World Scientific

(© World Scientific Publishing Company wwaworidsclaniliic.com

Advances in Complex Systems, Vol. 13, No. 1 (2010) 3-17 \\’
DOI: 10.1142/S0219525910002463

A GENETIC ALGORITHM FOR DETECTING COMMUNITIES
IN LARGE-SCALE COMPLEX NETWORKS

CHUAN SHI

Betjing Key Laboratory of Intelligent Telecommunications Software and Multimedia,
Beijing University of Posts and Telecommunications, Beijing 100876, China

BUPT-NOKIA Joint Research Laboratory
shichuan@bupt.edu.cn

ZHENYU YAN

Research Department, Fair Isaac Corporation (FICO),
San Rafael, CA 94903, USA
yan_zhen_yu@hotmail.com

YI WANG, YANAN CAI and BIN WU

Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia,
Beijing University of Posts and Telecommunications,
Beijing 100876, China

Received 24 May 2009
Revised 24 January 2010

Network model recently becomes a popular tool for studying complex systems. Detecting
meaningful communities in complex networks, as an important task in network mod-
eling and analysis, has attracted great interests in various research areas. This paper
proposes a genetic algorithm with a special encoding schema for community detection
in complex networks. The algorithm employs a metric, named modularity @ as the fit-
ness function and applies a special locus-based adjacency encoding schema to represent
the community partitions. The encoding schema enables the algorithm to determine the
number of communities adaptively and automatically, which provides great flexibility
to the detection process. In addition, the schema also significantly reduces the search
space. Extensive experiments demonstrate the effectiveness of the proposed algorithm.

Keywords: Complex network; community detection; genetic algorithm; modularity.

1. Introduction

Recent researches (e.g. see Refs. 13, 22) indicate that complex systems in various
domains may be modeled as complex networks. Examples of such systems and net-
works include the internet, WWW, social networks, citation networks, etc. Most of
these networks are generally sparse in global yet dense in local. Scott [20] describes
this characteristic as “the vertices within the groups have higher density of edges
while vertices among groups have lower density of edges.” Those “groups” are called

http://dx.doi.org/10.1142/S0219525910002463

4 C. Shi et al.

the communities, which are often the key elements to reveal many hidden features
of a given network. Hence, community identification is a fundamental step not only
for discovering what makes the entities come together, but also for understanding
the overall structural and functional properties of large networks.

Because communities play crucial roles in complex networks, the identification of
community structures has attracted a great deal of interest in physics and computer
science societies. There have been many methods and algorithms proposed so far
for revealing the underlying community structure in complex networks. Duch and
Arenas [6] summarized that “these algorithms require the definition of community
that imposes the limit up to which a group should be considered a community.” A
community detection algorithm’s success in finding communities heavily depends
on how it defines a community. A popular quantitative definition called network
modularity @, proposed by Girvan and Newman [9], is widely used as a quality
metric for assessing the partitioning of a network into communities. Many recent
algorithms employ the modularity as a quality metric, such as Newman'’s fast algo-
rithm for very large networks [14] and the algorithm using extremal optimization
[6]. The search for the largest modularity value is a N P-complete problem, because
the space of all possible partitions grows faster than any power of the system size
[2]. For this reason, many algorithms adopt various heuristic strategies to optimize
this metric. However, these algorithms usually have high computational complexi-
ties, and are not suitable for large-scale complex networks. Thus, a highly efficient
algorithm is desired.

This paper proposes a Genetic Algorithm for Community Detection (called
GACD) to meet this need. The algorithm optimizes the modularity @ to obtain
the community partition. A highly efficient locus-based adjacency encoding schema
is applied to represent the community partition. The genetic representation not only
reduces the search space distinctly, but also determines the number of communi-
ties adaptively and automatically. Based on the encoding schema, novel crossover
and mutation operators are designed. Four experiments are carried out to test the
performance of GACD. The first two experiments compare GACD with three pop-
ular methods through both artificial and real networks. Experimental results show
that GACD can discover more accurate community structures for most problems.
The third experiment tests the scalability of GACD. The results demonstrate that
GACD can deal with large problems with smaller increase rates of time compared
with other methods. The fourth experiment tests the stability of GACD through
an e-mail network and a random network.

The remainder of this paper is organized as follows. Section 2 introduces the
related works. Section 3 presents the details of the algorithm. The experimental
results are illustrated in Sec. 4. Finally, we conclude the paper in Sec. 5.

2. Related Works

Many different approaches and algorithms have been proposed to analyze the com-
munity structures in complex networks. Those algorithms employ methods and

A Genetic Algorithm for Detecting Communities in Large-Scale Complex Networks 5

principles in physics, artificial intelligence, graph theory, and even electrical cir-
cuits. The spectral bisection methods [18] and the Kernighan-Lin [10] algorithm
are early solutions to this problem. The spectral approach bisects graph iter-
atively, which is unsuitable to general networks. The Kernighan-Lin algorithm
requires a priori knowledge of the size of the initial divisions, which is usually
hard to obtain. In Social Network Analysis (SNA), a group of algorithms focus
on the discovery of the so-called cohesive sub-structure [20], including the cliques
[3], and quasi-cliques [15, 23], etc. These dense sub-structures often impose extra
restrictions on the community definitions. Meanwhile, the average size of these
sub-structures is always small, so people may get a great number of them, which
actually hides the global organization of the network. Another widely used tech-
nique in SNA is the hierarchical clustering which groups similar vertices into larger
communities.

One of the most known algorithms proposed as far, the Girvan-Newman (GN)
algorithm, is a divisive method by iteratively cutting the edge with the greatest
betweenness value [8, 9]. The algorithm can generate an optimized division of the
network with O(m?) time complexity. Radicchi et al. [8] have proposed a similar
methodology based on GN by using the edge-clustering coefficient as a new metric
with a smaller time complexity O(m?). To further improve the efficiency, Clauset,
Newman and Moore [4] have also proposed a fast clustering algorithm based on GN
(GN Fast) with O(nlog? n) time complexity on the sparse graph. GN Fast combines
pairs of nodes to generate the maximum AQ iteratively until it becomes negative.
Here m and n are the number of edges and nodes, respectively.

An important issue in community detection is how to quantitatively measure
the quality of the community partitions. A quantitative definition, modularity, pro-
posed by Grivan and Newman [8, 9] has been widely used in recent studies as the
quality metric for the assessment of partitioning a network into communities. Mod-
ularity is defined as @ = Y, (e;; — a?), where i is the index of the communities,
e;; is the fraction of edges, that connects two nodes inside the community 7, to the
total number of edges in the network and a; is the faction of all the edges with at
least one node in the community ¢ to the total number of edges in the network. This
measure essentially compares the number of links inside a given module with the
expected values for a randomized graph of the same size and same degree sequences.
Some other quantitative measures have also been proposed. The Hamiltonian-based
method introduced by Reichardt and Bornholdt (RB) is based on considering the
community indices of nodes as spins in a g-state Potts model [19]. Recently, Are-
nas, Fernandez, and Gomez (AFG) proposed a multiple resolution procedure that
allows the optimization of modularity process to go deep into the structure [1]. The
modularity @ is a special case of these two criteria. Once the modularity is cho-
sen as the relevant quality function, the problem of community detection becomes
equivalent to modularity optimization. The optimization problem is not trivial and
it is indeed N P-complete [2]. Many heuristic search algorithms have been applied
to solve the optimization problem. Duch and Arenas use the extremal optimization

6 C. Shi et al.

method to optimize the modularity [5]. The simulated annealing method in Ref. 7
can obtain appropriate solutions, whereas it is very computationally expensive.
Genetic Algorithm (GA), as an effective optimization technique, has also been used
for community detection. The GA proposed by Tasgin and Bingol [21] (GATB)
optimizes the modularity @ with the centroid-based genetic representation (i.e. a
gene describes the index of the cluster a node belongs to). Due to the inefficient
genetic representation, the algorithm is unsuitable for large-scale problems in fact.
Pizzuti proposes another GA to optimize the “community score” criteria [16, 17].
Experiments illustrate that Pizzuti’s algorithm is better than GN. However, the
efficiency and effectiveness of the algorithm have not been validated on large-scale
networks.

In all, most of the algorithms, although can successfully discover community
structures in both artificial and social networks, have the high time and space com-
plexities, which makes them unsuitable for large-scale networks. In addition, many
algorithms also need the a priori knowledge about the community structure, such
as the number of communities, etc. However, it is usually hard or even impossible
to know these priori values in real networks. All these factors make it desirable
to design a simple but highly effective algorithm that is suitable for large-scale
networks.

3. The Genetic Algorithm for Community Detection

This section describes the GACD in detail, including the framework of the algo-
rithm, the crucial genetic representation and the corresponding operators.

3.1. Framework of the algorithm

A GA is a search technique inspired by evolutionary biology to find exact or approx-
imate solutions to optimization and search problems [25]. GAs are implemented as a
computer simulation in which a population of abstract representations (called chro-
mosomes or the genotype of the genome) of candidate solutions (called individuals
or phenotypes) to an optimization problem evolves toward better solutions. Based
on the standard GA framework, the algorithm proposed in the paper is described
in Algorithm 1.

To effectively apply GA to the community detection problem, there is much
work to be done. A special genetic representation should be designed to encode
community partitions, and the corresponding genetic variation operators need to
be designed. These choices are nontrivial and are crucial for the performance and
particularly for the scalability of the algorithm. Some encoding schemas may work
well for networks with a few tens or hundreds of nodes, but their performance breaks
down rapidly for larger scale networks. The design of an effective GA for community
detection requires a close harmonization of the encoding and the operators, so that
the search space can be reduced and the search can be guided effectively.

A Genetic Algorithm for Detecting Communities in Large-Scale Complex Networks 7
Algorithm 1. Main framework of GACD
1: procedure GACD(size, gens, p. € [0,1], pm € [0,1])
2: //size is the population size. gens is the running generation.
3: //pe and p,, are the ratio of crossover and mutation, respectively, and p. +
Pm = 1.
4 P=97
5 for each 7 in 1 to size do
6: s; = initialize(i)
7: evaluate(s;); fillin(P,S;)
8 end for
9 for each ¢ in 1 to gens do
10: 1=0;P =9
11: while i < size do
12: randomly select two individuals s;, s;11 from P
13: if random deviate R(0,1) < p. then
14: 8, 8,1 = crossover(s;, siy1)
15: else s; = mutate(s;); sj,.; = mutate(siy1)
16: end if
17: 1=1+2
18: evaluate(s}); fillin(P’,s})
19: evaluate(s;); fillin(P', s}, ;)
20: end while
21: update(P, P|J P')
22: end for
23: return P[0]

24: end procedure

initialize(i) //initialize the individual ¢ according to the genetic represen-

tation.

evaluate(s) //evaluate the fitness of s according to modularity Q.
fillin(P, s) //add individual s into population P, and sort P in the decreas-

ing order of their fitness.

update(P, P\JP’) //select first size individuals with maximum fitness

from P|J P’ and fill in P in order.

crossover(s;, si+1), mutate(s;) //crossover and mutation genetic operator,

respectively.

3.2. Genetic representation

The biological and social complex networks are usually represented as graphs con-
sisting of nodes and links, and then the communities to be detected are groups
of nodes. When GA is applied to community detection, a community partition
should usually be encoded in a character string (i.e. genotype) based on a genetic
representation schema, and inversely the genotype (i.e. a solution of the problem

8 C. Shi et al.

o O
&
ancods oﬂo decrde @
Fosiian: D1 2 34 56 7 0 | efe—
g7 ©. 0
consre: ST] ®
® ORI O]
(b) (e) (d)

Fig. 1. Ilustration of the locus-based adjacency representation. (a) shows the topology of a
complex network. (b) shows one possible genotype. (c) shows how the genotype in (b) is translated
into a graph structure, for example node 0 links to node 3, because the value of gene gg is 3.
(d) shows the partition result.

or an individual in the population) can be decoded into a community partition.
We design our genetic representation schema based on the locus-based adjacency
representation [11] and illustrate it in Fig. 1. In this graph-based representation,
each individual g consists of n genes g1, g2, ..., gn and each g; can take one of the
adjacent nodes of node ¢. Thus, a value of j assigned to the ¢th gene, is then inter-
preted as a link between nodes ¢ and j; in the resulted partition solution, the two
nodes will be in the same community. The decoding of this representation requires
the identification of all connected components. All nodes belonging to the same
connected component are then assigned to one community. Note that, using a sim-
ple backtracking schema, this decoding step can be done in linear time and the
pseudo-code is illustrated in Algorithm 2.

The encoding approach cannot represent all possible partitions of nodes. For
example, it cannot combine two disconnected subgraphs into one community. Some-
one may argue that the solutions with good community partitions may not fall in
the solution space constructed by the genetic representation and encoding approach.
Fortunately, Brandes et al. [2] have analyzed the basic structural properties of the
clustering with maximum modularity and proposed the following theoretical results.

Property 1. There is always a clustering with maximum modularity, in which each
cluster consists of a connected subgraph.

Property 2. A clustering of maximum modularity does not include disconnected
clusters.

Because the genetic representation can accommodate all possibilities of con-
nected subgraphs, these properties guarantee that a community partition with a
favorable structure can be represented by the genetic representation. Moreover,
the representation is well-suited for standard crossover operators, such as uniform,
one-point or two-point crossover.

3.3. Genetic operators

The crossover operator based on the proposed genetic representation is illustrated in
Fig. 2. For simplicity, the two chromosomes selected in crossover are named source

A Genetic Algorithm for Detecting Communities in Large-Scale Complex Networks 9

Algorithm 2. Decode of genotype

1: procedure DECODE

2 current_cluster = 1

3 for each 7 in 1 to N do

4 cluster_assign = —1

5: end for

6 for each 7 in 1 to N do

7 ctr =1

8 if cluster_assign; = —1 then

9: cluster_assign; = current_cluster

10: netghbor = g;

11: PreviouSery = 1

12: ctr =ctr + 1

13: while cluster_assignpeighbor == —1 do

14: Previousct =neighbor

15: cluster_assignpeighbor = current_cluster
16: neighbor = gneighbor

17: ctr = ctr + 1

18: end while

19: if cluster_assignneighbor 7 current_cluster then
20: ctr = ctr — 1
21: while ctr >=1 do
22: cluster_assignprevious., = Cluster_assignneighbor
23: ctr =ctr — 1
24: end while
25: else

26: current_cluster=current_cluster + 1

27: end if

28: end if

29: end for

30: number_of _clusters=current_cluster

31: end procedure

and destination, respectively. First, we randomly select a gene from the source chro-
mosome, and recursively search for a segment of genes (i.e. a community) that the
selected gene links to (directly and indirectly). Then we substitute the counterpart
genes in the destination chromosome with the segment of genes from the source
chromosome. Counterpart here means that two genes are in the same position (or
have the same index) in the source and destination chromosomes. Note that the
crossover operation is bidirectional: we need to exchange the source and destina-
tion chromosomes and do the same action. An example of the crossover operation is
shown in Fig. 2. The crossover operator has the following advantages: (1) it is prone
to preserve the good structures generated in the evolution to the new individuals;

10 C. Shi et al.

¥

W || LI

-
E—E0

© ©

7 | B: | ?[3[z|z|s|a|a|n|a | o | 7|u|3|1| 5|ﬁ|a|n|7 | D: | ?|3|2|2[5[9|4|ula |

®
v [TRET

S ELECEECEE et [Aofa [o[e4]o] |
s [szlels e el le o [1944494 |
Fig. 2. Illustrate an example of the crossover operation. The position of genes selected from the

source chromosomes are g5 in A and go in B. The selected gene segments are labeled with italic
and different colors.

CEQSSOVEr

(2) it is efficient to generate individuals with diverse structures. The computa-
tional complexity is O(l), where [is the length of the gene segment, namely the
size of the selected community. [is usually smaller than n. In the mutation oper-
ation, we randomly select some genes and assign them with randomly selected
adjacent nodes. The initial population is randomly generated. For each individual
in the initial population, a gene g; randomly takes one of the adjacent nodes of
node 1.

3.4. Discussion

When GA is applied to a real problem, one of the most important issues is to design
an appropriate encoding schema according to the characteristics of the problem.
A good encoding schema not only reduces the size of the search space, but also
facilitates to design effective genetic operators. As a consequence, the encoding
schema usually greatly influences the performance of GA. The locus-based adja-
cency encoding schema has several major advantages for community detection.
Most importantly, there is no need to fix the number of communities in advance, as
it is automatically determined during the evolution. Many methods require some
a priori knowledge like the number of communities or threshold settled, whereas
GACD does not need those setups beforehand. Another important advantage is
that the search space constructed by the genetic representation is reduced signifi-
cantly compared with other methods. In the existing GA (i.e. GATB), Tasgin and
Bingol [21] use a number ranging from 1 to n to represent the community that a
node belongs to, which results in the search space with the complexity n"™. Brandes
et al. cast the problem of maximizing modularity into an integer linear program [2],

A Genetic Algorithm for Detecting Communities in Large-Scale Complexr Networks 11

whose search space has a complexity 27" In GACD, because each node only links
to its adjacent node, the complexity of the search space constructed by locus-based
adjacency representation is [[;; d; (n is the number of nodes, d; is the degree of
node 7). For most real problems, d; is much smaller than n. The reduced searching
space enables GACD to find the more accurate solutions with less time.

The fitness evaluation function (i.e. the function that calculates the @ value) is
the most time-consuming process in the algorithm. Calculating the objective value
has the complexity O(m), and the decoding process has the complexity O(n). As a
consequence, the fitness evaluation of an individual has the complexity O(m + n).
The whole complexity of GACD is O(gs(m + n)) (g is the running generation and
s is the population size).

4. Experiments

In order to test the performance of GACD, this paper performs four sets of experi-
ments. The experiments are carried out on a 3.4GHz and 2G RAM Pentium com-
puter running Linux.

4.1. Artificial network experiment

To test the performance of the algorithm we first use the artificial networks with
known community structures designed in Ref. 8. These networks have 128 vertices
grouped in four communities of 32 vertices. Each vertex has on average z;, edges
to vertices in the same community and z,y; edges to vertices in other communities,
keeping an average degree zi, + zout = 16. The experiments generate 11 networks
with zoy ranging from 0 to 10. As z,,¢ increases, the community structure becomes
less obvious, and thus they are more difficult to be identified. Three other existing
algorithms are also tested: GN, GN Fast, and GATB (their descriptions can be seen
in Sec. 2). The same parameters are used in GACD and GATB: size is 100, gens
is 100, p. is 0.8, and p,, is 0.2. The evaluation of partition results is not straight-
forward due to the difficulties in mapping clusters into communities and handling
the mixed clusters. Some effective criteria have been proposed, such as variation of
information [12] which measures the amount of information lost and gained between
two compared partitions. Besides the modularity @, the experiments use the Frac-
tion of Vertices Identified Correctly (FVIC) as a measure criterion. FVIC has been
used in many researches [5-7]. The larger the FVIC is the better the partition is.
Figure 3 shows the experimental results. We can observe that GACD always
discovers the community structure with the highest FVIC, especially when zout
is larger than 6. Correspondingly, GACD also obtains the maximum @ values in
most cases. GATB obtains the worst performances. GN seems to be more effective
when the networks have the obvious community structures (i.e. zout is smaller). It
should be noted that the Confidence Intervals (Cls) are all very tight, which reveals
that the solution distributions of all algorithms have very small variances and the

12 C. Shi et al.

A : s
-‘\-'i* v 07 \
09 N\
06 -
08 \
05
o 07 &
2 202
06 -
03
05 [—+— GNFast —+— GN Fast
-@— GATB " -8— GATB
04} —e—GACD 0.2} —e—gGacD
——GN ——GN
L i : & i i e — al
0 2 4 0 2 4 3 8 10

Fig. 3. Left: Fractions of Vertices Identified Correctly (FVICs) in the artificial networks. Both the
means and 95% confidence intervals are calculated based on the results of 100 different networks.
Right: means and 95% confidence intervals of maximum Q in the 100 different networks.

algorithms are all stable in this example. In addition, the tight Cls also indicate
the statistical significance of the results.

4.2. Real network experiment

To further test the performance of GACD, the experiments compare the four algo-
rithms on seven real social networks. As shown in Table 1, these popular networks
[4, 8, 9, 21] have different scales with the number of vertices ranging from 34 to
22963. GATB and GACD have the same parameters: p. is 0.8 and p,, is 0.2. Accord-
ing to the scale of the problems, the population sizes are 50, 50, 50, 50, 500, 500,
500, respectively; and the running generations are 20, 70, 100, 100, 500, 500, 2000,
respectively. The experimental results are the average values of 30 runs. Figure 4
shows the means and the 95% ClIs of the @ values of the four algorithms for the
seven problems. It is obvious that GACD achieves the maximum () for most prob-
lems and GATB generates the worst solutions. Although GACD is less stable for
the problems with large size, it is stable for the middle-scaled problems. Similar
to the artificial networks, the tight Cls indicate the statistical significance of the

Table 1. A comparison of the results of four different algorithms.

GN GN fast GATB GACD
Vertice Edge

Problem number number N T N T N T N T
Karate (P1) 34 78 5 1 3 1 5 1 4 1
Football (P2) 115 616 10 2 7 1 10 1 11 1
Enron (P3) 120 576 7 1 5 1 15 1 5 1
Celegansneural (P4) 297 1179 33 201 4 1 79 1 6 1
Tomecat (P5) 1607 6235 27 13233 28 4 234 657 44 86
Internet (P6) 8712 23305 — — 29 34 3631 6937 151 552
as-22july06 (P7) 22963 48436 — — 39 114 — — 193 2139

Note: N represents the number of communities; and 7" represents the running time (the unit is
second). “~” indicates that no results can be obtained in 10h.

A Genetic Algorithm for Detecting Communities in Large-Scale Complex Networks 13

09 T T T T

Q Yalues

—+—GN Fast

a2k —&— GATE i
] T GACD

ol I L L L L L
1 2 3 4 5 5 7

Problem

Fig. 4. Means and 95% of confidence intervals of modularity @ values for seven real networks.
GN has no results in P6 and P7 and GATB has no result in P7.

results. As shown in Table 1, considering the running time, GN Fast is the fastest,
and GACD is faster than the other two algorithms. It can also be found that GACD
finds more communities than GN Fast, which indicates GACD can reveal commu-
nities with small size. For the large-scale problems (e.g. P6, P7), GN is not able to
obtain a result in the reasonable time, because the algorithm needs huge memory.
GATB has the same problem. Although GATB and GACD both are based on GA,
their different genetic representations result in the different performances.

4.3. Scalability experiment

In this experiment, we test the scalability of GACD with network K —m,n [7]. The
network K —m,n is made of m identical complete graphs with n nodes, and a link
connects two adjacent complete graphs. It is clear that there are m communities
in the network. In the experiments, n is 20 and m ranges from 50 to 250 with an
interval of 20. Both GACD and GATB are tested in the experiments. The same
parameters are settled for these algorithms: the population size is fixed at 200, p.
and p,, are 0.8 and 0.2, respectively. The stopping criterion of both GACD and
GATB is the convergence of algorithms (i.e. the best and the worst individuals
have the same fitness).

The result shown in Fig. 5 is based on the average of 30 runs. Figure 5(a)
shows that the running time and generations of GACD increase stably as the scale
increases, which indicates that, for the large-scale problems, GACD requires more
generations and running time. Although the running generations and time of GATB
increase for small-scale problems, GATB converges prematurely for large-scale prob-
lems. Figure 5(b) clearly demonstrates that the running time per generation of
GACD (fixed the population size) increases linearly with the scale of problem,
whereas that of GATB increases much faster. Figures 5(c) and (d) illustrate the
quality of solutions obtained by GACD and GATB. With the increase of the scale,

14 C. Shi et al.

1000 : - - r - - - 24
—&— Time of GACD —f— GACD
900t —=— Generations of GACD —& — GATE
—& — Time of GATB -

g 800! —& - Generations of GATE g P
2 = -
§ oo g o
2 2 -
L) 2
P €00 5 15 Pid 1
g b &
& £ e
2 500 £ -
= 2 &
T am £ 10 7 1
£ H T
2 3m o ’
2 L~ -

00 L 5 e W

100 - - 4

B ——g -
TE-—f--a-— g g
1 L . . \ . N . a ! .
000 1800 2000 2500 3000 3800 4000 4500 S000 000 1500 2000 2500 3000 3500 4000 4500 5000
the number of nodes the number of nodes
(a) (b)

1 T T T T T T T 1500

0ast q

ik} q

ooo

0as

Qvalue

ikl g

a
=

the number of communities

075

a7

065
1000 1500 2000 2500 3000 3500 4000 4500 5000 ‘PI:IJD 1500 2000 2500 3000 3500 4000 4500 000
the number of nodes the number of nodes

(©) (d)

Fig. 5. Results of the scalability test. (a) is the relationship between the running time (generation)
and the problem scale. (b) is the relationship between the average running time per generation
and the scale. (c) is the relationship between the @ values obtained and the scale. (d) is the
relationship of the number of communities found and the scale.

it becomes more difficult for GATB to reveal the correct community structures,
because its @ value decreases (see Fig. 5(c)) and the number of communities booms
incorrectly (see Fig. 5(d)). In contrast, GACD finds almost all the correct numbers
of communities with high @ values. This experiment indicates that GACD is an
effective algorithm for large-scale problems, because it remains the high accuracy
with a small time cost as the problem scale increases.

4.4. Stability experiment

Note that as a stochastic algorithm, different runs of GACD in principle may yield
different partitions. To check the consistency and stability of the proposed method,
we test GACD on the e-mail network [6] with an obvious community structure
and a random network with no community patterns, each with 50 runs. Figure
6 presents the results in a matrix, which shows the fractions out of the 50 runs

A Genetic Algorithm for Detecting Communities in Large-Scale Complexr Networks 15

random Email

Fig. 6. Fraction of nodes classified in the same partition over 50 runs of the algorithm. The color
of cell(4, j) corresponds to the fraction that node i and j belong to the same partition. A pure
black dot indicates that the fraction is equal to 1 and a pure white one indicates that the fraction
is equal to 0.

that pairs of nodes are classified in the same partition. A pure black dot indicates
that the fraction is equal to 1 and a pure white one indicates that the fraction is
equal to 0. We can see that the dots in the email network matrix are approximately
either black or white. This demonstrates that GACD, as a stochastic algorithm,
is able to generate approximately the same solution in each run in the case when
a community pattern exists in the network. On the other hand, the matrix of the
random network is uniformly grey, which indicates no community structure exists
in this network and GACD returns random results in each run.

5. Conclusion

This paper proposes a GACD in large-scale networks through optimizing the mod-
ularity @. The locus-based adjacency encoding schema is used to represent a com-
munity partition. The encoding schema is suitable for the community detection
problem, and has the following advantages: (1) the search space can be distinctly
reduced; (2) the number of communities can be automatically determined; (3) the
crossover and mutation operation can be easily designed. Following the encoding
schema, effective crossover and mutation operators are designed. Extensive exper-
iments are carried out to test GACD. Compared to GN, GN Fast, and GATB,
GACD can discover the most correct community partitions and the maximum @
for the most of the artificial and real networks with less running time. GACD is
also stable although it is a stochastic algorithm. Most importantly, the experiments
show that, with the fixed and reasonable population sizes, GACD can obtain good
solutions with small time costs for the large-scale complex networks.

Recently, Fortunato and Barthelemy have mathematically showed that the opti-
mization of modularity has a resolution limit, that is, modularity optimization fails
to find small communities in large networks [7], and thus the modularity may not be
a good metric for community detection. Although using modularity as the objective

16 C. Shi et al.

function, the GA we proposed (especially the genetic representation) is flexible and
can easily adapt to other optimization objectives.

Acknowledgments

This work is supported by the National Science Foundation of China (No. 60905025,
90924029). It is also supported the National High-tech R&D Program of China
(No.2009AA047136) and the National Key Technology R&D Program of China
(No.2006BAHO03B05).

References

Arenas, A., Fernandez, A. and Gomez, S., Multiple resolution of modular structure
of complex networks, arXiv:physics/0703218v1 (2007).

Brandes, U., Delling, D., Gaetler, M. et al., On modularity clustering, IEEE Trans.
Knowl. Data Eng. 20(2) (2008) 172-188.

Bron, C. and Kerbosch, J., Finding all cliques of an undirected graph, Commun.
ACM 16 (1973) 575-577.

Clauset, A., Newman, M. E. J. and Moore, C., Finding community structure in very
large networks, Phys. Rev. E 70 (2004) 066111.

Danon, L., Diaz-Guilera A., Duch, J. and Arenas, A., Comparing community struc-
ture identification, J. Stat. Mech.: Theory Ezp. 9 (2005).

Duch, J. and Arenas, A., Community detection in complex networks using extremal
optimization, arXiv:cond-mat/0501368 (2005).

Fortunato, S. and Barthelemy, M., Resolution limit in community detection, PNAS
104(1) (2007).

Girvan, M. and Newman, M. E. J., Community structure in social and biological
networks, PNAS 99 (2002) 7821-7826.

Girvan, M. and Newman, M. E. J., Finding and evaluating community structure in
networks, Phys. Rev. E 69 (2004) 026113.

Kernigham, B. W. and Lin, S., An efficient heuristic procedure for partitioning
graphs, Bell Syst. Tech. J. 49 (1970) 291-307.

Handle, J. and Knowles, J., An evolutionary approach to multiobjective clustering,
Trans. Evol. Comput. 11 (2007) 56-76.

Marina, M., Comparing clusterings: An information based distance, J. Multivar.
Anal. 98 (2007) 873-895.

Newman, M. E. J., The structure and function of complex network, SIAM Rev. 45
(2003) 167-256.

Newman, M. E. J., Fast algorithm for detecting community structure in networks,
Phys. Rev. E 69 (2004) 066133.

Pei, J., Jiang, D. X., Zhang, A. D. et al., On mining cross-graph quasi-cliques, in The
12th ACM SIGKDD (2006), pp. 228-237.

Pizzuti, C., GA-Net: A genetic algorithm for community detection in social networks,
in PPSN (2008), pp. 1081-1090.

Pizzuti, C., Community detection in social networks with genetic algorithms, in
GECCO’08.

Pothen, A., Sinmon, H. and Liou, K-P., Partitioning sparse matrices with eigenvectors
of graphs, SIAM J. Matriz Anal. App. 11 (1990) 430-452.

Reichardt, J. and Bornholdt, S., Statistical mechanics of community detection, Phys.
Rev. E 74(1) (2006) 016110.

A Genetic Algorithm for Detecting Communities in Large-Scale Complex Networks 17

Scott, J., Social Network Analysis: A Handbook (Sage Publications, London, 2002).
Tasgin, M. and Bingol, H., Community detection in complex networks using genetic
algorithm, arXiv:cond-mat/0604419 (2006).

Watts, D. J. and Strogatz, S. H., Collective dynamics of ‘small world’ networks,
Nature 393 (1998) 440-442.

Zeng, Z., Wang, J., Karypis, G. et al., Coherent closed quasi-clique discovery from
large dense graph database, in The 12th ACM SIGKDD (2006), pp. 792-802.
http://www-personal.umich.edu/ mejn/netdata/.
http://en.wikipedia.org/wiki/Genetic_algorithm.

	1 Introduction
	2 Related Works
	3 The Genetic Algorithm for Community Detection
	3.1 Framework of the algorithm
	3.2 Genetic representation
	3.3 Genetic operators
	3.4 Discussion

	4 Experiments
	4.1 Artificial network experiment
	4.2 Real network experiment
	4.3 Scalability experiment
	4.4 Stability experiment

	5 Conclusion

