
Meta Structure: Computing Relevance in
Large Heterogeneous Information Networks

Zhipeng Huang, Yudian Zheng, Reynold Cheng, Yizhou Sun †, Nikos Mamoulis, Xiang Li
The University of Hong Kong, †Northeastern University

{zphuang, ydzheng2, ckcheng, nikos, xli2}@cs.hku.hk, †yzsun@ccs.neu.edu

ABSTRACT
A heterogeneous information network (HIN) is a graph model in
which objects and edges are annotated with types. Large and com-
plex databases, such as YAGO and DBLP, can be modeled as HINs.
A fundamental problem in HINs is the computation of closeness,
or relevance, between two HIN objects. Relevance measures can
be used in various applications, including entity resolution, rec-
ommendation, and information retrieval. Several studies have in-
vestigated the use of HIN information for relevance computation,
however, most of them only utilize simple structure, such as path,
to measure the similarity between objects. In this paper, we pro-
pose to use meta structure, which is a directed acyclic graph of
object types with edge types connecting in between, to measure the
proximity between objects. The strength of meta structure is that it
can describe complex relationship between two HIN objects (e.g.,
two papers in DBLP share the same authors and topics). We de-
velop three relevance measures based on meta structure. Due to the
computational complexity of these measures, we further design an
algorithm with data structures proposed to support their evaluation.
Our extensive experiments on YAGO and DBLP show that meta
structure-based relevance is more effective than state-of-the-art ap-
proaches, and can be efficiently computed.

1. INTRODUCTION
Heterogeneous information networks (HINs), such as DBLP [8],

YAGO [15], DBpedia [1] and Freebase [2], have recently received
a lot of attention. These graph data sources contain a vast number
of inter-related facts, and they are used to facilitate the discovery
of interesting knowledge [5, 7, 12, 13]. Figure 1 illustrates an HIN,
which describes the relationship among entities of different types
(e.g., author, paper, venue and topic). For example, Jiawei Han
(a2) has written a VLDB paper (p2,2), which mentions the topic
“efficient” (t3).

Given two HIN objects a and b, the evaluation of their relevance
is of fundamental importance. This quantifies the degree of close-
ness between a and b. In Figure 1, Jian Pei (a1) and Jiawei Han

(a2) have a high relevance score, since they have both published pa-
pers with keyword “mining” in the same venue (KDD). Relevance
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Figure 1: Illustrating an HIN.

finds its applications in information retrieval, recommendation, and
clustering [18, 22]: a researcher can retrieve papers that have high
relevance in terms of topics and venues in DBLP; in YAGO, rele-
vance facilitates the extraction of actors who are close to a given
director. As another example, in entity resolution applications, du-
plicated HIN object pairs having high relevance scores (e.g., two
different objects in an HIN referring to the same real-world person)
can be identified and removed from the HIN.

Prior works. To measure the relevance between two graph ob-
jects, neighborhood-based measures such as common neighbors
and Jaccard’s coefficient were proposed [9]. Other graph-theoretic
measures that are based on random walks between objects include
Personalized PageRank [3] and SimRank [6]. These measures do
not consider object and edge type information in an HIN. To handle
this information, the concept of meta paths has been recently pro-
posed [7, 18]. A meta path is a sequence of object types with edge
types in between. Figure 2(b) illustrates a meta path P1, which
states that two authors (A1 and A2) are related by their publica-
tions in the same venue (V ). Another meta path P2 says that two
authors have written papers containing the same topic (T ). Based
on a meta path, several relevance measures, such as PathCount,
PathSim, and Path Constrained Random Walk (PCRW) [7,18] have
been proposed. These measures have been shown to be better than
those that do not consider object and edge type information.

Meta structures. We propose a novel concept, named meta
structure, to depict the relationship of two graph objects. This is
essentially a directed acyclic graph of object and edge types. Fig-
ure 2(b) illustrates a meta structure S, which depicts that two au-
thors are relevant if they have published papers in the same venue,
and have also mentioned the same topic. A meta path (e.g., P1 or
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P2) is a special case of a meta structure. However, a meta path
fails to capture such complex relationship that can be conveniently
expressed by a meta structure (e.g., S). Our experiments also show
that meta structures are more effective than meta paths.

We provide a sound definition for meta structure. This is not
straightforward, since a meta structure can be complex. We then
present three relevance measures based on meta structures. These
measures vary in the way that the relevance is computed. Given
a meta structure S, the StructCount evaluates the number of sub-
graphs that matches S; the Structure Constrained Subgraph Ex-
pansion (SCSE) simulates the process of subgraph expansion re-
stricted on S; the Biased Structure Constrained Subgraph Expan-
sion (BSCSE) is a generalization of StructCount and SCSE.

A challenge of these new measures is their high computational
cost. In general, evaluating these measures requires a subgraph
matching operation over an HIN. In a typical HIN (e.g., YAGO)
that contains millions of objects and edges, this can be very ex-
pensive. Moreover, an application (e.g., clustering) may require
computing relevance for many object pairs. Hence, it is important
to ensure that these relevance measures can be efficiently evaluated.
To tackle this challenge, we design a recursive traversal algorithm
with two data structures (called Compressed-ETree and i-LTable)
to improve the efficiency of relevance computation.

To validate our approaches, we have performed extensive ex-
periments on YAGO and DBLP. The results show that our three
meta structure measures are more effective in expressing relevance
than meta path based approaches. Our algorithms also enable meta
structure relevance to be computed efficiently on large graphs, yield-
ing similar runtime cost to meta path measures.

The rest of this paper is as follows. We describe the HIN model
and summarize existing meta path based approaches in Section 2.
We introduce the meta structure in Section 3. We then define rele-
vance measures based on meta structures in Section 4. We develop
a recursive algorithm and two data structures to facilitate comput-
ing relevance measures in Section 5. Section 6 presents our exper-
iment results. We conclude our study in Section 7.

2. HIN AND META PATHS
Let us now review the HIN model in Section 2.1. We then sum-

marize existing meta path approaches in Section 2.2.

2.1 The HIN model
A Heterogeneous Information Network (HIN), proposed in [18],

is a directed graph G = (V,E) with an object type mapping func-
tion φ : V → L and a link type mapping function ψ : E → R,
where each object v ∈ V belongs to an object type φ(v) ∈ L, and
each link e ∈ E belongs to a link type ψ(e) ∈ R.

Figure 1 illustrates an HIN, which is also a bibliography network.
A paper object can link (or be linked) to its authors, a venue and its
related topics. Note that multiple edges of distinct types between
two objects may exist.

DEFINITION 1. HIN Schema [18]. Given an HIN G = (V,E)
with mappings φ : V → L and ψ : E → R, its schema TG is a
directed graph defined over object types L and link types R, i.e.,
TG = (L,R).

The HIN schema expresses all allowable link types between ob-
ject types. Figure 2(a) shows the schema of the HIN defined in
Figure 1, where the nodes A, P , T and V correspond to author,
paper, topic, and venue, respectively. There are also different edge
types in the schema, such as ‘publish’ and ‘write’.
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Figure 2: Schema, Meta Path, and Meta Structure.

Table 1: Relevance of Author Pairs.

Pair Meta Path Measures Meta Structure Measures
PathCount PathSim PCRW StructCount SCSE BSCSE

a2, a1 2 0.5 0.25 1 0.25 0.5
a2, a3 2 0.5 0.25 0 0 0

2.2 Meta Paths
A meta path [18], denoted by P , is essentially a path defined

on an HIN schema TG, with the types of source object and target
object on both ends of the path. For example, based on the schema
in Figure 2(a), a meta path APV PA (P1 in Figure 2(b)) describes
the relationship of two authors (source and target objects) who have
published papers at the same venue. An instance of the meta path
in the HIN of Figure 1 is a1 → p1,2 → t2 → p2,1 → a2. Here
we use lower-case letters (e.g., v1) to denote objects in an HIN and
upper-case letters (e.g., V ) to denote object types.

Given a source object os ∈ V , a target object ot ∈ V and a
meta path P , meta path relevance measures have been proposed to
evaluate the relevance between os and ot:
• PathCount [18]: the number of meta path instances of P con-
necting os and ot.
• PathSim [18]: a normalized version of PathCount, whose value
is between 0 and 1.
• PCRW [7]: the probability that a random walk restricted on P
starting from os would arrive at ot.

Researchers have recently studied the use of meta paths in search
and mining tasks, including top-k search [18], link prediction [16,
17, 20], clustering [4, 19], and recommendation [10, 11, 21]. As
pointed out in [18], meta paths can be provided by experts who are
familiar with the HIN schema. More recently, a meta path discov-
ery algorithm has been proposed [12], where users provide example
instances of source and target objects, based on which meta paths
are derived automatically.

Drawbacks of meta paths. Although meta paths have been
shown to be useful in different applications, they can only express
simple relationship between source and target objects. As illus-
trated in Figure 2(b), a complex relationship (S) between two au-
thors cannot be captured by a path between them. To solve this
problem, a straightforward way is to decompose S into two meta
paths (i.e.,P1 andP2). The relevance functions of two given author
objects are computed for P1 and P2 separately, then the relevance
based on S is a linear combination of the relevances based on P1

and P2 [7, 10, 12]. However, this simple approach overlooks the
problem that some nodes in S (e.g., P1) are shared by two or more
edges; decomposing S into two separate meta paths results in a loss
of this information. In this example, the node P1 in S refers to a
single paper. However, when S is decomposed, the corresponding
P1 nodes in meta paths P1 and P2 can mean different papers. This
can yield inaccurate relevance results. As shown in Table 1, using
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the linear combination approach, existing meta path measures re-
gard pairs (a2, a1) and (a2, a3) to have the same relevance score. In
fact, (1) a1 and a2 have papers (KDD′07 and KDD′15) both mention-
ing “mining” and published in the KDD venue; and (2) none of the
papers of a2 and a3 are published in the same venue and have the
same topic. Hence, (a2, a1) should have a higher relevance score
than (a2, a3). The linear combination approach fails to recognize
these differences, and mistakenly gives the same relevance for (a2,
a1) and (a2, a3). This calls for a better measure to handle such
complex relationship, as discussed next.

3. META STRUCTURES
The meta structure, designed to capture complex relationship be-

tween two HIN objects, is defined as follows.

DEFINITION 2. Meta Structure. A meta structure S is a di-
rected acyclic graph (DAG) with a single source node ns (i.e.,
with in-degree 0) and a single sink (target) node nt (i.e., with out-
degree 0), defined on an HIN schema TG = (L,R). Formally,
S = (N,M,ns, nt), where N is a set of nodes and M is a set of
edges. For any node x ∈ N , x ∈ L; for any link (x, y) ∈ M ,
(x, y) ∈ R.

An example meta structure S is shown in Figure 2(b). We can
see that S is a DAG, with source node ns = A1 (in-degree 0) and
target node nt = A2 (out-degree 0).

In Definition 2, a meta structure has a single source node and a
single target node. Otherwise, there exists at least one node v such
that there is no path from ns to nt that goes through v. Since v does
not affect the relationship between ns and nt, v can be removed
from S.

DEFINITION 3. Instance of Meta Structure. Given an HIN G
and meta structure S = (N,M,ns, nt), an instance s of meta
structure S on G is a subgraph of G, denoted by s = (Ns,Ms),
such that there exists a mapping for s, hs : Ns → N satisfying the
following constraints:
• Object Correspondence: for any object v ∈ Ns, its object type
φ(v) = hs(v);
• Link Correspondence: for any link (u, v) ∈ (/∈)Ms, we have
(hs(u), hs(v)) ∈ (/∈)M .

a1p1,2

v2

t2

p2,1a2

(a) Instance s1

v2

t2

a2 a2p2,1 p2,1

(b) Instance s2

Figure 3: Instances of Meta Structure for Figure 2(b).

Figure 3 illustrates two instances of meta structure S in Fig-
ure 2(b), where os = a2 for both cases.

Constructing a meta structure. In this paper, we assume that
the meta structure is given. We outline several possible solutions
that can be used to define a meta structure; their details are left for
future work.
• Develop a Graphical User Interface (GUI) that provides drawing
tools to allow meta structures to be conveniently specified.
• Use an existing graph query. For example, SPAQRL [14] is a
RDF language that allows query graphs to be expressed. Since a
meta structure can also be specified as a query graph, SPAQRL
can be used to represent a meta structure. Meta structure relevance
computation operations can also be defined on SPARQL.

• Synthesize meta paths. A meta structure can also be constructed
by synthesizing existing meta paths. For example, from two meta
paths P1 and P2 in Figure 2(b), we can form meta structure S by
combining the common nodes A1, P1, P2, A2 in P1 and P2.

The above solutions assume that the user has some knowledge
about the HIN schema and meta structures. Once these meta struc-
tures are defined, they can be stored in the system for non-expert
users to choose. Recently, an example-based algorithm has been
recently developed in [12], where a user first provides some exam-
ple pairs of relevant source and target objects. The algorithm then
discovers possible meta paths that best explain the relationship be-
tween the example pairs. It would be interesting to investigate how
this method can be extended to support automatic discovery of meta
structures.

3.1 Meta Structure Based Relevance
Given an HIN G = (V,E) and a meta structure S, we define the

relevance function for a source object os ∈ V and a target object
ot ∈ V as follows:

s(os, ot | S) =
∑

s∈S
f(os, ot | s), (1)

where f(os, ot | s) is a relevance measure defined on some instance
s of meta structure that conforms to S. Here, we use s ∈ S to
denote the set of all instances of S on G.

For example, given HIN G in Figure 1, and meta structure S
in Figure 2(b), two possible instances of S are shown in Figure 3.
Let us define f(os, ot | s) = 1 if and only if hs(os) = ns and
hs(ot) = nt. Then, s(a2, a1 | S) = 1 and s(a2, a3 | S) = 0.

We can now define the Relevance Search Problem that we intend
to study in this paper.

DEFINITION 4. Relevance Search Problem. Given an HING =
(V,E), a meta structure S = {N,M,ns, nt}, a relevance mea-
sure f(·), and a source object os ∈ V , return a ranked list of target
objects in decreasing order of s(os, ot | S), such that for any ot in
the list, s(os, ot | S) > 0.

The relevance search problem is prevalent in many applications,
such as information retrieval and recommendation. For example,
an author can use meta structure S in Figure 2(b) to find out a
list of potential co-authors. In our experiments, we also study this
problem in the context of entity resolution, ranking, and clustering.
We remark that a useful variant of this problem is to return the top-
k target objects (i.e., those whose relevance scores are among the k
highest), where k is specified by the user.

4. MEASURES ON META STRUCTURE
In this section, we show how the relevance measures f(os, ot | s)

based on a meta structure instance s can be defined. Specifically,
we first define two meta structure-based relevance measures, Struct-
Count and Structure Constrained Subgraph Expansion (SCSE). Then,
we propose a variant of SCSE named Biased Structure Constrained
Subgraph Expansion (BSCSE), which is a generalization of Struct-
Count and SCSE. Finally we analyze the recursive tree of BSCSE
in detail and give an explicit definition of f(os, ot | s) for BSCSE.

4.1 StructCount
A straightforward relevance measure is to count the number of

meta structure instances in the graph that have os (ot) as source
(target) node:

DEFINITION 5. StructCount. Given an HIN G = (V,E), a
meta structure S = (N,M,ns, nt), a source object os and a tar-
get object ot, the value of StructCount is defined as the number of

1597



instances of s ∈ S, such that os and ot are mapped to ns and nt in
S, respectively. Recall the mapping function hs(·) defined in Def-
inition 3. Formally, for the relevance measure f of StructCount,
f(os, ot | s) = 1 if there exists a mapping function hs for s, such
that hs(os) = ns and hs(ot) = nt.

Take the HIN G in Figure 1 and the meta structure S in Fig-
ure 2(b) as an example. If we set os = a2 and ot = a1, then the
StructCount of S on G is 1, i.e., StructCount(a2, a1 | S) = 1. The
reason is that there is only one instance, i.e., s1 in Figure 3 that
correctly maps a2 to A1 and a1 to A2.

We can directly use StructCount to measure relevance on HINs.
However, just as PathCount in meta path-based framework, the
value of StructCount is not bounded. This biases highly visible
objects (i.e., objects with higher degrees tend to have larger Struct-
Count values). This could be useful when we favor popular objects,
but in some applications where we favor highly relevant objects in-
stead of popular ones, such as co-author recommendation, Struct-
Count is not suitable.

4.2 SCSE
The fact that StructCount is a biased measure motivates us to de-

fine another relevance measure, named Structure Constrained Sub-
graph Expansion (SCSE). Intuitively, SCSE models the probability
that the source object os would expand to an instance of S that cov-
ers the target object ot. As the value of SCSE is between 0 and 1,
it removes the bias of highly visible nodes.

Before defining SCSE, we first need to define a concept of layer
for meta structure.

DEFINITION 6. Layer of Meta Structure. Given a meta struc-
ture S = (N,M,ns, nt), we can partition its nodes w.r.t. their
topological order in S. Specifically, we denote by S[i] ⊆ N as the
nodes of the i-th layer, and by S[i : j] (1 ≤ i ≤ j) as the nodes
from the i-th to the j-th layer. We denote by dS the number of lay-
ers, thus S[1 : dS ] = N . Note that S[·] is a partition of nodes in
N , thus for any i 6= j, S[i] ∩ S[j] = ∅.

For example, the meta structure S in Figure 2(b) has dS = 5
layers. That is, S[i] for 1 ≤ i ≤ 5 are {A1}, {P1}, {V, T}, {P2}
and {A2}, respectively.

Given an HIN G and a meta structure S, starting from a source
object os ∈ V , we can generate all possible instances s ∈ S fol-
lowing the layers of S. For example, given an HING (Figure 1) and
a meta structure S (Figure 2(b)), starting from an instance os = a2,
we can generate all the instances of s ∈ S on G by recursively ex-
panding subgraph of G as shown in Figure 4.

In order to define the process of subgraph expansion, we denote
by σ(g, i | S, G) the (i + 1)-th layer’s instances expanded from
g ∈ S[1 : i] on G. For example, if g is the graph 3(a) in Figure 4,
then σ(g, 3 | S, G) is a set containing the graphs 4(a) and 4(b)
because they are instances of S[1 : 4] expanded from g.

Based on these notations, we now turn to a more unbiased mea-
sure, defined below.

DEFINITION 7. Structure Constrained Subgraph Expansion
(SCSE). Given an HIN G = (V,E), a meta structure S, a source
object os ∈ V and a target object ot ∈ V , the SCSE of a i-th layer
subgraph g ⊆ G is defined recursively as follows:

SCSE(g, i | S, ot) =

∑
g′∈σ(g,i | S,G)

SCSE(g′, i+ 1 | S, ot)

| σ(g, i | S, G) | ,

where the base case is the instance at layer dS . SCSE(g, dS | S, ot)
= 1 if and only if there exists a mapping function hg for g such that
hg(ot) = nt. We are interested in SCSE(os, 1 | S, ot).
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Figure 4: An Example ETree.

For example, given the HIN G of Figure 1, meta structure S in
Figure 2(b), and os = a2, ot = a1, starting from os, we show the
process of subgraph expansion in Figure 4. In the last layer, i.e.,
the base case, only 5(b) correctly maps a1 to A2 (5(a) and 5(c) do
not have a1). In the first layer, we derive the value of our interest
SCSE(s2, 1 | S, a1) = 1/2+0

2
= 1

4
.

We can see that SCSE models the probability that an initial sub-
graph of G (i.e., os) would expand to an instance of S covering ot.
Obviously, the value of SCSE is between 0 and 1, so it can remove
the bias to highly visible objects.

4.3 BSCSE: A Unified Measure
From the definitions above, we observe that both StructCount

and SCSE restrict search to subgraphs that can strictly match the
meta structure. For example, StructCount measures the absolute
number of such subgraphs, while SCSE applies graph expansion
from source object os to an instance covering the target object ot.
Each measure has its own pros and cons. To make the best of both
measures and combine them in a unified framework, we propose
a variant of SCSE, named Biased Structure Constrained Subgraph
Expansion (BSCSE), defined as follows.

DEFINITION 8. Biased Structure Constrained Subgraph Ex-
pansion(BSCSE). Given an HIN G = (V,E), a meta structure S,
a source object os ∈ V and a target object ot ∈ V , the BSCSE of
a i-th layer subgraph g ⊆ G is defined recursively as follows:

BSCSE(g, i | S, ot) =

∑
g′∈σ(g,i | S,G)

BSCSE(g′, i+ 1 | S, ot)

| σ(g, i | S, G) |α ,

where for the base case, i.e., i = dS , we haveBSCSE(g, dS | S, ot)
= 1 if and only if there exists a mapping function hg for g such that
hg(ot) = nt. We are interested in BSCSE(os, 1 | S, ot).

Note that α ∈ [0, 1] is a bias factor to balance the weight be-
tween StructCount and SCSE: (1) a smaller α cares more about
the number of subgraphs that match the meta structure (if α = 0,
BSCSE reduces to StructCount); (2) a larger α focuses more on the
possibility that a random expansion can cover the target object (if
α = 1, BSCSE reduces to SCSE). On the other hand, as we have
combined StructCount and SCSE into a unified BSCSE framework,
we can focus on the computation of BSCSE only.

4.4 ETree
In this subsection, we analyze the expanding process of BSCSE,

and give an explicit expression of the relevance measure f(os, ot | s)
for BSCSE.

As we can see in Definition 8, the computation of BSCSE simu-
lates the process of subgraph expansion. If we track the expansion
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path from the original source object os to an instance s ∈ S, we can
get a recursive tree of subgraph expansion. We define this recursive
tree ETree, as follows:

DEFINITION 9. ETree. Given an HIN G, a meta structure S
and a source object os, the structure ETree is denoted asETree =
(T,L,w), where
• T : the tree node set, where each node is a subgraph of G;
• L: the edge set;
• w: a function w(·) that maps a tree node v ∈ T to its weight
w(v). The weight is defined based on v’s parent u, i.e., (u, v) ∈ L.
It considers (1) u’s weight w(u), and (2) the #children of u, i.e.,
|{v′|(u, v′) ∈ T}|. Specifically, we have

w(v) =

{
1 if v = os,

w(u)
|{v′|(u,v′)∈T}|α otherwise.

For example, givenG in Figure 1 and S in Figure 2(b), the ETree
that starts from a2 is shown in Figure 4. We can see that the root
is a2, and each edge links a subgraph to one of its one layer expan-
sion w.r.t. S. For example, a2 can either expand to {a2, p2,1} or
{a2, p2,2} w.r.t. S, and their weights are both 1/2α. The leaf nodes
(with depth dS ) contain all instances of S starting from a2.

Next, we analyze two properties of ETree, related to its height
(Property 1) and node (Property 2), which help to express our value
of interest, i.e., BSCSE(os, 1 | S, ot) (Theorem 1).

PROPERTY 1. The height of ETree is at most dS − 1.
PROOF. The root of ETree is the source object os at the first

layer of S. Suppose g1 = os, g2, · · · , gS−1, gk = v is a path from
os to a leave nodes v, each step means a one layer expansion of
subgraph. We have at most dS − 1 one layer expansions from os to
v. Thus, the height of ETree is at most dS − 1.

PROPERTY 2. Each node of ETree at depth d is an instance of
S[1 : d+ 1] and each instance s of S[1 : d+ 1] with hs(os) = ns
must be a node of ETree at depth d.

PROOF BY INDUCTION. When d = 0, the root os is only an
instance of S[1 : 1] with h(os) = ns. Suppose Property 2 holds
for d = k. Assume that u is a node of ETree at depth k + 1 and
its parent node is v. Then, u ∈ σ(v, k + 1 | S, G) as (v, u) ∈ L,
so u must be an instance of S[1 : k + 2]. On the other hand,
∀s ∈ S[1 : k + 2], s′ = s− {v ∈ s | hs(v) ∈ S[k + 2]} must be
an instance of S[k+ 1], which means s is a one layer expansion of
s′. So s is a node of ETree at depth k + 1.

THEOREM 1. Given a meta structure S = (N,M,ns, nt), a
souce object os ∈ V and a target object ot ∈ V ,

BSCSE(os, 1 | S, ot) =
∑

s∈S, hs(ot)=nt

w(s). (2)

PROOF. Suppose s is an instance of S and g1 = os, g2, . . .,
gdS = s is the path of ETree from os to s. According to the recur-
sive definition of BSCSE,

f(os, ot | s) =
dS−1∏
i=1

1

| σ(gi, i | S, G) |α , if hs(ot) = nt.

According to Properties 1 and 2, s must be a leaf node at depth
dS−1, and P must be a path of ETree from root os to s. According
to the definition of w, w(s) =

∏dS−1
i=1

1
| σ(gi,i | S,G) |α , then we

can finally derive

BSCSE(os, 1 | S, ot) =
∑

s∈S, hs(ot)=nt

w(s).

Based on the proof of Theorem 1, we know that the relevance
measure f(os, ot | s) for BSCSE is:

f(os, ot | s) =

{
w(s) if hs(ot) = nt,

0 otherwise.

Take the HIN in Figure 1 for example, we show the relevance
values for two pairs of authors with our three measures in Table 1.
We can see that our three meta structure relevance measures can
better handle complex relationship, i.e., the relevance score of (a2,
a1) is larger than (a2, a3). This is because the meta structure can
make use of the information of common nodes in different meta
paths.

5. COMPUTING BSCSE
As we know, BSCSE is a generalization of StructCount and SCSE.

Thus in this section, we study how to efficiently perform relevance
search with BSCSE (also works for StructCount and SCSE) w.r.t.
a source object os, based on a given S. We first propose a traver-
sal algorithm on ETree (Section 5.1), and then further improve its
efficiency by proposing two optimizations (Section 5.2).

5.1 Traversal Algorithm
In order to calculate BSCSE(os, 1 S, G), an initial idea is to

visit all the leaf nodes of ETree and accumulate the weights of all
s ∈ S for which hs(ot) = nt. Based on this, we develop a recur-
sive algorithm, called Traversal (Algorithm 1) to compute BSCSE.
It first checks whether the base case is caught, i.e., if g is already an
instance of S. In this case, the instance g with its weight w are re-
turned (steps 1-2). The rest of the algorithm consists of two phases.
The first phase (steps 3-11) calculates the set σ(g, layer | S, G)
and the second phase (steps 12-17) recursively calls the algorithm
for each g′ ∈ σ(g, layer | S, G) and accumulates the results.

In the first phase, for each node n at the (i + 1)-th layer of S,
we consider all nodes n′ such that (n′, n) ∈M , check its instance
object g[n′] and calculate possible instance objects w.r.t. node n
(steps 6-8). Then, we calculate the instance objects w.r.t. n that
satisfy all the dependency constrains (step 9). Finally, we compute
the Cartesian product over the possible instances of each node at
layer (i+1), and derive the set of possible expansions σ (step 11).

In the second phase, we first record the weight w′ for layer (i+
1) according to Definition 9 (step 12). Then, for each possible
expansion, we expand the subgraph g to g′ (step 15) and recursively
call the algorithm on the expanded subgraph g′ to get all instances
of S and their corresponding weights (step 16).

For example, suppose we are traversing the ETree in Figure 4
based on the meta structure S in Figure 2(b). We set layer as 3 and
g as the graph in 3(b). In the first phase, there is only one meta node
n at the 4th layer, i.e., n = P2, and n depends on two nodes, i.e., V
and T . Then, we can see that g[V ] = v3, and it has two neighbors
p2,2 and p3,2; g[T ] = t3, and it has two neighbors p2,2 and p3,1.
We get C = {{p2,2, p3,2}, {p2,2, p3,1}}, and Ins[P2] =

⋂
C =

{p2,2}, which means that there is only one possible instance object
for P2. At the second phase, we have w′ = w because there is only
one possible expansion. We then compute the expanded subgraph
g′ = g ∪ {p2,2}, and recursive call Traversal(G,S, g′, w′, 4).

5.2 Optimizations
We propose two optimizations on the traversal algorithm to boost

the efficiency. First, we devise a compressed representation of
ETree to reduce the redundancy. Then, we propose an index struc-
ture to further accelerate the process of online query.
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Algorithm 1: Traversal Algorithm
Input: HIN G, meta structure S, subgraph g, weight w and layer id.
Output: all possible instances of S and their weights.

1 if layer == dS then
2 return {< g,w >};
3 Initialize Ins[·];
4 for n ∈ S[layer + 1] do
5 C ← ∅;
6 for (n′, n) ∈M do
7 F ← {v | ψ(g[n′], v) = (n′, n)};
8 C ← C ∪ {F};
9 E ←

⋂
C;

10 Ins[n]← E;

11 σ ←
∏
n∈Ins Ins[n];

12 w′ = w
|σ|α ;

13 rtn← ∅;
14 for combination ∈ σ do
15 g′ ← g ∪ combination;
16 I ← Traversal(G,S, g′, w′, layer + 1);
17 rtn← rtn ∪ I;

18 return rtn;
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Figure 5: A Compressed-ETree.

Table 2: 3-LTable.

key value
<v1, t1> <a1, 1.0>

<v2, t2> <a1, 0.5>
<a2, 0.5>

<v3, t3> <a2, 1.0>
<v3, t4> <a3, 1.0>
<v4, t3> <a3, 1.0>

Compressed-ETree
According to Property 2, at an internal node v of ETree with depth
d, we need to maintain an instance of S[1 : d + 1]. However, to
further expand v, we do not necessarily need the information of the
whole instance. Instead, we just need to maintain a subset of v on
which the layers of S after d have dependencies. For example, in
graph 2(a) (Figure 4), we do not need to maintain the whole graph;
instead, {p2,1} is enough to represent it as the rest of meta structure
only depends on node P1.

Based on this idea, we develop a compressed structure, called
Compressed-ETree, which is shown in Figure 5. We can see that it
is more concise compared to ETree (Figure 4). Thus by traversing
Compressed-ETree instead of ETree, we can reduce the computa-
tion cost and required space for each tree node.

To derive the Compressed-ETree , intuitively we have to pre-
compute and maintain the necessary nodes for each layer of meta
structure, which we call the dependency set. We use a map struc-
ture to store the nodes that need to be maintained at each layer. The
details are shown in Algorithm 2. Specially, for each node n′ in S,
we first get the maximal layer that the node can reach, i.e., depend-
ing on n′ (step 3). Then we add n′ to the corresponding layers of
D (steps 4-5). After all nodes have been added to D, we can get
the set of nodes we need to maintain at layer i in D[i]. Take S in
Figure 2(b) as an example; the dependency set D[i] for i = 1 to 5
is {A1}, {P1}, {V, T}, {P2} and {A2}, respectively.1

By considering the dependency set D[∗], we can improve the
performance by traversing Compressed-ETree instead of ETree. The
algorithm is slightly different from Algorithm 1. At step 16, instead

1Note that D[i] is not necessarily equal to S[i], as we do not require that
each edge must point to the node in the next layer.

Algorithm 2: Pre-compute Dependencies
Input: meta structure S.
Output: D[∗], where D[i] is a set of nodes we need to

maintain in Compressed-ETree at layer i.
1 Initialize D[i] = ∅ for i = 1, 2, . . . , dS ;
2 for n′ ∈ N do
3 d← max(n′,n)∈M layer(n);
4 for i = layer(n′) to d do
5 D[i] = D[i] ∪ {n′};

6 return D;

of calling it recursively on a whole subgraph g′, we can just main-
tain a subset of g′ which is in the dependency set D[layer + 1].

i-LTable
Compressed-ETree can reduce the computation for each node of
ETree, but it still has the same number of tree nodes. Especially
there is much redundancy in the computation if we have a batch
of queries to answer. For example, when computing BSCSE for
two source objects a2 and a1 in Figure 1, we have to traverse two
Compressed-ETrees for a2 and a1, respectively. When traversing
one for a2 (Figure 5), we visit a sub-tree with 3(a) as root; mean-
while, we would visit the same sub-tree while traversing the other
Compressed-ETree for a1. This is because the last two layers of
the meta structure S[4, 5] only depend on S[3] (instead of S[1, 3]).

By considering this idea, we propose a novel data structure called
i-LTable, which stores all leaf nodes for a sub-tree of the Compressed-
ETree in advance. Once we traverse to the i-th layer, we can get the
information of leaf nodes directly from the i-LTable, which saves
the search time from the (i+ 1)-th to the last layer.

Given an S, the i-LTable w.r.t. layer i is a data structure that maps
each node instance v of Compressed-ETree at layer i to all the node
instances in the last layer (with v as an ancestor). To be specific, the
keys of i-LTable are the instances of the stored nodes in D[i], and
the values are the distributions of weights over all possible target
objects. Given S in Figure 2(b), consider the Compressed-ETree
in Figure 5, the corresponding 3-LTable is shown in Table 2. For
example, as D[3] = {V, T}, and the target node nt = A2, the
keys of 3-LTable are pairs of venues and topics and the values are
distributions of weights on authors.

Next we study how to build an i-LTable for a given meta structure
S offline. First, we address the selection of i, i.e., which layer the
i-LTable should be built on, and then we deal with how to build
indexes offline and conduct queries online.
Choosing An Appropriate i. If we have built i-LTable on the i-
th layer, then we only need to search the Compressed-ETree for
the top i layers. Intuitively the choice of i is a trade-off between
time and space. For a smaller i, the number of nodes that needs
to be visited is smaller, resulting in efficient processing. However,
the number of reachable target objects is large, resulting in larger
space requirement. We next list three heuristic methods on how
to select i: (1) MinKey: choose i with minimal number of possible
key values; (2) Half : choose i = 1

2
·dS ; (3) Min: choose a minimal

i with space budget constraint.
Building Indexes Offline. After choosing an i, we can start to
build the i-LTable, and the details are shown in Algorithm 3. After
retrieving the nodes in D[i], we can construct i-LTable by travers-
ing the sub-trees of Compressed-ETree for each possible key.
Online Query Processing. Once we have built i-LTable, we can
speed up the process of online query. The algorithm is similar to
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Algorithm 3: Building i-LTable
Input: HIN G, meta structure S, dependency set D, layer i.
Output: i-LTable for S.

1 initialize i-LTable;
2 for key ∈

∏
n∈D[i]{v ∈ V | φ(v) = n} do

3 i-LTable[ key ]← Traversal(G,S, key, 1.0, i);
4 return i-LTable;
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Figure 6: Meta Paths and Meta Structures Used in Experiments.

Algorithm 1, except that it only needs to traverse the Compressed-
ETree for the top i layers. Then the results can be retrieved directly
from i-LTable instead of recursively searching the sub-trees.

6. EXPERIMENTS
We now discuss the experiment results. Section 6.1 describes the

experiment setup. We then examine the effectiveness (Section 6.2)
and efficiency (Section 6.3) of different relevance measures.

6.1 Setup
We examine two HIN datasets, namely YAGO and DBLP.

YAGO [15] is a large-scale knowledge graph derived from Wikipedia,
WordNet and GeoNames. We use its “CORE Facts”, i.e., YAGO-
Core [12], which consists of 4 million facts (edges) of 125 types,
made from 2.1 million objects. These entities have 365,000 types.
DBLP is a bibliographic network. It contains four types of objects,
i.e., paper, author, venue and topic. We use a subset of DBLP,
i.e., DBLP-4-Area [12], containing 5,237 papers, 5,915 authors,
18 venues, and 4,479 topics from 4 areas: database, data mining,
machine learning and information retrieval. These objects are con-
nected by 51,377 edges.

We compare our relevance metrics (i.e., StructCount, SCSE, and
BSCSE) with three representative meta path measures (i.e., Path-
Count [18], PCRW [7], and PathSim [18]). These measures employ
the meta paths and structures shown in Figure 6. We implement the
experiments in C++ on an 8GB memory Mac OS X machine.

6.2 Effectiveness
We compare the quality of relevance measures in three applica-

tions: entity resolution (Section 6.2.1), ranking (Section 6.2.2) and
clustering (Section 6.2.3). We then study the properties of meta
structures in Section 6.2.4 and Section 6.2.5.

6.2.1 Entity Resolution
We first perform an entity resolution (ER) task to find pairs of

objects in YAGO that refer to the same entity. For example, the two
objects Barack_Obama and Presidency_Of_Barack_Obama refer
to the same person. Identifying such pairs helps to “clean” an HIN
by deduplicating its entries.

We manually label a small subset of data. We look for (human)
object pairs that both have marriage relationship to an object. In
total, we get 3020 such pairs, containing 4518 different persons.
We consider these as our test data, and manually label their ground
truth. We got 44 positive samples (i.e., each object pair refers to
the same person), while the remaining 2976 ones are negative.

We use the meta structure S and two meta paths (P1, P2) in
Figure 6(a) to compute the relevance. For each person (out of 4518
ones), we set it as the source object in S, P1, P2, and use them
to find target objects, which can be duplicates. Then, we get all
the (target) persons such that the relevance value with respect to
the source object is larger than zero. The larger the relevance, the
more likely the object pairs refer to the same person. For each
relevance measure, we vary the threshold for the relevance values
of all returned pairs and plot the Precision-Recall Curve. We then
compute the the area under the curve, i.e., AUC.

The AUC values for different metrics are shown in Table 3. Ob-
serve that meta structure based measures are more effective than the
meta path ones. This is because S is more expressive than a single
meta path (i.e., (P1 or P2). Here, S limits the results to those per-
sons who are married to the same person and affiliated to the same
organization, which cannot be represented by P1 or P2 alone.

We then study the effectiveness of the linear combination of the
two meta paths. The relevance is computed as s = β · s1 + (1 −
β) · s2, where s1 and s2 is the relevance derived by P1 and P2

respectively. As shown in Figure 7(a), a linear combination of two
meta paths is better than using P1 or P2 alone. However, as it does
not consider the common nodes in the meta paths (i.e., nodes P1

and P2), its AUC value, based on the the optimal β, is just 0.2920,
and is still worse than SCSE (i.e., 0.5640) (Table 3).

We also examine how parameter α influences the effectiveness
of BSCSE. As shown in Figure 7(b), its AUC is stable for a wide
range of α values. When α = 1, BSCSE has the best result. This
is consistent with our expectation, because entity resolution favors
highly relevant objects, instead of popular ones.

We next show the top-10 relevant pairs for PCRW and SCSE
in Table 4 (for PCRW, we use a linear combination with optimal
β, achieving the best AUC value). The pairs in bold are negative
samples. We see that PCRW has three negative samples in the top-
10 pairs. For example, the reason that Sally Hayfron and Grace
Mugabe appear in the result is that they have been married to the
same person, and as the weight for the meta path P1 dominates the
other (P2), this pair has a high score even though these two persons
do not satisfy P2. This explains why meta path-based measures
have lower AUC values than meta structure-based ones.

6.2.2 Ranking Quality
In our second effectiveness experiment, we perform a task of

relevance ranking as follows. We first label the relevance of each
pair of venues in DBLP using three levels: 0 for ‘non-relevant’,
1 for ‘somewhat-relevant’ and 2 for ‘very-relevant’. We consider
both the level and the scope of the venues while labeling. For ex-
ample, the relevance score for SIGMOD and VLDB is 2 as they
are highly relevant. We use the meta structure S and the two meta
paths P1, P2 shown in Figure 6(b). Then, we evaluate the quality
of the returned ranked list w.r.t. different measures using Normal-
ized Discounted Cumulative Gain (nDCG), which is a commonly
used measure in ranking quality, and the larger, the better.

The results are shown in Table 3. We can observe that the first
meta path P1 = V PAPV yields better results than the second
meta path P2 = V PTPV on all the three meta path-based mea-
sures. However, meta structure-based measures perform better than
meta path-based measures on the whole.
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Table 3: Qualities on Three Experiments: Entity Resolution-ER (Section 6.2.1), Ranking (Section 6.2.2), and Clustering (Section 6.2.3).

Experiment Metric
P1 P2 Linear Combination (Optimal β) S (BSCSE∗: Optimal α)

PathCount PCRW PathSim PathCount PCRW PathSim PathCount PCRW PathSim StructCount SCSE BSCSE∗

ER AUC 0.1324 0.0120 0.0097 0.0003 0.0014 0.0002 0.2898 0.2606 0.2920 0.5556 0.5640 0.5640
Ranking nDCG 0.9004 0.9047 0.9083 0.8224 0.8901 0.8834 0.9004 0.9100 0.9083 0.9056 0.9104 0.9130

Clustering NMI 0.4932 0.6866 0.6780 0.3595 0.6866 0.5157 0.4932 0.6866 0.6780 0.3202 0.8065 0.8065
Purity 2.75 3.50 3.00 2.50 3.50 2.75 2.75 3.5 3.5 2.25 3.50 3.50
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Figure 7: Varying Parameters on Different Measures (Entity Resolution).
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Figure 9: Varying Parameters on Different Measures (Clustering), with Metrics NMI (a)(b) and Purity (c)(d).

Table 4: Top-10 Relevant Pairs in YAGO.

Rank PCRW SCSE
1 Presidency of Corazon Aquino, Corazon Aquino Ronald Reagan, Presidency of Ronald Reagan
2 Corazon Aquino, Presidency of Corazon Aquino Rudy Giuliani, Political positions of Rudy Giuliani
3 Sally Ponce Enrile, Salvacion Sally Santiago Ponce Enril Political positions of Rudy Giuliani, Rudy Giuliani
4 Presidency of Cristina Fernandez de Kirchner, Cristina Fernandez de Kirchner Presidency of Corazon Aquino, Corazon Aquino
5 Sally Hayfron, Grace Mugabe Presidency of Nestor Kirchner, Nestor Kirchner
6 Edu Manzano, Ralph Recto Presidency of C. F. de Kirchner, C. F. de Kirchner
7 Gloria Macapagal Arroyo, Presidency of Gloria Macapagal Arroyo Presidency of Ronald Reagan, Ronald Reagan
8 Presidency of Fidel V. Ramos, Fidel V. Ramos Rise of Neville Chamberlain, Neville Chamberlain
9 Presidency of Gloria Macapagal Arroyo, Gloria Macapagal Arroyo Outerbridge Horsey (senator), Outerbridge Horsey

10 Marguerite of Lorraine, Marie de Bourbon Vice Presidency of Al Gore, Al Gore

We also compare with a linear combination of the two meta
paths. We vary the weight β ∈ [0, 1] to trade-offP1,P2, and record
the nDCG values of the ranking results. The results are shown in
Figure 8(a). Among meta path-based measures, PCRW performs
better than PathCount and PathSim. We can see that the quality
gets better as β increases. This means that the linear combination
of two meta paths cannot get better results than P1 itself.

We further study how parameter α influences the ranking quality
of BSCSE. We vary α ∈ [0, 1] and observe the quality of returned
ranked list. As shown in Figure 8(b), BSCSE achieves the best
nDVG value when α = 0.8. In Table 3 we see BSCSE with optimal
α (0.8) outperforms the linear combination of meta paths.

6.2.3 Clustering Quality
Similar to the experiment above, given the same meta structure

and meta paths in Figure 6(b), in order to further evaluate the qual-

ity of relevance values between venues, we perform a task of clus-
tering the venues in DBLP. To be specific, we apply K-means on the
derived relevance matrixes w.r.t. different measures. We use two
evaluation metrics, Normalized Mutual Information (NMI) and Pu-
rity (both the larger, the better). The results are shown in Table 3.
We can see that SCSE has the best performance over all measures.

We further compare with a linear combination of these two meta
paths. We vary the weight β ∈ [0, 1] to trade-offP1,P2, and record
the clustering accuracy. The results are shown in Figures 9(a)(c). It
can be seen that PCRW performs better than PathCount and Path-
Sim, and its performance does not vary much with β. Again, from
Table 3 we observe that a linear combination of two meta paths
cannot get better results than P1 itself. No matter what weight we
give, the clustering accuracy of meta path-based measures is no
better than SCSE.
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Figure 10: Meta Structures with Different Semantic Meaning.

Table 5: Top-5 Relevant Actors to Clint Eastwood with Different S.

S1 S2 S3 S4
Clint Eastwood Clint Eastwood Clint Eastwood Clint Eastwood
Sondra Locke Sondra Locke Matt Damon Shirley MacLaine

Gene Hackman Meryl Streep Chief Dan George Robert Duvall
Laura Linney Jessica Walter Cecile de France Richard Burton

Marcia Gay Harden John Larch Sondra Locke Fred Ward

We also study how α influences BSCSE in the task of clustering.
The results are shown in Figures 9(b)(d). We can see that the clus-
tering accuracy gets better with a larger α. When α = 1, we have
the best clustering accuracy.

We observe that in different tasks (e.g., ranking and clustering),
BSCSE achieves the best performance at different values of α. This
leads to the question of how to set α. We can set α = 1 for sim-
plicity as SCSE (i.e., α = 1) has pretty good performances over
all the tasks we perform. On the other hand, α can be set as a user
input, or can be tuned with training data in the experiments.

6.2.4 Semantics of Meta Structures
Different meta structures imply different meanings. We perform

a case study on YAGO to show that, with different meta structures,
we can find totally different top-k results w.r.t. different relations.
Specifically, we query a famous actor and director Clint Eastwood
in YAGO with four different meta structures in Figure 10 to find
top-5 relevant actors to him.

We make some analysis based on the observations of the top-5
results in Table 5: (1) Sondra Locke ranks very high in the results
of S1 and S2 , but has low relevance in the results of S3 and S4.
This is because S1 and S2 are shorter, and they tend to find out ac-
tors who directly collaborated with Eastwood, e.g., Sondra Locke.
On the other hand, S3 and S4 are longer, so they tend to find out
famous actors like Matt Damon and Shirley MacLaine. (2) Matt
Damon ranks high with S3 because he collaborated a lot with the
actors and creators who had participated in the films directed by
Eastwood. (3) Similarly, Shirley MacLaine ranks high with S4 be-
cause he collaborated a lot with the directors and creators who had
participated in the films Eastwood acted in.

We can conclude that, with different meta structure, the top-5
results are different. Although S1 and S2 have the same length,
S1 and S2 are different as S2 only consider those films with East-
wood being the director and actor at the same time, while S1 has
looser constraint. Although S3 and S4 both have dS = 5, S3 only
considers those films he directs and S4 only considers those films
that he acts in. We want to show that, as meta structure is more
complex than meta path, a user can use meta structures with subtle
differences to express different relevances.

6.2.5 Effect of Meta Structure Sizes
We study the impact of different sizes of a meta structure. Espe-

cially, we study whether the following hold: does larger size (i.e.,
dS ) leads to better quality for a meta structure?

To test the effectiveness of different sizes, we use concatena-

Table 6: Influence of dS on Ranking Quality.

Measure
StructCount SCSE

S S2 S4 S S2 S4

nDCG 0.9055 0.7767 0.7332 0.9104 0.8026 0.7933

tions of the meta structure S in Figure 6(b), i.e., S, S2 and S4.
Intuitively, with S, two venues are relevant if they share the same
authors and the same topics. However, with S2 and S4, the rele-
vance becomes more subtle as the meta structures involve remote
objects. When the size tends to infinity (∞), the top-k results tend
to be the global result. We also compare the ranking quality (i.e.,
nDCG) similar to Section 6.2.2. It is shown in Table 6 that a meta
structure with larger size gives worse ranking result.

6.3 Efficiency
We perform two experiments to study the efficiency of the algo-

rithm and two optimization techniques proposed in Section 5. For
ease of presentation, we denote as follows:
• Traversal+: the Traversal algorithm with Compressed-ETree op-
timization (without index);
• Traversal++: the Traversal+ with index built on it.

In this section, we first compare the executing time of Traver-
sal, and Traversal+ with meta path measures. Then, we study the
impact of different indexes (i.e., i) in Traversal++.

6.3.1 Comparison with Meta Path Measures
We start by comparing the runtime of BSCSE with that of meta

path measures. On DBLP, we ran 18 queries using the meta struc-
ture and meta paths in Figure 6(b), setting source objects as dif-
ferent venues. In addition, we ran 1000 queries starting from ran-
domly selected authors using the meta structure and meta paths in
Figure 2(b). On YAGO, we ran queries over 1000 randomly se-
lected persons based on the meta structure and meta paths in Fig-
ure 6(a). We record the average executing time of each bundle of
queries as shown in Table 7. We can see that meta path-based mea-
sures have different runtime performances for different meta paths.
For example, a P2 query for venues takes 20 times more than a
P1 query for all the three meta path-based measures. Observe that
BSCSE is not worse than meta path-based measures in terms of
efficiency. In addition, the Compressed-ETree optimization can
slightly boost the efficiency as it can reduce the redundancy in the
representation.

To further explain this phenomenon, we analyze the average num-
ber of instances by the different meta structures and meta paths. As
shown in Table 8, the number of instances is proportional to the ex-
ecuting time. We can also see that the number of instances of meta
structures are small because they are more restrictive compared to
meta paths.

6.3.2 Effect of i-LTable
We show the time for building the i-LTable offline for different

values of i in Figure 11(a). We can see that, as i increases, the
time for building the i-LTable decreases. Particularly, if we select
i = 1

2
dS = 3, we need 10s for building i-LTable.

Figure 11(b) shows the time for online queries using the i-LTable
for different values of i (i = 5 means we do not use i-LTable as
dS = 5). We can see that an i-LTable greatly reduces the cost of
online queries. Particularly, if we select i = 1

2
dS = 3, the Traver-

sal++ algorithm needs only 0.5ms compared to 2.45ms required by
Traversal+.
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Table 7: Execution Time for Different Measures.

S (time unit)
P1 P2 S

PathCount PCRW PathSim PathCount PCRW PathSim Traversal Traversal+

venue (s) 0.055 0.065 0.054 1.187 1.181 1.188 0.528 0.516
author (10−2s) 3.06 2.88 2.95 1.80 1.70 1.71 2.54 2.45
person (10−3s) 2.533 2.454 2.163 7106 7086 7426 3.629 3.629

Table 8: Number of Instances.

P1 P2 S
venue 5150.7 118893.2 7254.8
author 5949.0 3602.3 766.6
person 1.615 3610.3 1.259
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Figure 11: Influence of i on Build and Execution Time.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we introduce a notion of meta structure, which

is a powerful extension of meta path. Based on meta structure,
we introduce a relevance framework on heterogeneous information
networks, which can express complex relevance of two objects. In
particular, we define two relevance measures under this framework,
i.e., StructCount and SCSE. SCSE simulates the process of sub-
graph expansion, and it can reduce the bias to highly visible objects.
Moreover, we define a unified measure named BSCSE, which com-
bines StructCount and SCSE into the same framework. For effi-
ciently computing BSCSE, we propose a recursive algorithm along
with two optimizations (Compressed-ETree and i-LTable) to boost
the efficiency. Experiments on real datasets demonstrate the effec-
tiveness and efficiency of our methods.

In the future, we will examine methods for automatically learn-
ing meta structures from the knowledge base. We will also study
the use of meta structure in different applications, such as citation
recommendation and paper reviewer assignment.
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