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Recent studies have demonstrated the power of modeling re-
al world data as heterogeneous information networks (HINs)
consisting of multiple types of entities and relations. Unfor-
tunately, most of such studies (e.g., similarity search) confine
discussions on the networks with only a few entity and rela-
tionship types, such as DBLP. In the real world, however, the
network schema can be rather complex, such as Freebase. In
such HINs with rich schema, it is often too much burden to
ask users to provide explicit guidance in selecting relation-
s for similarity search. In this paper, we study the problem
of relation similarity search in schema-rich HINs. Under our
problem setting, users are only asked to provide some sim-
ple relation instance examples (e.g., (Barack Obama, John
Kerry) and (George W. Bush, Condoleezza Rice)) as a query,
and we automatically detect the latent semantic relation (L-
SR) implied by the query (e.g., “president vs. secretary-of-
state”). Such LSR will help to find other similar relation in-
stances (e.g., (Bill Clinton, Madeleine Albright)). In order
to solve the problem, we first define a new meta-path-based
relation similarity measure, RelSim, to measure the similar-
ity between relation instances in schema-rich HINs. Then
given a query, we propose an optimization model to effi-
ciently learn LSR implied in the query through linear pro-
gramming, and perform fast relation similarity search using
RelSim based on the learned LSR. The experiments on real
world datasets derived from Freebase demonstrate the effec-
tiveness and efficiency of our approach.

1 Introduction

Heterogeneous information networks (HINs) have been used
recently for modeling real world relationships in many ap-
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fined to networks with only a few entity and relation types,
such as the DBLP network, with four entity types: Paper, V-
enue, Author and Term, and a few relation types connecting
the entity types. However, in the real world, HINs can often
be with more sophisticated network schemas, i.e., schema-
rich HINs, containing many more entity types and relation
types. For example, the Freebase network' contains 1,500+
types of entities, such as Organization, Profession, Book,
Musician, Film, and Location, and 35,000+ types of rela-
tions among the entity types, such as “is president of” and
“is secretary-of-state of” [5].

Many research problems arise with schema-rich HINSs.
Even the basic functions like similarity search, will need
to be re-examined. In HINs with simple schema, explicit
guidance for similarity search, can be easily provided by a
user to represent her query intent or interest, e.g., finding
similar authors publishing papers at the same venue can be
specified as a composite relation Author-Paper-Venue-Paper-
Author. However, in schema-rich HINS, it is unrealistic to
ask users to provide relations explicitly since there are too
many possible meaningful ones to be chosen from a complex
network schema, especially when the relations needed are
sophisticated.

In this paper, we consider the problem of relation sim-
ilarity search in schema-rich HINs. In our problem setting,
users are asked to just provide a set of simple examples,
e.g., (Barack Obama, John Kerry) and (George W. Bush,
Condoleezza Rice), as a query, and we automatically detect
the latent semantic relation (LSR) in the query for the user-
s. With such LSR, other similar relation instances satisfying
the same LSR (e.g., “president vs. secretary-of-state,” such
as (Bill Clinton, Madeleine Albright)) are found, and we use
the new examples for learning a better LSR iteratively.

As shown in Fig. 1, our goal is to find similar relation
instances based on the query @@ = {(Barack Obama, John
Kerry), (George W. Bush, Condoleezza Rice)}. However,
diverse LSRs are implied by the query. For example, except
for LSR “president vs. secretary-of-state,” (Barack Obama,
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Figure 1: Relation similarity search in schema-rich HIN. Left: a user query; middle: different query-based meta-paths associated with
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John Kerry) also satisfies LSR “president vs. presidential
candidate.” Only in the semantic relation of “president vs.
secretary-of-state,” (Barack Obama, John Kerry) and (Bill
Clinton, Madeleine Albright) are similar. The interesting
question is how to measure the similarity between relation
instances by distinguishing diverse LSRs?

Relation similarity has been demonstrated its effective-
ness for analogy detection, relation extraction, etc.. Howev-
er, the existing relation similarity measures [2, 18] do not
distinguish the diverse LSRs implied in a relation instance.
Besides, there is no trivial way to apply entity similarity mea-
sures [12, 16] to measuring relation similarity. For exam-
ple, “Barack Obama” is similar to “Bill Clinton” (president
of United States), and “John Kerry” is similar to “John F.
Kennedy” (Democratic). But (Barack Obama, John Kerry)
is not similar to (Bill Clinton, John F. Kennedy) according
to the LSR “president vs. secretary-of-state.”

To tackle the problem, we first define a novel meta-
path-based relation similarity measure, RelSim, to measure
the similarity between two relation instances based on the
LSR: two relation instances are more similar when shar-
ing more important (heavily weighted) meta-paths. Then we
provide an efficient solution to finding similar relation in-
stances based on RelSim in schema-rich HINs for the us-
er query. Given a query, before learning its LSR, we gen-
erate a query-based network schema, e.g., this schema can
reduce the number of entity types from 1,500+ in Freebase
to five types, which substantially facilitates the subsequen-
t learning process. The most likely LSR is thus efficiently
learned based on an optimization model through linear pro-
gramming, which can best explain the semantic meaning in
the query. The experimental results on datasets derived based
on Freebase demonstrate the effectiveness and efficiency of
our approach.
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Our contributions can be highlighted as follows:

o We study relation similarity search in schema-rich het-
erogeneous information networks, a new but very im-
portant problem due to its broad applications (e.g., anal-
ogy detection).

e We define a novel relation similarity measure, RelSim,
to compute the similarity between relation instances in
HIN.

e We present a framework for relation similarity search
in schema-rich HINs, mainly including latent semantic
relation representation and learning, and an efficient
search algorithm.

2 Schema-Rich HINs

In this section, we introduce the schema-rich HIN and some
relevant concepts.

DEFINITION 1. A heterogeneous information network
(HIN) is a directed graph G = (V, E) with an entity type
mapping ¢: V — A and a relation type mapping : E — R,
where V denotes the entity set and E denotes the link set, A
denotes the entity type set and ‘R denotes the relation type
set, and the number of entity types |A| > 1 or the number of
relation types |R| > 1.

The network schema provides a high-level description
of a given heterogeneous information network.

DEFINITION 2. Given a heterogeneous network G = (V, E)
with the entity type mapping ¢: V' — A and the relation type
mapping V: E — R, the network schema for network G,
denoted as T, = (A, R), is a directed graph with nodes as
entity types from A and edges as relation types from R.



A schema-rich HIN is an HIN with the network schema
that contains relatively larger number of types of entities and
relations, compared to that of schema-simple HIN. Freebase
and DBpedia are examples of schema-rich HINs, which
contains at least thousands of types of entities and relations.
In contrast, DBLP with simple network schema contains four
types of entities and several types of relations between these
entity types.

Another important concept in heterogeneous informa-
tion network is meta-path [16], proposed to systematically
define relations between entities at the schema level.

DEFINITION 3. A meta-path P is a path defined on the
graph of a network schema T = (A, R), and is denoted in
the form of A4 By q, By B Apy 1, which defines a
composite relation R = Ry e Rye---e Ry between types Aq
and Ay 11, where e denotes relation composition operator,

and L is the length of P.

For simplicity, we also use type names connect-

ed by “—” to denote the meta-path when there exist
no multiple relations between a pair of types: P =
(A; —Ag —---— Ap4y). For example, in the Freebase

network, the composite relation two Person co-founded an

o . found o
Organization can be described as Person —=% Organization

found ~* oo . -
"€ Person, or Person-Organization-Person for simplicity.

We say a path p = (v1 — vy ...vp41) between vy and vy 4
in network G follows the meta-path P, if VI, ¢(v;) = A; and
each edge e; = (v;,v;41) belongs to each relation type R;
in P. We call these paths as path instances of P, denoted as
peP. Rl_1 represents the reverse order of relation R;.

3 Schema-Rich HIN-Based Relation Similarity Search

We study the relation similarity search problem, that is,
finding similar relation instances for a user query in schema-
rich HINs. Given a small set of relation instances as an
example query (e.g., (Larry Page, Sergey Brin) and (Jerry
Yang, David Filo)), the system will first discover its latent
semantic relation (LSR) (e.g., “co-founders’) and then output
similar relation instances (e.g., (Bill Gates, Paul Allen)).

In a simple case, a query may imply a simple LSR that
can be represented as a single meta-path, such as Person

found

-1
——— Organization found " porson. In general, an LSR can
be represented as a weighted combination of multiple meta-
paths.

DEFINITION 4. A latent semantic relation (LSR) is de-
fined as a weighted combination of meta-paths, denoted as
{wpm, Pm}%zl, where P,, is m* meta-path and w,, is the
corresponding weight for P,,.

An advantage of modeling LSR as a weighted combina-
tion of meta-paths is augmenting the capability of represent-
ing different semantic meanings. For example, given a user

query @ = {(Larry Page, Sergey Brin), (Jerry Yang, David
Filo)}, we show two meta-paths with weights between the

.. found . . found™!
two entities: P, = Person —oune, Organization e Person,

alma mater alma mater™

P2 = Person —————— Education —1> Person. The
corresponding weights are wy and ws. If w; > wo, there is a
higher possibility that the LSR is “co-founders.” If w; = ws,
the possibility of the LSR be “co-founders” is equal to be
“schoolmates.” If w; < wa, there is a higher possibility that
the LSR is “schoolmates.” Different weighted combinations
of meta-paths lead to different semantic meanings.

3.1 RelSim: A Novel Relation Similarity Measure Al-
though there are some existing relation similarity mea-
sures [2, 18], but they do not distinguish the diverse, sub-
tle semantic meanings in the relation instance (i.e., they as-
sume there is only one general relation held in one rela-
tion instance). For example, only with semantic meaning
“co-founders,” (Larry Page, Sergey Brin) and (Bill Gates,
Paul Allen) are similar. When the meaning turns to “school-
mates”, they are dissimilar. Here, we define a meta-path-
based relation similarity measure, RelSim, to measure sim-
ilarity between two relation instances based on the LSR with
subtle semantic meaning. The intuition behind RelSim is that
if two relation instances share more heavily weighted meta-
paths, they tend to be more similar. We formally define Rel-
Sim below:

DEFINITION 5. RelSim: a meta-path-based relation simi-
larity measure. Given an LSR, denoted as {w,, Pm}M_,,

RelSim between two relation instances v = (v v?)) and
r = (v(l)/,v@)/> is defined as:

RS(r,r") = 2 X g W WN(Zm; Tm)

3.1 =
@1 Do WnTm + D Win&hy,

where x,, is the number of path instances between v(!)
and v?) in relation r following meta-path P,,, and x', is
the number of path instances between v and v®@" in
relation 1’ following meta-path P,,. We use a vector x =
[X1,- - ,Zar) to characterize a relation instance
r, and a vector w = [wy, -+ ,Wm, " ,wpr] to denote the

corresponding weights. M is the number of meta-paths.

yTmy

In schema-rich HINs, the number of path instances
between two entities following a specific meta-path is often 1
or 0, denoting whether the two entities satisfy the meta-path-
based relation. For example, “Larry Page” and “Sergey Brin”
have co-founded one organization. By looking at RelSim
defined in Def. 5, we can see that RS(r,r’) is defined in
terms of two parts: (1) the semantic overlap in the numerator,
which is the weighted number of overlapped meta-path-
based relations of 7 and 7’; and (2) the semantic broadness
in the denominator, which is the weighted number of total
meta-path-based relations satisfied by r and 7. Note that, if
the number of path instances for a meta-path is larger than



1, 1i.e., z,, > 1, we treat the two entities have satisfied the
relation x,, times. We can see that the larger number of
overlapped meta-path-based relations shared by the r and
r’, the more similar the two relation instances are, which is
further normalized by the semantic broadness of r and 7.

RelSim satisfies several nice properties as indicated
from properties (1) to (3). The proof is similar to the proof
of Theorem 1 in [16].

e (1) Range: Vr,r',0 < sim(r,r") < 1.
e (2) Symmetric: sim(r,r") = sim(r’,r).

e (3) Self-maximum: sim(r,r) = 1.

3.2 Problem Definition Given the above definitions, we
now formally define the relation similarity search problem
as follows.

Since we are aiming to find other relation instances
similar to the ones stated in a query, we first define the
RelSim between query and a relation instance as the average
similarity between each relation instance in the query and the
relation instance:

DEFINITION 6. Given a user query QQ = {ry =
<U](€1)’U](€2)>}7k =1,---, K, and a relation instance ', the
RelSim between @ and 1’ is calculated as RS(Q,r') =

> RS(ri, ")/ K.

Then our relation similarity search problem is to find
all the top relation instances that are similar to query ). In
schema-rich HING, it is not trivial to identify the LSR given a
user query, as the possible semantic meaning implied in the
query is diverse.

4 Latent Semantic Relation Learning

In this section, we introduce our LSR learning method.

4.1 Meta-Path Candidates Generation Before learning
to find the most likely LSR implied in the query, based on
the following observations:

1. It is commonsense that the real semantic meaning in
a query is specific, i.e., the meaning should be repre-
sented with limited number of meta-paths that focus on
relevant types of entities and relations;

2. It is time consuming and impractical to automatically
generate meta-paths by enumerating all the possible
meta-paths between entities in large-scale networks,

we need to find a small number of query-based meta-path
candidates P that could express the real meaning. We there-
fore construct a query-based network schema based on the
user query @, through only keeping the types of entities and
relations relevant to the query.

DEFINITION 7. Query-based network schema. A query-

based network schema is a sub-network schema of a schema-
rich HIN. Given a schema-rich HIN G = (V, E), a user
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Figure 2: The query-based network schema for query Q@ =
{(Larry Page, Sergey Brin), (Jerry Yang, David Filo)}.

query Q, and the radius of schema D, D is the maximum
length of hops that an entity v € Q) can arrive on the graph of
schema, then the query-based network schema contains type-
s of entities in the () and within D-hop to the entities (denot-
ed as V,,), and types of relations (v v (v(D) 2 € V)
(denoted as E,,). A query-based network schema is denoted
as QN Sg = (Au, Ry,), where Ay, = {p(vy), vy, € Vo, } and
Ry = {¥(en), ey € By}

For example, given query @, as illustrated in Fig. 2, the entity
types, such as Person, Organization, Education, are relevant
to the query. While types like Film, Musician, Book are not
relevant, and thus ignored.

The generation procedure of a query-based network
schema QN S¢ is as below. Given a query @ and the radius
D of the schema, first, for each example r;, € Q, we
enumerate all the neighbor entities within d-hop (d < D/2)
relations for each entity (v,(cl) and vl(f)). Next, we look up
the union of all entity and relation types to generate the
QNS = (Ay, Ru), where A, is the union set of entity
types, and R, is the union set of relation types. For example,
given the query () in the previous example, Q N .S¢ generated
by the above process is shown in Fig. 2, where A, =
{Person, Organization, Education, etc.}, and R,, = {found,
influence, alma mater, etc.}.

Most existing work assume that meta-paths are pro-
vided by users. This assumption can be true for schema-
simple HIN (e.g., the DBLP network), it may be infeasible
for schema-rich HIN such as the Freebase network. Besides,
long meta-paths can be difficult to discover. A simple way
can be proposed to automatically generate meta-paths: for a
relation instance (v(!), v(?)), one can generate all the pos-
sible meta-paths via enumerating all the relations, starting
from v(1) and ending with v(?). However, it is time consum-
ing and impractical. As pointed out in [12], the number of
possible meta-paths grows sharply with the length of meta-
paths. We therefore propose an efficient query-based meta-
path generation algorithm (QMPG) to generate meta-paths
for a relation instance (v!), v(?)) based on query-based net-
work schema.



Motivated by binary search, given a relation instance,
to generate the meta-paths within length-L for the relation
instance, we first generate meta-paths that within L /2-hop
to each entity of the relation instance, and then composite
the meta-paths within length-L/2, to construct the meta-
path candidate set P. We build inverted indices on types of
entities and relations to speed up the process.

4.2 Meta-Path Weights Optimization To express the us-
er’s need, it is easier for her to provide a query of several
examples, and let model learn the weight of each meta-path
automatically, rather than specifying the weights of them.

Given a query (), and query-based meta-path candidate
set P, we propose an optimization model to learn the weight
of each meta-path P € P. We assume one or several meta-
paths in P can capture the most likely LSR held in the query.
For example, given a user query (Q = {(Larry Page, Sergey
Brin), (Jerry Yang, David Filo)}, it’s probable that the most
likely LSR is a combination of two meta-paths:

Py = Person M Organization M Person

and

P2 = Person M Education M Person,
indicating that rtwo Person co-founded an Organization, and
both of them graduated from the same Education Institute.
Our task is to discover such important query-based meta-
paths by optimizing the weights.

The difficulty of understanding the LSR is that there is
a lot of background noise. For example, (Larry Page, Sergey
Brin) and (Jerry Yang, David Filo) both have the meta-path
‘P; . But at the same time, they also share meta-paths like Py,
which is a less important meta-path. P4 can be considered
as background noise, since randomly choosing a relation
between Person and Person may have a higher possibility
to satisfy Py4. For example, “Larry Page” and “Paul Allen”
do not share the important meta-paths, such as Py, with the
examples in (). We call such artificial pairs (e.g., (Larry
Page, Paul Allen)) as “negative examples.”?

Formally, the negative examples are generated by ran-
domly replacing the subject (U]il)) (object (v,?))) entity of
one relation instance by the subject (object) entity of anoth-
er. A relation instance may have multiple negative examples.
We hope to maximize the weights of query-based meta-paths
that are mainly shared by positive examples (i.e., examples
in Q), but never or rarely appear in negative examples.

Denote K = |Q)| as the number of examples in the user
query, and M = |P| as the number of query-based meta-
paths. Then, each relation instance would have a feature
vector of length M, which is denoted as x; (k = 1,--- , K).
The m!" element of x;, is the number of path instances

2Sometimes, negative examples may accidentally share meta-paths with
positive examples. But we have demonstrated the effectiveness by compar-
ing that with the human provided negative examples in the experiment.

between 11,(61) and v,(f) of 1, € . We also denote Xj

as a negative (or corrupted) example. We use Lo norm to
normalize all feature vectors.

We assign each meta-path a weight w,, (m =
1,--- , M), wy, > 0 and regularize Zn]\le Wy, = 1. Then
given the relation instances and the negative examples, we
try to find a set of weights in which “important” meta-paths
have higher weights, while “unimportant” ones near 0. In-
spired by the ranking loss proposed as Eq. (17) in [4], we
propose the following optimization model:

K

Z max{0, c — wTxy, + wa(k}

k=1
s.t. wm >0

M
Zwm =1
m=1

where ¢ € (0,1] is a tuning parameter. If ¢ = 1, then we

have max{0,c — wTx; + wix,} = 1 — wlxy + W%y
(since xj, — X}, is going to be a vector with each entry smaller
than or equal to 1 after normalization, with the constraint
M W, = 1, we then have w”(x), — %) < 1). As a
result, this model will essentially maximize the weights of
meta-paths that have the biggest difference between positive
and negative examples. If ¢ < 1, then the model will consider
the accident that positive and negative examples share the
important meta-paths, and that some of the important meta-
paths are missing in some positive examples.

By introducing slack variables «p = max{0,c —
wTxp + wT'x;}, the above optimization problem can be
turned into linear programming with (M + K) variables and
(M + 1 + 2K) constraints:

4.2)

min
w

VYm=1,--, M

4.3)

K
min Z ak
w,x k:l

M

Zwm =1
m=1

Ve=1,---

s.t. wm >0 Ym=1,--- , M

ag >0 achfwak+wT)~(k, K

We use the interior point method (Chapter 11 in [3]) to
solve the above linear programming problem. Now, we have
a weighted query-based meta-path set P, each P, € P is
associated with corresponding weight w,,,. We consider this
weighted combination of query-based meta-paths as the LSR
held in the query. Notice that rather than using positive-only
learning methods [14] that have polynomial time complexity,
our linear programming method better fits the online search.

Finally, we propose a fast RelSim-based relation simi-
larity search algorithm by pruning the search space through
only preserving the candidates that have at least one common
meta-path with the LSR, and building inverted indices on the
meta-paths to speed up the searching process.



Table 1: Rel-Full dataset statistics. #Entities means the number of entities; #Relations means the number of relations.

Relation Categories #Entities #Relations Examples
(Organization, Founder) 9,836,649 560,688,893 (Google, Larry Page), (Microsoft, Bill Gates), (Facebook, Mark Zuckerberg)
(Book, Author) 16,640,478 981,788,232 (Gone with the Wind, Margaret Mitchell), (The Kite Runner, Khaled Hosseini)
(Actor, Film) 4,340,986 182,121,412 (Leonardo DiCaprio, Inception), (Daniel Radcliffe, Harry Potter), (Jack Nicholson, Head)
(Location, Contains) 1,037,791 62,229,669 (United States of America, New York), (Victoria, Chillingollah), (New Mexico, Davis House)
(Music, Track) 1,653,931 86,658,343 (My Worlds, Baby), (21, Someone Like You), (Thriller, Beat It)
Total 26,841,657 1,483,834,223 (Google, Larry Page), (Leonardo DiCaprio, Inception), (Thriller, Beat It)

5 Experiments

In this section, we evaluate the effectiveness and efficiency
of our proposed approach.

5.1 Datasets We construct a dataset called Rel-Full based
on Freebase data as follows: We select five popular rela-
tion categories in Freebase, (Organization, Founder), (Book,
Author), (Actor, Film), (Location, Contains), and {Music,
Track). For each relation category, we randomly sample
5,000 entity pairs, then enumerate all the neighbor entities
and relations within 2-hop of each entity. In Table 1, we show
statistics of the five relation categories in Rel-Full, including
the number of entities, relations, and some corresponding ex-
amples. We randomly generate 10 user queries from each re-
lation category in Rel-Full by sampling 5 relation instances
for each query. As a result, there are 50 queries in total.

5.2 Effectiveness Study We first study the effectiveness
of similarity search results and query-based meta-path gen-
eration algorithm.

5.2.1 Analysis of Similarity Search Performance We
test the performance of RelSim-based relation similarity
search. NDCG@/C are used as the evaluation measures.
NDCG@K is the normalized discounted cumulative gain
at the given value of K in the search result. NDCG@/C
assume value between 0 and 1, and a higher value indicates
a better search result. We use three comparable methods
as below. (1) Vector-Space-Model-based Similarity Search
(VSM-S): based on the relation similarity function defined
by vector space model (VSM) [19] for search; (2) Latent-
Relational-Analysis-based Similarity Search (LRA-S): based
on the relation similarity function defined by latent relational
analysis (LRA) [18]; and (3) ImplicitWeb-based Similarity
Search (IW-S): based on the relation similarity measure
proposed in [2].

Table 2: Performance (NDCG@ K) of relation similarity search on
Rel-Full.

NDCG@5 | NDCG@10 | NDCG@20
VSM-S 0.5389 0.6296 0.7225
LRA-S 0.5880 0.6848 0.7814
IW-S 0.5210 0.6095 0.7010
RelSim-S 0.6395 0.7427 0.8432
RelSim-WS 0.6651 0.7716 0.9559

We re-implement all of the above methods, by replacing
the lexical patterns with query-based meta-paths. Notice that,
we apply the meta-path set P to VSM-S, LRA-S and IW-S. In
LRA-S, we reduce the size of P to 100 following [18]. While
in IW-S, we cluster meta-paths with the same parameter
setting as in [2]. We denote RelSim-WS the framework with
RelSim as the similarity measure, and the weight of each
query-based meta-path in P is learned by the optimization
model (Section 4.2). Further, RelSim-S is RelSim-WS without
weights learning by setting meta-paths with same weight.

First, we manually label the top-20 results for the 50
queries, to test the quality of ranking lists given by the five
methods. We label each candidate relation instance with
three relevant levels: 0 (non-relevant), 1 (some-relevant),
and 2 (very relevant). We report the NDCG@K for the 50
queries. Table 2 shows the quality of top-KC (X = 5, 10, 20)
search result. From the result, we can see that RelSim-based
methods (RelSim-WS and RelSim-S) outperform the other
models. The reasons are as follows: (1) RelSim-WS can better
use the semantics in schema-rich HINs because it automat-
ically learns the weights of different meta-paths; (2) Both
RelSim-WS and RelSim-S consider more subtle semantics by
incorporating the number of shared meta-paths of two rela-
tion instances, rather than just normalizing the total number
of meta-paths like most vector-based relation similarity mea-
sures do (e.g., VSM-S). Significance is measured using the
t-test with p-value < 0.001.

Then, a case study on top-5 search result is shown in
Table 3, based on the query @ = {(Google, Larry Page),
(Microsoft, Bill Gates), (Facebook, Mark Zuckerberg),
(Yahoo!, Jerry Yang), (DreamWorks Animation, David
Geffen)}. Due to the space limitation, we just show the
last names of entities. The most likely LSR held in @ is
(1) the Founder of Organization, (2) who also wins award
in the same industry that the Organization runs business

in. The two most important query-based meta-paths be-

. . is f ded b;
low are used to represent the LSR, Organization ——==>,

un business in

0.384), Organization """ 0 Industry

Founder (w

win award in~

i Founder (w = 0.274). From the results, we
can see that both RelSim-WS and RelSim-S get more rea-
sonable results than the other methods. Although the results
of the comparable methods contain the semantics (1) in @,
most of them do not imply the semantics (2). For example,
in the search result generated by IW-S, “Walt Disney” is not



Table 3: Case study on top-5 relation similarity search results on Rel-Full.

[ Query: {(Google, Larry Page), (Microsoft, Bill Gates), (Facebook, Mark Zuckerberg), (Yahoo!, Jerry Yang), (DreamWorks Animation, David Geffen) } |

Rank VSM-S LRA-S IW-S RelSim-S RelSim-WS
1 (Forbes, Forbes) (Yelp, Inc., Simmons) (Image Comics, Silvestri) (DoubleClick, Merriman) (Apple, Jobs)
2 (U-Haul, Shoen) (Image Comics, Silvestri) (Walt Disney, Disney) (YouTube, Chen) (IBM, Watson)
3 (HealthGrades, Hicks) (U-Haul, Shoen) (Forbes, Forbes) (Apple, Wozniak) (YouTube, Chen)
4 (Perot Systems, Perot) (Forbes, Forbes) (HealthGrades, Hicks) (McDonald, McDonald) (Linkedin, Hoffman)
5 (Image Comics, Silvestri) (Perot Systems, Perot) (New York Library, Dewey) (Ford Motor, Ford) (DoubleClick, Merriman)

Table 4: Example query-based meta-paths on Rel-Full. We show the most important four query-based meta-paths of different queries.

Query: {{Google, Larry Page), (Microsoft, Bill Gates), etc.} w
Organization —)is founded by Founder 0.384
Organization —— 222008 0, business in Industry winawardin__ = Founder 0.274
Organization is founded by Person is influence peer ! Founder 0.174
Organization s leadorship Person mailing address Location mailing address 1 Founder 0.115
Query: {(Google, Larry Page), (Yahoo!, Marissa Mayer), etc. } w
Organization rn by, opo %0 tivte ™! Founder 0.320
Organization founded date, )4, graduation date ! Founder 0.229
Organization M Location 22ucation institute” ] Founder 0.207
Organization Lun business in, Industry M Founder 0.113

an IT company, but at the second ranking position. The result
shows that RelSim-WS gives the best ranking quality in terms
of the human intuition, which is consistent with the previous
quality result.

5.2.2 Case Study of Query-based Meta-Paths One of
our major contributions is that by representing the LSRs
with a set of weighted query-based meta-paths, we are able
to distinguish the diverse semantics of LSRs held in a user
query.

Table 4 shows the top-four (heavily weighted) meta-
paths with the corresponding weights, for two differen-
t queries from (Organization, Founder) category. We can see
that all the important meta-paths make sense. Besides length-
1 meta-paths, we have multi-hop meta-paths that are unex-
pected yet quite important semantics held in the query. For
example, given the query {(Google, Larry Page), etc.}, we

run business in

can derive meta-paths like Organization —————— Indus-

win award in~ !

try ——————— Founder with length larger than one, and it
is possible to find related relation instances w.r.t. the multi-
hop meta-paths. Interestingly, for queries that have com-
plex semantics, which can not be expressed with length-1
meta-paths, we could express the LSRs between them us-
ing multi-hop meta-paths, where originally there are no con-
nections between the entities. For example, given the query
{(Lord Voldemort, J. K. Rowling), etc.}, there is no length-1
meta-paths connecting them, but we are able to use Character

appear ™y Book Author to explain the LSR Character
is in a Book, which is written by Author.

Table 4 also shows a running example of the optimiza-
tion model by providing different queries containing some

write ™1

common examples. In the query, (Google, Larry Page) im-
plies different LSRs, such as “is founded by” and “runs by
CEO,” which are represented with different weighted com-
bination of meta-paths. By providing different examples,
such as (Microsoft, Bill Gates) (only satisfies “is founded
by”) and (Yahoo!, Marissa Mayer) (only satisfies “runs by
CEO”), we can see that the meta-paths as well as the weight
of the same meta-path change accordingly, which indicates
the LSR changes from “is founded by” to “runs by CEQ.”
The reason is that optimization model is able to distinguish
the diverse LSRs.

5.3 Efficiency Study We compare QMPG with the meta-
path generation method proposed in [12] (PCRW-MPG)
(Fig. 3). We fix the radius of the query-based network
schema D = 4, varying maximum length of meta-path L
(L =1,2,3,4) for both methods, and test on Rel-Full. Each
query is executed 5 times and the output time is the total
average time of the 50 queries. The results show that OMPG
can significantly improve the efficiency of query-based meta-
path generation through applying binary search. For OMPG,
we build the inverted indices on types of entities and relations
in Rel-Full on a single machine with 128G memory, 24 CPU
cores at 2.0GHZ.

5.4 Parameter Study We first test the impact of various
radii of the query-based network schema on the search
performance. In Fig. 4, RelSim-WS D (D 1,2,3,4)
represents the RelSim-WS with different radii for the query-
based network schema generation. We can see that, the larger
radius D, the higher improvement the query-based network
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Figure 3: OMPG vs. PCRW-MPG with
different maximum lengths on Rel-Full.
t radii.

schema achieves. This indicates that more knowledge we
have about the query, the better results we can expect, which

follows the human intuition. In practice, we set D = 4,
because if D gets larger, the number of meta-paths will grow
prohibitively large.

We then investigate the impact of the number of exam-
ples (K) in query on the search results. Fig. 5 shows that
when providing more similar examples in a query, the gen-
eral end-to-end performance will be improved further. The
reason is that when providing more examples, the seman-
tic meaning implied in the query could be more specific,
which follows the human intuition. In our experiment, we
set K = 5, because it is difficult to ask a user to provide too
many examples in real world.

6 Related Work

In this section, we review the related work on querying
graphs or knowledge bases and similarity search.

6.1 Querying Graphs or Knowledge Bases There have
been many works on subgraph querying [27] based on tra-
ditional subgraph isomorphism using identical label match-
ing. However, we focus on the semantic similarity of graph
structure, which does not require identical match. The sub-
graph querying is enriched with entity similarity and ontolo-
gy in [25]. Our study yet provides a new perspective by using
relation similarity instead of entity or ontology-based simi-
larity. To retrieve data from databases or specially knowledge
bases, the standard is often to use structured query languages
such as SQL, SPARQL or a formal query model [11]. How-
ever, writing structured queries requires extensive experience
in query language and data model, and good understanding
of particular datasets [9]. We do not assume users have such
domain knowledge. Instead, we only require users to provide
examples of relation instances.

Query by example is well studied in relational databas-
es. Typical work require structured queries, for example,
query graphs or patterns [20, 28], meta-paths [16] or struc-

Figure 4: Parameter study of the query-
based network schema with differen-
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Figure 5: Parameter study of different #
of examples (K) in query.

tured query languages, explicitly based on the known under-
lying schema. Recently, unstructured queries have been stud-
ied [10] without schema to query knowledge bases [21, 22,
23]. In contrast, our system allows unstructured queries as
examples to query the network by incorporating the network
schema.

6.2 Similarity Search Entity similarity search has been a
hot research topic for years. Recent studies on entity simi-
larity also find rules/meta-paths very useful. Path ranking al-
gorithm [12], rule mining [7] and meta-path generation [13]
have demonstrated the effectiveness of using the mined rules
or meta-paths for link prediction-like tasks based on entity
similarity, while our work is for relevant relation retrieval.
There is no trivial way to apply entity similarity measures to
computing relation similarity. There exist works on measur-
ing relation similarity [18]. They usually generate a matrix
with rows representing entity pairs and columns representing
patterns [1], extracted from text data. Then certain similarity
function, like cosine similarity [18], is applied to calculate
the relation similarity by using the two corresponding rows
in the matrix. We improve these studies in two aspects: First,
our approach distinguishes the diverse latent semantic rela-
tions existing in a relation instance; second, we are able to
utilize the rich structure information in HINSs. Several stud-
ies have focused on understanding the relationship between
entities, by ranking the relationships via pre-defined criteria,
to help find similar entities [6] or subgraphs [17]. However,
we are able to automatically find the latent relations with the
optimization model.

7 Conclusion and Discussion

We have studied relation similarity search in schema-rich
heterogeneous information networks. In order to solve the
problem, we need to (1) correctly identify the most likely
LSR implied by the input query, and (2) provide an effi-
cient search algorithm that can answer the query in a real-
time mode. We propose a framework to address the two



requirements. In the framework, we first represent an LSR
as a weighted combination of query-based meta-paths that
are generated based on the query-based network schema.
Second, a novel meta-path-based relation similarity mea-
sure RelSim is introduced and used in an efficient similarity
search algorithm. Our approach is important for many appli-
cations, such as relation based clustering, classification and
recommendation. For example, RelSim is easy to be encoded
in kernel-based clustering algorithms to canonicalize similar
relations [24].
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