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ABSTRACT
Conventional research on similarity search focuses on mea-
suring the similarity between objects with the same type.
However, in many real-world applications, we need to mea-
sure the relatedness between objects with different types.
For example, in automatic expert profiling, people are in-
terested in finding the most relevant objects to an expert,
where the objects can be of various types, such as research
areas, conferences and papers, etc. With the surge of study
on heterogeneous networks, the relatedness measure on ob-
jects with different types becomes increasingly important.
In this paper, we study the relevance search problem in het-
erogeneous networks, where the task is to measure the re-
latedness of heterogeneous objects (including objects with
the same type or different types). We propose a novel mea-
sure, called HeteSim, with the following attributes: (1) a
path-constrained measure: the relatedness of object pairs
are defined based on the search path that connect two ob-
jects through following a sequence of node types; (2) a uni-
form measure: it can measure the relatedness of objects
with the same or different types in a uniform framework;
(3) a semi-metric measure: HeteSim has some good proper-
ties (e.g., self-maximum and symmetric), that are crucial to
many tasks. Empirical studies show that HeteSim can ef-
fectively evaluate the relatedness of heterogeneous objects.
Moreover, in the query and clustering tasks, it can achieve
better performances than conventional measures.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining
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1. INTRODUCTION
Similarity search is an important task in a wide range of
applications, such as web search [17] and product recom-
mendations [10]. The key of similarity search is similarity
measure, which evaluates the similarity of object pairs. Sim-
ilarity measure has been extensively studied for traditional
categorical and numerical data types, such as Jaccard co-
efficient and cosine similarity. There are also a few studies
on leveraging link information in networks to measure the
node similarity, such as Personalized PageRank [6], Sim-
Rank [5], and PathSim [19]. Conventional study on sim-
ilarity measure focuses on same-typed objects. That is,
the objects being measured are of the same type, such as
“document-to-document”, “webpage-to-webpage” and “user-
to-user”. There is seldom research on similarity measure
on different-typed objects. That is, the objects being mea-
sured are of different types, such as “author-to-conference”
and “user-to-movie”. It is reasonable. The similarity of
different-typed objects is a little against our common sense.
Moreover, different from the similarity of same-typed ob-
jects which can be easily measured on homogeneous sit-
uation (e.g., the same feature space or homogeneous link
structure), it is hard to effectively define the similarity of
different-typed objects.

However, the information of the relatedness of different-
typed objects is not only meaningful but also useful in some
scenarios. For example, the author J. F. Naughton is more
relevant to SIGMOD than KDD. A teenager may like the
movie “Harry Potter” more than “The Shawshank Redemp-
tion”. Moreover, the relatedness measure of different-typed
objects are needed in many applications. For example, in
a recommendation system, we need to know the related-
ness between users and movies to make accurate recom-
mendations. In an automatic profile extraction application
as shown in Fig. 1, we need to measure the relatedness
of different-typed objects, such as authors and conferences,
conferences and organizations etc. Particularly, with the
advent of study on heterogeneous information networks [14,



(a) Author profile (b) Conference profile

Figure 1: Examples of automatically extracting aca-

demic profile.

(a) Symmetric measure

(b) Asymmetric measure

Figure 2: Examples of relative importance repre-

senting by symmetric and asymmetric measures.

The rectangle with partially marked black denotes

the relatedness of two objects.

20], it is not only increasingly important but also feasible to
study the relatedness among different-typed objects. Het-
erogeneous information networks are the logical networks
involving multiple-typed objects and multiple-typed links
denoting different relations. It is clear that heterogeneous
information networks are ubiquitous and form a critical com-
ponent of modern information infrastructure. For example,
a bibliographic network includes authors, papers, confer-
ences, terms and their links representing their relations. It is
essential to provide a relevance search function on different-
typed objects in such networks, which is the base of many
applications. Since different-typed objects coexist in the
same network, so the relatedness measure on different-typed
objects is possible through their link structure.

In this paper, we study the relevance search problem in
heterogeneous information networks. The aim of relevance
search is to effectively measure the relatedness of hetero-
geneous objects (including objects with the same type or
different types). Different from the similarity search which
only measures the similarity of same-typed objects, the rel-
evance search measures the relatedness of heterogeneous ob-
jects, not limit to same-typed objects. Moreover, the rele-
vance measure should be symmetric based on following rea-
sons. (1) The symmetric measure is needed in many learning
tasks, such as clustering and collaborative filtering. (2) The
symmetric measure makes more sense in many applications.
For example, in some applications, we need to answer the
question like who has the similar importance to the confer-
ence SIGIR as J. F. Naughton to the SIGMOD. Through
comparing the relatedness of object pairs, we can deduce
the information of their relative importance. However, it

only can be done by the symmetric measure, not the asym-
metric measure. It can be explained by the example shown
in Fig. 2. For the symmetric measure, we can deduce that
W. B. Croft has the same importance to SIGIR as J. F.
Naughton to the SIGMOD, since their relatedness scores
are close. Suppose we know J. F. Naughton1 is an influ-
ential researcher in SIGMOD, we can conclude that W. B.
Croft2 is also an influential researcher in SIGIR. However,
we cannot deduce the relative importance information from
an asymmetric measure as shown in Fig. 2(b). From the re-
latedness of author to conference and conference to author,
we will draw conflicting conclusions.

Despite its value and significance, the relevance search in
heterogeneous networks has never been studied so far. It
faces the following research challenges. (1) Heterogeneous
network is more complex than traditional homogeneous net-
work. In heterogeneous networks, different-typed objects
and links carry different semantic meanings. So the seman-
tic meanings also contain in search paths that connect two
objects through a sequence of relations between object types.
Different paths have different semantics. Based on different
search paths, the relatedness of two objects may be differ-
ent. For example, the relatedness of authors and confer-
ences should be different based on the relations of authors
publishing papers in conferences and authors’s co-authors
publishing papers in conferences. As a consequence, a de-
sirable relevance measure should be path-dependent, which
can capture the semantics under paths and return different
values based on different paths. (2) It is difficult to design a
symmetric relevance measure for different-typed objects. In
heterogeneous networks, the paths connecting same-typed
objects are usually symmetric [19], so it is not difficult to
design a symmetric measure based on the symmetric paths.
However, the paths connecting different-typed objects are
asymmetric. And thus it is more challenging to design a
symmetric relevance measure based on an asymmetric path.

Inspired by the intuition that two objects are related if they
are referenced by related objects, we propose a novel mea-
sure, called HeteSim, to evaluate the relatedness of het-
erogeneous objects in heterogeneous networks. Based on
the path-based relevance framework, HeteSim can effectively
capture the subtle semantics of search paths. Based on pair-
wise random walk, HeteSim treats arbitrary search paths
in a uniform way, which guarantees the symmetric prop-
erty of HeteSim. An additional benefit is that HeteSim can
measure the relatedness of different-typed objects as well
as same-typed objects. Moreover, HeteSim is a semi-metric
measure. In other words, HeteSim satisfies the properties
of non-negativity, identity of indiscernibles, and symmetry.
It implies that HeteSim can be used in many learning tasks
(e.g., clustering and collaborative filtering). The extensive
experiments validate the effectiveness of HeteSim. There
case studies illustrate the benefits of the relevance search in
knowledge discovery of heterogeneous networks: automati-
cally extracting object profile, experts finding through rela-
tive importance of object pairs, and relevance search based
on path semantics. HeteSim also shows its potential in the
machine learning tasks (i.e., query and clustering) where

1http://pages.cs.wisc.edu/∼naughton/
2http://ciir.cs.umass.edu/personnel/croft.html



HeteSim outperforms other path-based similarity measures.

The rest of the paper is organized as follows. Section 2 intro-
duces the related work, and then the preliminary knowledge
of this work is given in Section 3. In Section 4, we present the
HeteSim measure. We do extensive experiments to validate
the effectiveness of HeteSim in Section 5. Finally, Section 6
concludes this paper.

2. RELATED WORK
The most related work to relevance search is similarity search.
Here we briefly summarize these works. Similarity search
has been well studied for a long time. These studies can
be roughly categorized into two types: feature based ap-
proaches and link based approaches. The feature based ap-
proaches measure the similarity of objects based on their
feature values, such as cosine similarity, Jaccard coefficient
and Euclidean distance. The k nearest neighbor is also
widely used in similarity measure [2, 9], which aims at find-
ing top-k nearest neighbors according to similarities defined
on numerical features. Based on feature similarity, the top-
k similarity pair search algorithm (i.e., top-k-join) considers
similarity between tuples [23]. This type of approaches does
not consider link relation among objects, so they cannot be
applied to networked data.

The link based approaches measure the similarity of objects
based on their link structures in a graph. The asymmet-
rical similarity measure, Personalized PageRank [6], evalu-
ates the probability starting from a source object to a tar-
get object by randomly walking through the network with
restart. It is extended to the scalable calculation for online
queries [3, 21] and the top-k answers [4]. SimRank [5] is a
symmetric similarity measure, which evaluates the similar-
ity of two objects by their neighbor’s similarities. Because
of its computational complexity, many follow-up studies are
done to speedup such calculations [13, 15]. SCAN [24] mea-
sures similarity of two objects by comparing their immedi-
ate neighbor sets. Recently, Jin et al. proposed RoleSim
to measure the role similarity between any two nodes from
networks [8]. These approaches just consider the objects
with the same type, so they can not be applied in hetero-
geneous networks. ObjectRank [1] applies authority-based
ranking to keyword search in labeled graphs and PopRank
[16] proposes a domain-independent object-level link anal-
ysis model. Although these two approaches noticed that
heterogeneous relationships could affect the similarity, they
do not consider the distinct semantics of paths that include
different-typed objects, so they also cannot measure the sim-
ilarity of objects in heterogeneous networks.

Recently, Sun et al. [19] studied the similarity search on
heterogeneous information networks. Considering semantics
in meta paths constituted by different-typed objects, they
proposed PathSim to measure the similarity of same-typed
objects based on symmetric paths. However, many valu-
able paths are asymmetric and the relatedness of different-
typed objects are also meaningful. PathSim is not suitable
in these conditions. In information retrieval community, Lao
and Cohen [11] proposed a Path Constrained Random Walk
(PCRW) model to measure the entity proximity in a la-
beled directed graph constructed by the rich metadata of
scientific literature. Although the PCRW model can be ap-

plied to measure the relatedness of different-typed objects,
the asymmetric property of PCRW restricts it from being
a relevance measure. In our HeteSim definition, users can
measure the relatedness of heterogeneous objects based on
an arbitrary search path. The good merits of HeteSim (e.g.,
symmetric and self-maximum) make it suitable for more ap-
plications.

3. PRELIMINARY
A heterogeneous information network is a special type of
information network with the underneath data structure as
a directed graph, which either contains multiple types of
objects or multiple types of links.

Definition 1. Information Network. Given a schema S =
(A,R) which consists of a set of entities types A = {A} and a
set of relations R = {R}, an information network is defined as a
directed graph G = (V,E) with an object type mapping function
φ : V → A and a link type mapping function ψ : E → R. Each
object v ∈ V belongs to one particular object type φ(v) ∈ A, and
each link e ∈ E belongs to a particular relation ψ(e) ∈ R. When
the types of objects |A| > 1 or the types of relations |R| > 1, the
network is called heterogeneous information network; other-
wise, it is a homogeneous information network.

In information networks, we distinguish object types and
relation types. As a template for a network, the network
schema depicts the object types and the relations existing
among object types. For a relation R existing from type A

to type B, denoted as A
R

−→ B, A and B are the source

type and target type of relation R, which is denoted as
R.S and R.T , respectively. The inverse relation R−1 holds

naturally for B
R

−1

−→ A. Generally, R is not equal to R−1,
unless R is symmetric and these two types are the same.

Example 1. A bibliographic information network is a typ-
ical heterogeneous information network. The network schema
of ACM dataset (see Section 5.1) is shown in Fig.3(a). It
contains objects from seven types of entities: papers (P), au-
thors (A), affiliations (F), terms (T), subjects (S), venues
(V), and conferences (C) (a conference includes multiple
venues, e.g., KDD including KDD2010, KDD2009 and so
on). There are links connecting different-typed objects. The
link types are defined by the relations between two object
types. For example, links exist between authors and papers
denoting the writing or written-by relations, between venues
and papers denoting the publishing or published-in relations.
Fig.3(b) shows the network schema of DBLP dataset (see
Section 5.1).

Different from homogeneous networks, two objects in a het-
erogeneous network can be connected via different paths
and these paths have different meanings. For example, in
Fig. 3(a), conferences and authors can be connected via
”Author-Paper-Venue-Conference” (APVC ) path, ”Author-
Paper-Subject-Paper-Venue-Conference” (APSPVC ) path,
and so on. It is clear that semantics underneath these paths
are different. The APVC path means that papers written
by authors are published in conferences, while the APSPVC
path means that papers having the same subjects as the au-
thors’ papers are published in conferences. Obviously, the



(a) ACM data (b) DBLP data

Figure 3: Examples of bibliographic network

schema.

distinct semantics under different paths will lead to different
relatedness. The relatedness under APVC path emphasizes
on the conferences that authors participated, while the relat-
edness under APSPVC path emphasizes on conferences pub-
lishing the papers that have the same subjects with authors’
papers. For example, assume most papers of an author are
published in the KDD, SIGMOD, and VLDB. However, the
papers having the same subjects with the author’s papers
may be published in more wide conferences, such as ICDM,
SDM, and CIKM. So the relatedness of objects depends on
the search path in the heterogeneous networks. Formally,
we define the meta search path as the relevance path.

Definition 2. Relevance Path. A relevance path P is a
path defined on a schema S = (A,R), and is denoted in the

form of A1
R1−→ A2

R2−→ · · ·
Rl−→ Al+1 which defines a composite

relation R = R1 ◦R2 ◦ · · · ◦Rl between type A1 and Al+1, where
◦ denotes the composition operator on relations. The length of
the path P is the number of relations in P, which is l.

For simplicity, we can also use type names denoting the
relevance path if there are no multiple relations between
the same pair of types: P = (A1A2 · · ·Al+1). For exam-
ple, in Fig. 3(a), the relation, authors publishing papers in
conferences, can be described using the length-2 relevance

path A
writting
−→ P

published
−→ V , or short as APV . We say

a concrete path p = (a1a2 · · · al+1) between a1 and al+1 in
network G is a path instance of the relevance path P,
if for each ai, φ(ai) = Ai and each link ei = 〈ai, ai+1〉
belongs to the relation Ri in P. It can be denoted as
p ∈ P. A relevance path P−1 is the reverse path of P,
which defines an inverse relation of the one defined by P.
Similarly, we define the reverse path instance of p−1 as
the reverse path of p in G. For example, the reverse path
of the path APV , which means authors publish papers in
venues, is the path V PA which means venues accept au-
thors’ papers. Further, a relevance path P is a symmetric

path, if the relation R defined by it is symmetric (i.e., P
is equal to P−1), such as APA and APCPA. Two rele-
vance paths P1 = (A1A2 · · ·Al) and P2 = (B1B2 · · ·Bk)
are concatenable if and only if Al = B1, and the con-
catenated path is written as P = (P1P2), which equals to
(A1A2 · · ·AlB2 · · ·Bk). A simple concatenable example is
that AP and PV can be concatenated to the path APV .

4. HETESIM: A RELEVANCE MEASURE

4.1 Basic Idea

Figure 4: A simple heterogeneous network example.

In many domains, similar objects are related to similar ob-
jects. For example, similar researchers published many simi-
lar papers; similar customers purchase similar commodities.
As a consequence, two objects are similar if they are refer-
enced by similar objects. This intuition is also fit for hetero-
geneous objects. For example, researchers are more relevant
to the conferences that publish many papers written by the
researchers; and customers are more faithful to brands that
manufacture many products purchased by the customers. A
more concrete example is shown in Fig. 4. Tom is more
relevant to KDD than other conferences, since all of his pa-
pers are published in KDD. Although the similar idea has
been applied in SimRank [5], it is limited to homogeneous
networks. When we apply the idea to heterogeneous net-
works, it faces the following challenges: (1) The relatedness
of heterogeneous objects is path-constrained; (2) The relat-
edness measure based on an asymmetric relevance path has
the symmetric property. In the following section, we will
illustrate these challenges and their solutions.

4.2 Path-based Relevance Measure
Different from homogeneous networks, the paths in hetero-
geneous networks have semantics, which makes the relat-
edness between two objects different on different relevance
paths. Taking Fig. 4 for example, Tom is not related to
SIGMOD based on APC path which means authors pub-
lishing papers in conferences. However, he is related to SIG-
MOD based on APAPC path meaning that the coauthors
of authors publish papers in conferences. So the relevance
measure of objects in heterogeneous networks is based on
the given relevance path.

Following the basic idea that similar objects are related to
similar objects, we propose a path-based relevance measure:
HeteSim.

Definition 3. HeteSim: Given a relevance path P =
R1 ◦R2 ◦ · · · ◦Rl, HeteSim between two objects s and t (s ∈
R1.S and t ∈ Rl.T ) is:

HeteSim(s, t|R1 ◦R2 ◦ · · · ◦Rl) =
1

|O(s|R1)||I(t|Rl)|

|O(s|R1)|∑

i=1

|I(t|Rl)|∑

j=1

HeteSim(Oi(s|R1), Ij(t|Rl)|R2 ◦ · · · ◦Rl−1)

(1)

where O(s|R1) is the out-neighbors of s based on relation
R1, and I(t|Rl) is the in-neighbors of t based on relation Rl.



When s may not have any out-neighbors (i.e., O(s|R1) =
∅) or t may not have any in-neighbors (i.e., I(t|Rl) = ∅)
following the path, we have no way to infer any related-
ness between s and t in this case, so we define their rele-
vance value to be 0. Equation (1) shows that to compute
HeteSim(s, t|P), we need to iterate over all pairs (Oi(s|R1),
Ij(t|Rl)) of (s, t) along the path (s along the path and t

against path), and sum up the relatedness of these pairs.
Then, we normalize it by the total number of out-neighbors
of s and in-neighbors of t. That is, the relatedness between
s and t is the average relatedness between the out-neighbors
of s and the in-neighbors of t. The process continues until
s and t will meet along the path. Similar to SimRank [5],
HeteSim is also a pair wise random walk. But it considers
the relevance path. As we know, SimRank measures how
soon two random surfers are expected to meet at the same
node [5]. By contrast, HeteSim(s, t|P) measures how likely
s and t will meet at the same node when s follows along the
path and t goes against the path.

Example 2. Taking Fig. 4 for example, we calculate the
relatedness of Tom and KDD based on APC path.

HeteSim(Tom,KDD|APC) =
1

|O(Tom|AP )||I(KDD|PC)|
|O(Tom|AP )|

∑

i=1

|I(KDD|PC)|
∑

j=1

HeteSim(Oi(Tom|AP ), Ij(KDD|PC))

(2)

where O(Tom|AP ) = {P1, P2} and I(KDD|PC) = {P1, P2}.
So HeteSim(Tom,KDD|APC) = 0.5. Here we think the
relatedness of an object to itself is 1 (the formal definition
can be seen in Def. 4). In this case, Tom and KDD both
have the possibility 0.5 to reach P1 and P2 along the APC

path, respectively. So the possibility of they meeting at same
papers along the path is 0.5. In other words, the relatedness
of Tom and KDD measures their meeting possibility when
they walk along the path.

4.3 Decomposition of Relevance Path
However, the source object s and the target object t do not
always meet at the same objects based on a given path P.
For the similarity measure of same-typed objects, the rele-
vance paths are usually even-length, even symmetric, so the
source object and the target object will meet at the mid-
dle objects. For example, the source and target object will
meet at type T based on the APTPA path. However, for
the relevance measure of different-typed objects, the rele-
vance paths are usually odd-length. In this condition, the
source and target objects will never meet at the same ob-
jects. Taking the APV C path as an example, authors along
the path and conferences against the path will never meet in
the same objects. So the original HeteSim is not suitable for
odd-length relevance paths. In order to solve this difficulty, a
basic idea is to transform odd-length paths into even-length
paths, and thus the source and target objects are always able
to meet at the same objects. As a consequence, an arbitrary
path can be decomposed as two equal-length paths.

When the length l of a relevance path P = (A1A2 · · ·Al+1)
is even, the source objects (along the path) and the target
objects (against the path) will meet in the middle type

object M = A l
2
+1 on the middle position mid = l

2
+ 1,

so the relevance path P can be divided into two equal-
length path PL and PR. That is, P = PLPR, where PL =
A1A2 · · ·Amid−1M and PR = MAmid+1 · · ·Al+1. For ob-
jects in a self-relation (denoted as I relation), it is obvious
that an object is just similar to itself. So its relevance mea-
sure can be defined as follows:

Definition 4. HeteSim based on self-relation: Het-
eSim between two same-typed objects s and t based on the
self-relation I is:

HeteSim(s, t|I) = δ(s, t) (3)

where δ(s, t) = 1, if s and t are same, or else it is 0.

When the path length l is odd, the source objects and the
target objects will meet at the relation A l+1

2
A l+1

2
+1

. For

example, based on the APSPVC path, the source and target
objects will meet at the SP relation after two steps. In
order to let the source and target objects meet at same-
typed objects, we can add a middle type object E between
the atomic relation A l+1

2
A l+1

2
+1

and maintain the relation

between A l+1
2

and A l+1
2

+1
at the same time. Then the new

path becomes P ′ = (A1 · · ·E · · ·Al+1) which length is l+1,
an even number. In the aforementioned example, the path
becomes APSEPVC, which is even-length now. The source
objects and the target objects will meet in the middle type

object M = E on the middle position mid = l+1
2

+1. As a
consequence, the new relevance path P ′ can also be divided
into two equal-length path PL and PR as above.

Definition 5. Decomposition of relevance path. An ar-
bitrary relevance path P = (A1A2 · · ·Al+1) can be decomposed
into two equal-path path PL and PR (i.e., P = PLPR), where
PL = A1A2 · · ·Amid−1M and PR =MAmid+1 · · ·Al+1. M and
mid are defined as above.

Obviously, for a symmetric path P = PLPR, P
−1
R is equal

to PL. For example, the relevance path P = APCPA can
be decomposed as PL = APC and PR = CPA. For the
relevance path APSPVC, we can add a middle type object
E in SP and thus the path becomes APSEPVC, so PL =
APSE and PR = EPV C.

The next question is how we can add the middle type object
E in an atomic relation R between A l+1

2
and A l+1

2
+1

in

an odd-length path, i.e., between S and P in the previous
example on APSPVC. In order to contain original atomic
relation, we need to keep the R relation be the composition
of two new relations. To do so, for each instance of relation
R, we can add an instance of E to connect the source and
target objects of the relation instance. An example is shown
in Fig. 5(a), where the middle type object E is added in
between the atomic relation AB along each path instance.

Definition 6. Decomposition of atomic relation. For
an atomic relation R, we can add an object type E (called
edge object) between the R.S and R.T . And thus the atomic
relation R is decomposed as RO and RI where RO represents



the relation between R.S and E and RI represents that be-
tween E and R.T . For each relation instance r ∈ R, an in-
stance e ∈ E connects r.S and r.T and r.S → e and e → r.T

are the instances of RO and RI , respectively.

It is clear that the decomposition has the following property,
which is proved in the appendix.

Property 1. An atomic relation R can be decomposed as
RO and RI , R = RO ◦RI , and this decomposition is unique.

Based on this decomposition, the relatedness of two objects
with an atomic relation R can be calculated as follows:

Definition 7. HeteSim based on atomic relation: Het-
eSim between two different-typed objects s and t based on an
atomic relation R (s ∈ R.S and t ∈ R.T ) is:

HeteSim(s, t|R) = HeteSim(s, t|RO ◦RI)

=
1

|O(s|RO)||I(t|RI)|

|O(s|RO)|∑

i=1

|I(t|RI )|∑

j=1

δ(Oi(s|RO), Ij(t|RI))

(4)

It is easy to find that HeteSim(s, t|I) is a special case of
HeteSim(s, t|R), since, for the self-relation I, I = IO ◦ II
and |O(s|IO)| = |I(t|II)| = 1. Definition 7 means that we
can measure the relatedness of two different-typed objects
with an atomic relation R directly, which has never been
done before. HeteSim measures their relatedness through
calculating the average of their mutual influence.

Example 3. Fig. 5(a) shows an example of decomposi-
tion of atomic relation. The relation AB is decomposed into
the relations AE and EB. Moreover, the relation AB is the
composition of AE and EB. The HeteSim is calculated in
Fig. 5(c). We can find that HeteSim justly reflects related-
ness of objects. Taking a2 for example, although a2 equally
connects with b2, b3, and b4, it is more close to b3, because
b3 only connects a2. This information is correctly reflected
in the HeteSim value of a2: (0, 0.17, 0.33, 0.17).

We also find that the similarity of an object and itself is not
1 in HeteSim. Taking Fig. 5(c) as example, the relatedness
of a2 and itself is 0.33. It is obviously unreasonable. In the
following section, we will normalize the HeteSim and make
the relevance measure more reasonable.

4.4 Normalization of HeteSim
Firstly, we introduce the calculation of HeteSim between any
two objects given an arbitrary relevance path.

Definition 8. Transition probability matrix. For relation

A
R

−→ B, WAB is an adjacent matrix between type A and B.
UAB is normalized matrix of WAB along the row vector, which
is the transition probability matrix of A−→B based on relation
R. VAB is normalized matrix of WAB along the column vec-
tor, which is the transition probability matrix of B−→A based on
relation R−1.

(a) Add middle type object

(b) Decomposition of atomic relation

(c) HeteSim values before normalization

(d) HeteSim values after normalization

Figure 5: Decomposition of atomic relation and its

HeteSim calculation.

It is easy to prove that the transition probability matrix has
the following property, which can be seen in the appendix.

Property 2. UAB = V ′
BA and VAB = U ′

BA, where V ′
BA is

the transpose of VBA.

Definition 9. Reachable probability matrix. Given a net-
work G = (V,E) following a network schema S = (A,R), a
reachable probability matrix PM for a path P = (A1A2 · · ·Al+1)
is defined as PMP = UA1A2

UA2A3
· · ·UAlAl+1

(PM for simplic-

ity). PM(i, j) represents the probability of object i ∈ A1 reaching
object j ∈ Al+1 under the path P.

According to the definition of HeteSim, the relevance be-
tween objects in A1 and Al+1 based on the relevance path
P = A1A2 · · ·Al+1 is

HeteSim(A1, Al+1|P)

= HeteSim(A1, Al+1|PLPR)

= UA1A2 · · ·UAmid−1MVMAmid+1 · · ·VAlAl+1 .

(5)



According to Property 2, the relevance matrix can be rewrit-
ten in the following way:

HeteSim(A1, Al+1|P)

= UA1A2 · · ·UAmid−1MU
′
Amid+1M

· · ·U ′
Al+1Al

= UA1A2 · · ·UAmid−1M (UAl+1Al
· · ·UAmid+1M )′

= PMPL
PM

′
PR

−1

(6)

The above equation shows that the relevance of A1 and Al+1

based on the path P is the product of two probability dis-
tributions that A1 reaches the middle type object M along
the path and Al+1 reaches M against the path. For two in-
stances a and b in A1 and Al+1, respectively, their relevance
based on path P is

HeteSim(a, b|P) = PMPL
(a, :)PM

′
PR

−1(b, :) (7)

where PMP(a, :) means the a-th row in PMP .

We have stated that HeteSim needs to be normalized. It is
reasonable that the relatedness of the same objects is 1, so
the HeteSim can be normalized as follows:

Definition 10. Normalization of HeteSim. The normal-
ized HeteSim between two objects a and b based on the relevance
path P is:

HeteSim(a, b|P) =
PMPL

(a, :)PM ′
PR

−1 (b, :)
√

‖PMPL
(a, :)‖‖PM ′

PR
−1 (b, :)‖

(8)

In fact, the normalized HeteSim is the cosine of the proba-
bility distributions of the source object a and target object
b reaching the middle type object M . It ranges from 0 to 1.
Fig. 5(d) shows the normalized HeteSim values. It is clear
that the normalized HeteSim is more reasonable. In the fol-
lowing section, the HeteSim means the normalized HeteSim.

4.5 Properties of HeteSim
HeteSim has many good properties, which makes it useful
in many applications. The proof of these properties can be
found in the appendix.

Property 3: Symmetric:
HeteSim(a, b|P) = HeteSim(b, a|P−1).

Property 3 shows the symmetric property of HeteSim. Al-
though PathSim [19] also has the similar symmetric prop-
erty, it holds only when the path is symmetric and a and b

are with the same type. The HeteSim has the more general
symmetric property not only for symmetric paths (note that
P is equal to P−1 for symmetric paths) but also for arbitrary
paths. PCRW [12] does not have this symmetric property,
since it is based on random walk. This property is impor-
tant in many applications. For example, the relatedness of
any two objects in heterogeneous networks can be measured
and the relatedness is symmetric, so the clustering task can
be performed on the relevance matrix directly.

Property 4. Self-maximum: HeteSim(a, b|P) ∈ [0, 1].
HeteSim(a, b|P) is equal to 1 if and only if PMPL

(a, :) is
equal to PMPR

−1(b, :).

Property 4 shows HeteSim is well constrained. For a sym-
metric path P, PL is equal to PR

−1, so PMPL
(a, :) is equal

to PMPR
−1(a, :). And thus HeteSim(a, a|P) is equal to 1.

If we define the distance between two objects (i.e., dis(s, t))
as dis(s, t) = 1−HeteSim(s, t), the distance of the same ob-
ject is zero (i.e., dis(s, s) = 0). As a consequence, HeteSim
satisfies the identity of indiscernibles.

Since HeteSim obeys the properties of non-negativity, iden-
tity of indiscernibles, and symmetry, we can say that Het-
eSim is a semi-metric measure [22]. Since HeteSim is a
path-based measure, it does not obey the triangle inequal-
ity. PathSim is also semi-metric measure. However, it holds
only for symmetric paths. Our HeteSim has the property
for an arbitrary path. PCRW is not semi-metric measure,
since it does not obey the symmetry property. A semi-metric
measure can be used in many applications [22].

Property 5. Connection to SimRank. For a bipartite
graph G = (V,E) based on the schema S = ({A,B}, {R}),
suppose the constant C in SimRank is 1,

SimRank(a1, a2) = lim
n ∞

∑n

k=1 HeteSim(a1, a2|(RR−1)
k
),

SimRank(b1, b2) = lim
n ∞

∑n

k=1 HeteSim(b1, b2|(R
−1R)

k
).

where a1, a2 ∈ A, b1, b2 ∈ B and A
R

−→ B. Here HeteSim is
not normalized.

This property reveals the relation of SimRank and HeteSim.
SimRank sums up the meeting probability of two objects af-
ter all possible steps: one, two, · · · . HeteSim just calculates
the meeting probability along the given relevance path. If
the relevance paths explore all possible meta paths among
the two objects, the sum of HeteSim based on these paths
is the SimRank. So we can say that SimRank is the special
case of HeteSim. This property also implies that HeteSim is
more efficient than SimRank, since HeteSim only needs to
calculate the meeting probability along the given relevance
path, not all possible meta paths.

4.6 Discussion
Let us analyze the time and space complexity of computing
HeteSim. Suppose the average size of one type of objects
is n and there are T types objects, the space requirement
of HeteSim is just O(n2) to store the relatedness matrix.
Let d be the average of |O(s|Ri)||I(t|Rj)| over all object-
pairs (s, t) based on relation Ri and Rj . For a given l-length
relevance path, the time required isO(ldn2), since node pairs
(i.e., n2) calculate their relatedness along the relevance path.
For SimRank, the similarity of node pairs in all types (i.e.,
(Tn)2) are iteratively calculated at the same time, so its
space complexity is O(T 2n2), and the time complexity is
O(k(T 2d)(Tn)2) (i.e., O(kdn2T 4)), where k is the number
of iterations. So the complexity of computing HeteSim is
much smaller than SimRank.

Although HeteSim has large computation demand, several
approaches can alleviate it. (1) For frequently-used rele-
vance paths, the relatedness matrix HeteSim(A,B|P) can
be calculated off-line. The on-line search onHeteSim(a, b|P)
will be very fast, since it only needs to locate the row and col-
umn in the matrix. (2) The concatenation of partially ma-
terialized reachable probability matrix also helps to fasten



Table 1: Automatic object profiling task on author “Christos Faloutsos” on ACM dataset.
Path APVC APT APS APA

Rank Conf. Score Terms Score Subjects Score Authors Score
1 KDD 0.1198 mining 0.0930 H.2 (database management) 0.1023 Christos Faloutsos 1
2 SIGMOD 0.0284 patterns 0.0926 E.2 (data storage representations) 0.0232 Hanghang Tong 0.4152
3 VLDB 0.0262 scalable 0.0869 G.3 (probability and statistics) 0.0175 Agma Juci M. Traina 0.3250
4 CIKM 0.0083 graphs 0.0816 H.3 (information storage and retrieval) 0.0136 Spiros Papadimitriou 0.2785
5 WWW 0.0060 social 0.0672 H.1 (models and principles) 0.0135 Caetano Traina, Jr. 0.2680

Table 2: Automatic object profiling task on conference “KDD” on ACM dataset.
Path CVPA CVPAF CVPS CVPAPVC

Rank Authors Score Organization Score Subjects Score Conf. Score
1 Christos Faloutsos 0.1198 Carnegie Mellon Univ. 0.0824 H.2 (database management) 0.3215 KDD 1
2 Heikki Mannila 0.1119 Univ. of Minnesota 0.0814 I.5 (pattern recognition) 0.1650 VLDB 0.2124
3 Padhraic Smyth 0.1043 IBM 0.0761 I.2 (artificial intelligence) 0.1194 SIGMOD 0.1535
4 Jiawei Han 0.1029 Yahoo! Research 0.0692 G.3 (prob. and stat.) 0.0856 WWW 0.1391
5 Vipin Kumar 0.0966 Univ. of California 0.0683 H.3 (info. storage and retrieval) 0.0653 CIKM 0.0943

the computation. If we pre-computed and stored PMPL
and

PMPR
−1 , we can calculate the HeteSim(A,B|P) according

to Equation 6. For the HeteSim(a, b|P), it only needs to
calculate the dot product of two vectors (i.e., PMPL

(a, :)
and PMPR

−1(b, :)). Moreover, the different partial paths
can be concatenated to many relevance paths. For exam-
ple, given two pre-stored reachable probability matrix based
on paths CPA and APA, we are able to answer queries for
the relevance paths CPAPA, APAPC, CPAPC, APCPA, and
APAPA. (3) Fast algorithms can be designed to speed up the
calculation of HeteSim. The related objects to a searched
object are a very small percentage of all objects in the target
type. The pruning techniques [5, 19] can be used to prune
those unpromising objects during the search. We can also
apply some approximate algorithms [11] to fasten the search
with a small loss of accuracy.

Here, we discuss how to choose relevance path. There are
several ways to do it. (1) Users can select proper paths
according to their domain knowledge and experiences. (2)
The user can try multiple relevance paths, and then make
a choice based on his application. (3) Supervised learning
can be used to automatically select relevance paths [11]. We
can label a small portion of similar objects, and then train
the relevance paths and their weights by some learning algo-
rithms. The learning algorithms can automatically choose
appropriate relevance paths and the associated weights.

5. EXPERIMENTS
In the experiments, we validate the effectiveness of the Het-
eSim through three case studies and two learning tasks on
two bibliographic networks.

5.1 Data Sets
We use two heterogeneous information networks for our ex-
periments, including ACM dataset and DBLP dataset. They
are summarized as follows:

ACM dataset: The ACM dataset was downloaded from
ACM digital library3 in June 2010. The ACM dataset comes
from 14 representative computer science conferences: KDD,
SIGMOD, WWW, SIGIR, CIKM, SODA, STOC, SOSP,
SPAA, SIGCOMM,MobiCOMM, ICML, COLT, and VLDB.

3http://dl.acm.org/

These conferences include 196 corresponding venue proceed-
ings (e.g., KDD conference includes 12 proceedings, such as
KDD’10, KDD’09, etc). The dataset has 12K papers, 17K
authors, and 1.8K author affiliations. After removing stop
words in the paper titles and abstracts, we get 1.5K terms
that appear in more than 1% of the papers. The network
also includes 73 subjects of these papers in ACM category.
The network schema of ACM dataset is shown in Fig. 3(a).

DBLP dataset [7]: The DBLP dataset is a sub-network
collected from DBLP website4 involving major conferences
in four research areas: database, data mining, information
retrieval and artificial intelligence, which naturally form four
classes. The dataset contains 14K papers, 20 conferences,
14K authors and 8.9K terms, with a total number of 17K
links. In the dataset, 4057 authors, all 20 conferences and
100 papers are labeled with one of the four research areas.
The network schema is shown in Fig. 3(b).

5.2 Case Study
In this section, we demonstrate the traits of HeteSim through
case study in three tasks: automatic object profiling, expert
finding, and relevance search.

5.2.1 Task 1: Automatic Object Profiling
We first study the effectiveness of our approach on different-
typed relevance measurement in the automatic object pro-
filing task. If we want to know the profile of an object, we
can measure the relevance of the object to our interested ob-
jects. For example, we want to know the academic profile of
Christos Faloutsos5. It can be solved through measuring the
relatedness of Christos Faloutsos with related objects, e.g.,
conference, affiliations, other authors, etc. Table 1 shows
the lists of top relevant objects with various types on ACM
dataset. APV C path shows the conferences he actively par-
ticipates. Note that KDD and SIGMOD are the two major
conferences Christos Faloutsos participates, which are men-
tioned in his homepage6. From the path APT, we can obtain
his research interests: data mining, pattern discovery, scal-
able graph mining and social network. Using APS path, we
can discover his research areas represented as ACM subjects:

4http://www.informatik.uni-trier.de/∼ley/db/
5http://www.cs.cmu.edu/∼christos/
6http://www.cs.cmu.edu/∼christos/misc.html



Table 3: Relatedness values of authors and conferences measured by HeteSim and PCRW on ACM dataset.
HeteSim PCRW

APVC&CVPA APVC CVPA

Pair Score Pair Score Pair Score
C. Faloutsos, KDD 0.1198 C. Faloutsos, KDD 0.5517 KDD, C. Faloutsos 0.0087

W. B. Croft, SIGIR 0.1201 W. B. Croft, SIGIR 0.6481 SIGIR, W. B. Croft 0.0098

J. F. Naughton, SIGMOD 0.1185 J. F. Naughton, SIGMOD 0.7647 SIGMOD, J. F. Naughton 0.0062
A. Gupta, SODA 0.1225 A. Gupta, SODA 0.7647 SODA, A. Gupta 0.0090

Luo Si, SIGIR 0.0734 Luo Si, SIGIR 0.7059 SIGIR, Luo Si 0.0030
Yan Chen, SIGCOMM 0.0786 Yan Chen, SIGCOMM 1 SIGCOMM, Yan Chen 0.0013

Table 4: Top 10 related authors to “Christos Faloutsos” based on APV CV PA path on ACM dataset.
HeteSim PathSim PCRW

Rank Author Score Author Score Author Score
1 Christos Faloutsos 1 Christos Faloutsos 1 Charu C. Aggarwal 0.0063
2 Srinivasan Parthasarathy 0.9937 Philip Yu 0.9376 Jiawei Han 0.0061
3 Xifeng Yan 0.9877 Jiawei Han 0.9346 Christos Faloutsos 0.0058
4 Jian Pei 0.9857 Jian Pei 0.8956 Philip Yu 0.0056
5 Jiong Yang 0.9810 Charu C. Aggarwal 0.7102 Alia I. Abdelmoty 0.0053
6 Ruoming Jin 0.9758 Jieping Ye 0.6930 Chris B. Jones 0.0053
7 Wei Fan 0.9743 Heikki Mannila 0.6928 Jian Pei 0.0034
8 Evimaria Terzi 0.9695 Eamonn Keogh 0.6704 Heikki Mannila 0.0032
9 Charu C. Aggarwal 0.9668 Ravi Kumar 0.6378 Eamonn Keogh 0.0031
10 Mohammed J. Zaki 0.9645 Vipin Kumar 0.6362 Mohammed J. Zaki 0.0027
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Figure 6: The average rank difference of HeteSim

and PCRW on 14 conferences of ACM dataset. The

lower the better.

database management (H.2) and data storage (E.2). Based
on APA path, HeteSim finds the most important co-authors,
most of which are his Ph.D students.

In another case study, we want to find the profile of KDD
conference. Table 2 shows the results on ACM dataset. The
active researchers in the conference can be found by the
CV PA path indicating the relationship of authors publish-
ing papers in conferences. The top five authors are all well-
known researchers in data mining area. The CV PAF path
reveals the important research affiliations that have pub-
lished many papers in KDD, such as CMU, IBM, Yahoo!
Research. The results of CV PS illustrate that the topics of
KDD are database management (H.2), pattern recognition
(I.5), and so on. The CV PAPV C path measures the sim-
ilarity of conferences through their common authors. The
conferences that are most similar to KDD are VLDB, SIG-
MOD, WWW and CIKM. It is reasonable, since these con-
ferences all share many authors whose research areas are
data mining and knowledge management.

5.2.2 Task 2: Expert Finding
In this case, we want to validate the effectiveness of HeteSim
to reflect the relative importance of object pairs through an
expert finding task. As we know, the relative importance
of object pairs can be revealed through comparing their re-
latedness. Suppose we know the experts in one domain,
the expert finding task here is to find experts in other do-
mains through their relative importances. Table 3 shows
the relevance scores returned by different approaches on six
“conference-author” pairs on ACM dataset. The relatedness
of conferences and authors are defined based on the APVC
and CVPA paths which have the same semantics: authors
publishing papers in conferences. Due to the symmetric
property of HeteSim, we get the same value for both paths.
While PCRW returns different values for these two paths.
Suppose that we are familar with data mining area, and al-
ready know that C. Faloutsos is an influential researcher in
KDD. Comparing these HeteSim scores, we can still find in-
fluential researchers in other research areas even if we are not
quite familiar with these areas. J. F. Naughton, W. B. Croft
and A. Gupta should be influential researchers in SIGMOD,
SIGIR and SODA, respectively, since they have very similar
HeteSim score to C. Faloutsos. Moreover, we can also de-
duce that Luo Si and Yan Chen may be active researchers
in SIGIR and SIGCOMM, respectively, since their HeteSim
scores are smaller than that of C. Faloutsos, but not very
small. In fact, C. Faloutsos, J. F. Naughton, W. B. Croft
and A. Gupta are top ranked authors in their research com-
munities. Luo Si and Yan Chen are the young professors and
they have done good work in their research areas. However,
if the relevance measure is not symmetric (e.g., PCRW), it
is very hard to tell which authors are more influential when
comparing these relevance scores. For example, the PCRW
score of Yan Chen and SIGCOMM is the largest one in the
APVC path. However, the value is the smallest one when
the opposite path is considered, i.e., CVPA path.

The relative importance is hard to quantitatively measure.
However, we can roughly measure the relatedness of authors
and conferences by the number of papers that authors pub-
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on 14 conferences of ACM dataset.

lish in conferences, and then rank the relatedness as their
relative importance (i.e., ground truth). We also compute
the relatedness of authors and conferences based on HeteSim
and PCRW, and then rank these values. Through comput-
ing the average rank difference from the ground truth, we
can roughly measure the accuracy of relative importance.
For example, C. Faloutsos is ranked 1st on KDD as ground
truth, while an approach rank him 6th. So the rank differ-
ence is 5. Note that, since PCRW has two rank scores for two
different orders, the results are the average rank differences
based on these two different orders. Fig. 6 show the average
rank difference on the top 200 authors in ground truth on
each conference. It is clear that HeteSim more accurately
reveals the relative importance of author-conference pairs,
since their average rank difference is smaller.

5.2.3 Task 3: Relevance Search based on Path Se-

mantics
As we have stated, the path-based relevance measure can
capture the semantics of paths. In this relevance search
task, we will observe the effectiveness of semantics capture
through comparing HeteSim with other two path-based mea-
sures: PCRW and PathSim. Since PathSim can only mea-
sure the similarity of same-typed objects, this task will find
the top 10 related authors to Christos Faloutsos based on
the APV CV PA path which means authors publishing pa-
pers in same conferences. The results are shown in Table 4.
The PathSim finds the similar peer authors, such as Philip
Yu and Jiawei Han. They have the same reputation in data
mining field. It is strange for PCRW that the most similar
author to Christos Faloutsos is not himself, but Charu C.
Aggarwal and Jiawei Han. It is obviously not reasonable.
Our conjecture is that Charu C. Aggarwal and Jiawei Han
published more papers in the same conferences that Christos
Faloutsos published, so Christos Faloutsos has more reach-
able probability on Charu C. Aggarwal and Jiawei Han than
himself along the APV CV PA path. HeteSim’s results are
a little different. The most similar authors are Srinivasan
Parthasarathy and Xifeng Yan, instead of Philip Yu and Ji-
awei Han.

Let’s consider the semantics of the path APV CV PA again:
authors publishing papers in the same conferences. Fig. 7
shows the reachable probability distribution from authors to
conferences along the path APV C. It is clear that the prob-
ability distribution of papers of Srinivasan Parthasarathy
and Xifeng Yan on conferences are more close to that of
Christos Faloutsos, so they should be more similar to Chris-
tos based on the same conference publication. Although

Table 6: Clustering accuracy for path-based similar-

ity measures on DBLP dataset.
Venue NMI Author NMI Paper NMI

HeteSim 0.7683 0.7288 0.4989

PathSim 0.8162 0.6725 0.3833

Philip Yu and Jiawei Han have the same reputation with
C. Faloutsos, their papers are more broadly published in
different conferences. So they are not the most similar au-
thors to C. Faloutsos based on the APV CV PA path. As
a consequence, our HeteSim more accurately captures the
semantics of the path.

5.3 Performance on Query Task
The query task will validate the effectiveness of HeteSim
on query search of heterogeneous objects. Since PathSim
cannot measure the relatedness of different-typed objects,
in this experiment, we only compare the performance of
HeteSim with PCRW. On DBLP dataset which has been
labeled, we measure proximity of conferences and authors
based on the CPA path. For each conference, we rank its
related authors according to their measure scores. We calcu-
late the AUC (Area Under ROC Curve) score based on the
label of the authors and conferences in order to evaluate the
performances of the ranked results. The larger score means
the better performance. We evaluate the performances on 9
representative conferences and their AUC scores are shown
in Table 5. We can find that HeteSim consistently outper-
forms PCRW in all 9 conferences. It shows that our proposed
HeteSim method on proximity query task can work better
than asymmetric similarity measures.

5.4 Performance on Clustering Task
Due to the symmetric property, HeteSim can be applied to
clustering tasks. In order to evaluate its performance, we
compare HeteSim with PathSim on the clustering of same-
typed objects, since PathSim can only measure the simi-
larity of same-typed objects. These two measures use the
same information to determine the pairwise similarity be-
tween objects. We evaluate the clustering performance on
DBLP dataset which involve 3 clustering tasks: clustering on
conferences based on CPAPC path, clustering on authors
based on APCPA path, and clustering on papers based on
PAPCPAP path. We apply Normalized Cut [18] to per-
form clustering based on the similarity matrices returned
by different algorithms. The number of clusters is set as 4.
NMI criterion (Normalized Mutual Information) [20] is used
to evaluate the clustering performances on conferences, au-
thors, and papers. NMI is between 0 and 1 and the higher
the better. The average clustering accuracy results of 100
runs are summarized in Table 6. HeteSim achieves better
performances on two clustering tasks: authors and papers
clustering. It shows that HeteSim not only do well on sim-
ilarity measure of same-typed objects but also has the po-
tential as the similarity metric in clustering.

From Table 6, we can also observe that HeteSim and Path-
Sim both achieve high accuracy on conferences and authors
clustering. However, the accuracy on paper clustering is
low. We think the clustering accuracy is largely affected by
the semantics of relevance paths. The similarity of confer-
ences can be measured by the CPAPC path which means



Table 5: AUC values for the relevance search of conferences and authors based on CPA path on DBLP

dataset.
KDD ICDM SDM SIGMOD VLDB ICDE AAAI IJCAI SIGIR

HeteSim 0.8111 0.6752 0.9504 0.7662 0.8262 0.7322 0.8110 0.8754 0.6132
PCRW 0.8030 0.6731 0.9390 0.7588 0.8200 0.7263 0.8067 0.8712 0.6068

Table 7: The top 10 most related authors to “KDD”

conference under different relevance paths on ACM

dataset.
path

rank CVPA CVPAPA

1 Christos Faloutsos Charu C. Aggarwal
2 Heikki Mannila Philip Yu
3 Padhraic Smyth Heikki Mannila
4 Jiawei Han Christos Faloutsos
5 Vipin Kumar Jiawei Han
6 Philip Yu Bianca Zadrozny
7 Eamonn Keogh Padhraic Smyth
8 Kenji Yamanishi Kenji Yamanishi
9 Mohammed J. Zaki Inderjit S. Dhillon
10 Charu C. Aggarwal Vipin Kumar

conferences sharing same authors. Similarly, the APCPA

path (authors publishing papers in same conferences) can
effectively presents the similarity of authors. Since the sim-
ilarity on conferences pairs and authors pairs are accurately
measured by the relevance paths, the clustering accuracy is
high. However, it is not the case for paper clustering. In
the PAPCPAP path, the similarity of papers is inferred
by the similarity of referenced authors (i.e., the APCPA

path), which cannot effectively measure the similarity of pa-
pers. So the low-quality similarity of papers leads to the
poor clustering accuracy. As a consequence, we need to se-
lect appropriate relevance paths to measure the relatedness
of objects, which helps to improve the clustering accuracy.

5.5 Semantic Meaning of Relevance Path
We know that different paths have different semantic mean-
ings in heterogeneous networks. Table 7 shows such a case,
which searches the most related authors to KDD conference
based on two different relevance paths. The CVPA path
means conferences publishing papers written by authors. It
identifies the most active authors to the conference. The
CVPAPA path means conferences publishing papers writ-
ten by authors’ co-authors. It identities the persons with
the most active group of co-authors. In social network set-
ting, this is like identifying the persons with the most active
group of friends or potential targets for viral marketing. At
first glance, there are no obvious difference between the re-
sults returned by these two paths. However, the different
ranks of these authors reveal the subtle semantics on the
paths. The CVPA path returns authors that have high pub-
lication records in KDD. For example, Christos Faloutsos
published the most papers (32) in KDD. Note that HeteSim
does not simply count the number of paths connecting two
objects. It also considers the mutual influence of two ob-
jects. For example, Jiawei Han and Philip Yu published the
second and third highest number of papers in KDD. How-
ever, they have wider research interests and published many
papers in many other conferences, so their relatedness to
KDD decrease based on the CVPA path.

By contrast, the CVPAPA path emphasizes on the publica-

tion records of the co-authors. The results also reflect this
point. For example, although Charu C. Aggarwal published
13 papers in KDD, not the highest publication records, he
has many co-authors which include many high-publication-
record authors (e.g., Philip Yu and Jiawei Han), so he is the
first author related to KDD based on CVPAPA path. The
same thing also happens to other authors. Taking Bianca
Zadrozny for example, she only published 6 papers in KDD.
However, her co-authors also include many high-publicaton-
record authors, such as Philip Yu, Naoki Abe, and Wei Fan.
In all, HeteSim can accurately capture the semantics under
relevance paths.

6. CONCLUSION
In this paper, we study the relevance search problem which
measures the relatedness of heterogeneous objects (includ-
ing same-typed or different-typed objects) in heterogeneous
networks. We propose a novel relevance measure, called Het-
eSim. As a path-constraint measure, HeteSim can measure
the relatedness of same-typed and different-typed objects in
a uniform framework. In addition, HeteSim is a semi-metric
measure, which can be used in many applications. Extensive
experiments validate the effectiveness of HeteSim on evalu-
ating the relatedness of heterogeneous objects.
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7. APPENDIX
Proof of Property 1. According to Definition 6, for each relation
instance a → b in relation R = AB (a ∈ A and b ∈ B), add an
object e (e ∈ E) between a and b, and let wae = web =

√
wab where

w means the weight of relation instances. Note that for adjacent
matrix, wae = web =

√
wab=1. Since a and b only meet on e, so

RO(a, :) ∗ RI(:, b) = wae ∗ web = wab = R(a, b). So R = RO ◦ RI .
Since the process is unique, the decomposition is unique.

Proof of Property 2. According to Definition 8, UAB is the nor-
malized matrix of the transition probability matrix WAB along the
row vector, which is also the transposition of the normalized matrix of
WBA along the column vector (i.e., VBA). So UAB = V ′

BA. Similarly,
VAB = U ′

BA.

Proof of Property 3. According to Definition 5, P = PLPR and
P−1 = PR

−1PL
−1. According to Equation 8,

HeteSim(a, b|P) =
PMPL

(a, :)PM ′
PR

−1 (b, :)
√

‖PMPL
(a, :)‖‖PMPR

−1 (b, :)‖

HeteSim(b, a|P−1
) =

PMPR
−1 (b, :)PM ′

PL
(a, :)

√

‖PMPR
−1 (b, :)‖‖PMPL

(a, :)‖

(9)

so HeteSim(a, b|P) = HeteSim(b, a|P−1).

Proof of Property 4. According to Equation 8, HeteSim(a, b|P) =
cos(PMPL

(a, :), PMPR
−1 (b, :)) ∈ [0, 1]. If and on if PMPL

(a, :)

is equal to PMPR
−1 (b, :), cos(PMPL

(a, :), PMPR
−1 (b, :)) = 1, so

HeteSim(a, b|P) = 1.



Proof of Property 5. It is obvious that SimRank0(a1, a2) =
HeteSim(a1, a2|I) and SimRank0(b1, b2) = HeteSim(b1, b2|I). Here
SimRanki means SimRank value after i hop. Let’s consider the 1st
hop condition.

SimRank1(a1, a2)

=
1

|O(a1)||O(a2)|

|O(a1)|
∑

i=1

|O(a2)|
∑

j=1

SimRank0(Oi(a1), Oj(a2))

=
1

|O(a1)||O(a2)|

|O(a1)|
∑

i=1

|O(a2)|
∑

j=1

SimRank0(bi, bj)

(10)

=
1

|O(a1)||O(a2)|

|O(a1)|
∑

i=1

|O(a2)|
∑

j=1

HeteSim(bi, bj |I)

= HeteSim(a1, a2|RR
−1

)

(11)

since O(a2) = I(a2|BA), O(a1) = O(a1|AB) and
SimRank0(b1, b2) = HeteSim(b1, b2|I). Similarly, SimRank1(b1, b2) =

HeteSim(b1, b2|R−1R). Suppose it is correct for k-th hop, let’s con-
sider the k + 1 hop.

SimRankk+1(a1, a2)

=
1

|O(a1)||O(a2)|

|O(a1)|
∑

i=1

|O(a2)|
∑

j=1

SimRankk(Oi(a1), Oj(a2))

=
1

|O(a1)||O(a2)|

|O(a1)|
∑

i=1

|O(a2)|
∑

j=1

SimRankk(bi, bj)

=
1

|O(a1)||O(a2)|

|O(a1)|
∑

i=1

|O(a2)|
∑

j=1

HeteSim(bi, bj |(R−1
R)

k
)

= HeteSim(a1, a2|R(R
−1

R)
k
R

−1
)

= HeteSim(a1, a2|(RR
−1

)
k+1

)

(12)

Similarly,
SimRankk+1(b1, b2) = HeteSim(b1, b2|(R−1R)k+1) So

SimRank(a1, a2) = lim
n ∞

n
∑

k=1

SimRankk(a1, a2)

= lim
n ∞

n
∑

k=1

HeteSim(a1, a2|(RR
−1

)
k
)

(13)

Similarly,

SimRank(b1, b2) = lim
n ∞

n
∑

k=1

HeteSim(b1, b2|(R−1
R)

k
) (14)
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