18], which
contains different types of objects and relations. Based on this HIN, we design a
Meta Path based Entity Set Expansion approach (called MP_ESE). Specifically, the
MP_ESE employs the meta path [22], a relation sequence connecting entities, to cap-
ture the implicit common feature of seed entities, and designs a Seed-basedMeta Path
Generation method, called SMPG, to exploit the potential relations among entities.
In addition, a heuristic weight learningmethod is adopted to assign the importance of
meta paths.With the help of weightedmeta paths,MP_ESE can automatically extend
entity set. Based on the Yago knowledge graph, we generate four different types of
entity set expansion tasks. On almost all tasks, the proposed method outperforms
other baselines.

7.2.2 The MP_ESE Method

In order to solve the problem of ESE with knowledge graph, we propose a novel
approach calledMP_ESE. As we have said, KG is a natural HIN, we employ the
widely used meta path in HIN to exploit the potential common feature of seeds.
The MP_ESE includes the following three steps. Firstly, we design a strategy of
extracting candidate entities. Secondly, we develop an algorithm, called SMPG, to
automatically discover important meta paths between seeds. Finally, we get a ranking
model through combining the meta paths with a heuristic strategy.

7.2.2.1 Knowledge Graph as a HIN

Knowledge graph (KG) [19] is a large and complex graph dataset, which consists
of triples of the form < Subject,Property,Object >, such as < StevenSpielberg,
directed,War Horse(film) > shown in Fig. 7.8.Yago [20],DBpedia [1] andFreebase
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Fig. 7.8 An example of Yago with concept hierarchy structure

[3] are prime examples of KG. The types of entities or relations in KG are often
organized as concept hierarchy structure, which describes the subclass relationship
among entity types or relations. Figure7.8b is a toy example and we can see that
actor is subclass of person. All the types share a common root called thing.

Heterogeneous information network (HIN) [22] is a network including different
types of nodes or links. In HIN, meta path [22], a sequence of relations between
objects, is widely used to capture the rich semantic meaning. Since KG contains
different types of objects (i.e., subject and object) and links (i.e., property), KG is a
natural HIN. In Fig. 7.8, actedIn and directed are two kinds of link types and actor and

film director are different object types. Person
actedIn−−−→ Movie

directed−1−−−−−→ Person is a
meta path between Toby Kebbell and Steven Spielberg and directed−1 is the opposite
direction of the edge directed. In addition, Toby Kebbell andMartin McCann belong
to the actor class. Toby Kebbell and Nigel Havers are not only the instances of actor
class but also included in the actors who acted in movies Steven Spielberg directed.
In order to distinguish the two kinds of sets, we call the latter as the fine-grained set
and the former as the coarse grained set.

7.2.2.2 Candidate Entities Extraction

Because the number of entities in knowledge graph is extremely huge, it is unprac-
tical and unreasonable to compute the similarity of each entity and seed. In order to
reduce the number of candidate entities, we design a strategy, which leverages con-
cept hierarchy structure introduced above, to get a proper set of candidate entities
from knowledge graph. Specifically, it includes the following four steps as shown in
Fig. 7.9. Step 1 obtains entity types of each seed. Step 2 generates the initial candi-
dates types by the intersection operation. Step 3 filters the initial candidates types
with the concept hierarchy structure. Step 4 extracts candidate entities of satisfying
the ultimate candidates types.

In order to clearly illustrate the process of candidate entities extraction, we take
Fig. 7.8 as an example and choose Toby Kebbell and Nigel Havers as the seeds.
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Fig. 7.9 The procedure of candidate entities extraction

Fig. 7.10 Notation of data structure and seed combination pairs

Their entity types set is {person, actor} and {son, person, actor}, respectively. And
the intersection of them is {person, actor} called the initial candidates types. These
candidates types may be noisy, which makes the number of candidate entities large.
Therefore,wefilter some candidates types using concept hierarchy structure as shown
inFig. 7.8b.We choose the class closest to the bottomas the ultimate candidates types.
Here, we choose actor class. According to the ultimate types, we extract the candidate
entities from Yago.

7.2.2.3 Seed-Based Meta Path Generation

In order to automatically discover meta paths between seeds, we design the Seed-
based Meta Path Generation (SMPG) algorithm. The basic idea is that SMPG begins
to search the KG from all seeds and finds important meta paths that connect certain
number of seed pairs, and the meta paths can reveal the implicit common character
of seeds.

The process of meta path generation is traversing the KG indeed, and thus a tree
structure is introduced in SMPG. SMPG works by expanding the tree structure and
Fig. 7.10a shows the data structure of each tree node, which stores a tuple list of entity
pairs with similarity value and the set of being visited entities. The tuple form of
the list is 〈(s, t),σ (s,t|∏),(s, · · · , t)〉, where (s, t) denotes the source node and target
node of the current path

∏
. Each tree edge denotes the link type between entities.

The root node of the tree contains all entity pairs composed of each seed and itself.
SMPG starts to expand from the root node step by step to discover important meta
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Fig. 7.11 Seed-based meta path generation method

paths. At each step, we check whether the score SC of the tree node is larger than
the predefined threshold value ν, which guarantees that the meta path is important
enough to reveal the character of seeds. If so, we pick out the corresponding meta
path, otherwisemake amove forward until the tree can not be further expanded.When
moving forward, we choose the tree node with the maximum number of different
source nodes as well as the minimum number of tuples to expand, which indicates
that the path of the tree node covers more seeds and has a better discriminability.

Specifically, in SMPG, we use a source set in the tree node to record the
source nodes of all entity pairs in the tuple list. In order to prevent the circle, we
record the nodes having been visited along the path

∏
in (s, · · · , t) of the tuple

〈(s, t),σ (s,t|∏),(s, · · · , t)〉. Here, σ (s,t|∏) is the similarity that represents whether
node t is in the target node set of source node s, it is 1 if so and 0 otherwise. The target
node set of each source node can be found in seed combination pairs as shown in
Fig. 7.10b and each seed can be combined with the other seeds. σ (s,t|∏) also means
that whether the meta path connects the seed pair. And seed pairs that each meta path
connects are also recorded. In addition, LP is the passing link path and the score SC
of the tree node is the sum of all tuples similarity, which measures the importance of
the tree node or path.

Let us elaborate the process with an example shown in Fig. 7.11, where the set of
seeds is {Toby Kebbell, Nigel Havers, Harrison Ford} marked as {1, 2, 3}. The set
of seed combination pairs is {[1, (2, 3)], [2, (1, 3)], [3, (1, 2)]} shown in Fig. 7.11.
The root node of the tree contains all entity pairs composed of each seed and itself,
and has SC = 0. The first expansion passes through two types of links: actedIn and
wasBornIn, and gets two new tree nodes. For each new tree node, SMPG records
each tuple, P and SC as well as source set. At the moment, all paths do not connect
any seed pairs, so we choose the tree node with the maximum number of source
set as well as the minimum number of tuples to expand. Here, we choose the tree
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node with link actedIn to expand and then get five new tree nodes. Figure7.11
only demonstrates two of them. After the second expansion, there is not still path
connecting seed pairs. Then we continue to choose the tree node with the maximum
number of source set and the minimum number of tuples to expand, and we update

the corresponding values. After several expansions, a length-4 path Actor
actedIn−−−→

Movie
directed−1−−−−−→ Person

created−−−→ Movie
actedIn−1−−−−−→ Actor is found shown by the dash

line in Fig. 7.11. And we continue to repeat the process until the condition is satisfied
or the tree can not be further expanded.

7.2.2.4 Expanding Entities with Meta Paths

SMPG discovers the important meta paths P, but the importance of each meta path
is different for the further entity set expansion, and it is related to the number of seed
pairs that meta path connects. Intuitively, the more seed pairs the meta path connects,
the more important it is. Thus, we consider the ratio of SPk and m ∗ (m − 1) to be
the weight w′

k of meta path pk(pk ∈ P), where SPk is the number of seed pairs that
meta path Pk connects, m ∗ (m − 1) denotes the total number of seed pairs, and m is
the number of seeds. In order to normalize w′

k , we define the final weight as follows:

wk = w′
k

∑l
k=1 w

′
k

(7.5)

where l is the number of meta paths P.
With the wk , we can combine meta paths to get the following ranking model:

R(ci, S) = 1

m

m∑

j=1

l∑

k=1

wk · r{(ci, sj)|pk} sj ∈ S, i ∈ {1, 2, · · · , n} (7.6)

where ci denotes the ith candidate entity and n is the number of candidates. S =
{s1, s2, · · · , sm} is the set of seeds and l is the number of meta paths. r{(ci, sj)|pk}
denotes whether the path pk connects ci and sj; it is 1 if connected and 0 otherwise.

We can compute relevance between each candidate entity and each seed using the
ranking model in Eq.7.6, and then rank all candidate entities.

7.2.3 Experiments

7.2.3.1 Experiment Settings

As a typical KG, Yago [20] has knowledge about more than ten million entities and
contains more than 120 million facts. We adopt “yagoFacts,” “yagoSimpleTypes,”
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Table 7.2 Description of the data

Data Template of triples # triples

yagoFacts < entity relatinship entity > 4,484,914

yagoSimpleTypes < entity rdf:type wordnet_type > 5,437,179

yagoTaxonomy < wordnet_type rdfs:subclassof wordnet_type > 69,826

and “yagoTaxonomy” parts of this dataset to conduct experiments, which contain 35
relationships, more than 1.3 million entities of 3455 instance classes. Table7.2 is the
description of the relevant data.

We choose four representative expansion tasks to evaluate the performance of
MP_ESE. The classes used in these tasks are summarized as follows: Actors of the
movies Steven Spielberg directed, softwares of the companies located in Mountain
View of California, movies whose director won National Film Award, and scientists
of the universities located in Cambridge of Massachusetts. Four classes are written
as Actor∗, Software∗, Movie∗, and Scientist∗, the real number of instances in these
four classes are 112, 98, 653, and 202, respectively.

We employ two popular criteria of precision-at-k (p@k) and mean average pre-
cision (MAP) to evaluate the performance of our approach. p@k is the percentage
of top k results that belong to correct instances. Here, they are p@30, p@60, and
p@90. MAP is the mean of the average precision (AP) of the p@30, p@60, and

p@90. AP =
∑k

i=1 p@i×reli
# of correct instances , where reli equals 1 if the result at rank i is correct

instance and 0 otherwise.

7.2.3.2 Effectiveness Experiments

In this section, we will validate the effectiveness ofMP_ESE on entity set expansion.
Since there are no direct solutions for ESE on KG, we design the following three
baselines:

• Link-Based. According to the pattern-based methods in text or Web environment,
we only consider 1-hop link of an entity, denoted as Link-Based.

• Nearest-Neighbor. Inspired by QBEES [13, 14], we consider 1-hop link and 1-hop
entity at the same time, called Nearest-Neighbor.

• PCRW. Based on the path-constrained random walk [11], we only compare with
length-2 path, denoted as PCRW. The reason is that the longer path needs more
running time.

For each class introduced above, we randomly take three seeds from the instance
set to conduct an experiment. We run algorithms 30 times and record the average
results. InMP_ESE,we set the predefined threshold value ν to bem ∗ (m − 1)/2 + 1,
which can guarantee that the path connects half number of seeds or more, m is the
number of seeds. And the max length of path is set to be 4 since meta paths with
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Fig. 7.12 The result of entity set expansion

length more than 4 are almost irrelevant. The optimal parameters are set for other
baselines.

The overall results of entity set expansion are given in Fig. 7.12. From Fig. 7.12,
we can see that our MP_ESE approach achieves better performances than other
methods on almost all conditions, especially on the Actor∗ and Movie∗ tasks.
All baselines have very bad performances on Actor∗ and Movie∗. We think the
reason is that the 1-hop link or 1-hop entity cannot further distinguish the char-
acter of the fine-grained class but MP_ESE can distinguish them well. On the
Software∗ task, MP_ESE and PCRW have close performance. The reason is that
Software∗ is an overlapping class and has another class label depicted by length-2

path Software
created−1−−−−−→ Company

created−−−→ Software. Due to the fact that it has few
semantic meaning, Link-Based has very bad performance. In all, MP_ESE has the
best performances because it employs the important meta paths between seeds and
can capture the subtle semantic meaning.

In order to intuitively observe the effectiveness of discoveredmeta paths, Table7.3
depicts the top three meta paths returned by SMPG for Actor∗. We observe that these
meta paths reveal some common traits of Actor∗. The first meta path indicates that
actors act in movies directed by the same director, which shows that SMPG can
effectively mine the most important semantic meaning of Actor∗. The second and
the third meta paths imply that some actors act in movies edited or composed by the
same person. Through leveraging the important meta paths discovered by SMPG,
we can find other entities belonging to the same class with seeds.



198 7 Schema-Rich Heterogeneous Network Mining

Table 7.3 Most relevant 3 meta paths for Actor∗

Meta path w

Person
actedIn−−−−→ Movie

directed−1−−−−−−→ Person
directed−−−−→ Movie

actedIn−1−−−−−→Person 0.2180

Person
actedIn−−−−→ Movie

writeMusicFor−1−−−−−−−−−→ Person
writeMusicFor−−−−−−−−→ Movie

actedIn−1−−−−−→Person 0.1495

Person
actedIn−−−−→ Movie

edited−1−−−−→ Person
edited−−−→ Movie

actedIn−1−−−−−→Person 0.1476

7.3 Conclusions

In this chapter, we extend the traditional heterogenous network to the schema-rich
heterogeneous network where there are a huge number of types of nodes and links,
such as knowledge graph. In this kind of networks, it is difficult to depict the net-
work schema and impossible to enumerate the potential meta paths. We study two
data mining tasks in schema-rich heterogeneous networks. In the link prediction
task, we design the LiPaP to predict potential links among nodes, and we also pro-
pose the MP_ESE to automatically extend entity set with knowledge graph. In these
methods, it is critical to efficiently and effectively discover meta paths and learning
their weights. Since the knowledge graph is widely used in text analysis and search
engine, when we consider the knowledge graph as heterogenous network, it will
tremendously extend the study of heterogeneous network. Simultaneously, it also
provides a new way for knowledge graph mining.
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