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ABSTRACT
Network embedding is an important method to learn low-dimensional
representations of vertexes in networks, aiming to capture and pre-
serve the network structure. Almost all the existing network em-
bedding methods adopt shallow models. However, since the under-
lying network structure is complex, shallow models cannot capture
the highly non-linear network structure, resulting in sub-optimal
network representations. Therefore, how to find a method that is
able to effectively capture the highly non-linear network structure
and preserve the global and local structure is an open yet impor-
tant problem. To solve this problem, in this paper we propose a
Structural Deep Network Embedding method, namely SDNE. More
specifically, we first propose a semi-supervised deep model, which
has multiple layers of non-linear functions, thereby being able to
capture the highly non-linear network structure. Then we propose
to exploit the first-order and second-order proximity jointly to p-
reserve the network structure. The second-order proximity is used
by the unsupervised component to capture the global network struc-
ture. While the first-order proximity is used as the supervised infor-
mation in the supervised component to preserve the local network
structure. By jointly optimizing them in the semi-supervised deep
model, our method can preserve both the local and global network
structure and is robust to sparse networks. Empirically, we conduct
the experiments on five real-world networks, including a language
network, a citation network and three social networks. The results
show that compared to the baselines, our method can reconstruc-
t the original network significantly better and achieves substantial
gains in three applications, i.e. multi-label classification, link pre-
diction and visualization.
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1. INTRODUCTION
Nowadays, networks are ubiquitous and many real-world appli-

cations need to mine the information within these networks. For
example, recommendation system in Twitter aims to mine the pre-
ferred tweets for users from the social network. Online advertise-
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ment targeting often needs to cluster the users into communities in
the social network. Therefore, mining the information in the net-
work is very important. One of the fundamental problems is how
to learn useful network representations [5]. An effective way is
to embed networks into a low-dimensional space, i.e. learn vec-
tor representations for each vertex, with the goal of reconstructing
the network in the learned embedding space. As a result, mining
information in networks, such as information retrieval [34], classi-
fication [15], and clustering [20], can be directly conducted in the
low-dimensional space.

Learning network representations faces the following great chal-
lenges: (1) High non-linearity: As [19] stated, the underlying
structure of the network is highly non-linear. Therefore, how to
design a model to capture the highly non-linear structure is rather
difficult. (2) Structure-preserving: To support applications an-
alyzing networks, network embedding is required to preserve the
network structure. However, the underlying structure of the net-
work is very complex [24]. The similarity of vertexes is dependent
on both the local and global network structure. Therefore, how to
simultaneously preserve the local and global structure is a tough
problem. (3) Sparsity: Many real-world networks are often so s-
parse that only utilizing the very limited observed links is not e-
nough to reach a satisfactory performance [21].

In the past decades, many network embedding methods have
been proposed, which adopted shallow models, such as IsoMAP
[29], Laplacian Eigenmaps (LE) [1] and Line [26]. However, due
to the limited representation ability of shallow models [2], it is d-
ifficult for them to capture the highly nonlinear network structure
[30]. Although some methods adopt kernel techniques [32], as [36]
stated, kernel methods are also shallow models and cannot capture
the highly non-linear structure well.

In order to capture the highly non-linear structure well, in this
paper we propose a new deep model to learn vertex representations
for networks. This is motivated by the recent success of deep learn-
ing, which has been demonstrated to have a powerful representation
ability to learn complex structures of the data [2] and has achieved
substantial success in dealing with images [15], text [25] and audio
[10] data. In particular, in our proposed model we design a multi-
layer architecture which consists of multiple non-linear functions.
The composition of multiple layers of non-linear functions can map
the data into a highly non-linear latent space, thereby being able to
capture the highly non-linear network structure.

In order to address the structure-preserving and sparsity prob-
lems in the deep model, we further propose to exploit the first-order
and second-order proximity [26] jointly into the learning process.
The first-order proximity is the local pairwise similarity only be-
tween the vertexes linked by edges, which characterizes the local
network structure. However, due to the sparsity of the network,
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Figure 1: The number of pairs of vertexes which have first-
order and second-order proximity in different datasets.

many legitimate links are missing. As a result, the first-order prox-
imity is not sufficient to represent the network structure. Therefore,
we further propose the second-order proximity, which indicates the
similarity of the vertexes’ neighborhood structures, to capture the
global network structure. With the first-order and second-order
proximity, we can well characterize the local and global network
structure, respectively. To preserve both the local and global net-
work structure in the deep model, we propose a semi-supervised
architecture, in which the unsupervised component reconstructs the
second-order proximity to preserve the global network structure
while the supervised component exploits the first-order proximity
as the supervised information to preserve the local network struc-
ture. As a result, the learned representations can well preserve
both the local and global network structure. In addition, as shown
in Figure 1, the number of pairs of vertexes which have second-
order proximity is much huger than those have first-order proximi-
ty. Therefore, the import of second-order proximity is able to pro-
vide much more information in term of characterizing the network
structure. As a result, our method is robust to sparse networks.

Empirically, we conduct the experiments on five real-world net-
worked datasets and four real-world applications. The results show
that compared with baselines, the representations generated by our
method can reconstruct the original networks significantly better
and achieve substantial gains on various tasks and various network-
s, including very sparse networks. It demonstrates that our repre-
sentations learned in the highly non-linear space can preserve the
network structure well and are robust to sparse networks.

In summary, the contributions of this paper are listed as follows:

• We propose a Structural Deep Network Embedding method,
namely SDNE, to perform network embedding. The method
is able to map the data to a highly non-linear latent space
to preserve the network structure and is robust to sparse net-
works. To the best of our knowledge, we are among the first
to use deep learning to learn network representations.

• We propose a new deep model with a semi-supervised archi-
tecture, which simultaneously optimizes the first-order and
second-order proximity. As a result, the learned representa-
tions preserve the local and global network structure and are
robust to sparse networks.

• The proposed method is extensively evaluated on five real
datasets and four application scenarios. The results demon-
strate the superior usefulness of the method in multi-label
classification, reconstruction, link prediction and visualiza-
tion. Specifically, our method can achieve more significant
improvements (20%) over baselines when labelled data is s-
carce. In some cases we only need 60% less training samples
but still achieve better performance.

2. RELATED WORK

2.1 Deep Neural Network
Representation learning has long been an important problem of

machine learning and many works aim at learning representations
for samples [3, 35]. Recent advances in deep neural networks have
witnessed that they have powerful representations abilities [12] and
can generate very useful representations for many types of data. For
example, [15] proposed a seven-layer convolutional neural network
to generate image representations for classification. [33] proposed
a multimodal deep model to learn image-text unified representa-
tions to achieve cross-modality retrieval task.

However, to the best of our knowledge, there have been few deep
learning works handling networks, especially learning network rep-
resentations. In [9], Restricted Boltzmann Machines were adopted
to do collaborative filtering. [30] adopted deep autoencoder to do
graph clustering. [5] proposed a heterogeneous deep model to do
heterogeneous data embedding. We differ from these works in t-
wo aspects. Firstly, the goals are different. Our work focuses on
learning low-dimensional structure-preserved network representa-
tions which can be utilized among tasks. Secondly, we consider
both the first-order and second-order proximity between vertexes
to preserve the local and global network structure. But they only
focus on one-order information.

2.2 Network Embedding
Our work solves the problem of network embedding, which aims

to learn representations for networks. Some earlier works like Lo-
cal Linear Embedding (LLE) [22], IsoMAP [29] first constructed
the affinity graph based on the feature vectors and then solved the
leading eigenvectors as the network representations. More recent-
ly, [26] designed two loss functions attempting to capture the local
and global network structure respectively. Furthermore, [4] extend-
ed the work to utilize high-order information. Despite the success
of these network embedding approaches, they all adopt shallow
models. As we have explained earlier, it is difficult for shallow
models to effectively capture the highly non-linear structure in the
underlying network. In addition, although some of them attempt to
use first-order and high-order proximity to preserve the local and
global network structure, they learn the representations for them
separately and simply concatenate the representations. Obviously,
it is sub-optimal than simultaneously modeling them in a unified
architecture to capture both the local and global network structure.

DeepWalk [21] combined random walk and skip-gram to learn
network representations. Although empirically effective, it lacks
a clear objective function to articulate how to preserve the network
structure. It is prone to preserving only the second-order proximity.
However, our method designs an explicit objective function, which
aims at simultaneously preserving the local and global structure by
preserving both the first-order and second-order proximity.

3. STRUCTURAL DEEP NETWORK EMBED-
DING

In this section, we first define the problem. Then we introduce
the proposed semi-supervised deep model of SDNE. At last we
present some discussions and analysis on the model.

3.1 Problem Definition
We first give the definition of a Graph.

DEFINITION 1. (Graph) A graph is denoted as G = (V,E),
where V = {v1, ..., vn} represents n vertexes andE = {ei,j}ni,j=1

represents the edges. Each edge ei,j is associated with a weight
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si,j ≥ 0 1. For vi and vj not linked by an edge, si,j = 0. Oth-
erwise, for unweighted graph si,j = 1 and for weighted graph,
si,j > 0.

Network embedding aims to map the graph data into a low-
dimensional latent space, where each vertex is represented as a
low-dimensional vector and the network computing can be direct-
ly realized. As we have explained, both local and global structure
are essential to be preserved. Then we first define the first-order
proximity, which characterizes the local network structure.

DEFINITION 2. (First-Order Proximity) The first-order prox-
imity describes the pairwise proximity between vertexes. For any
pair of vertexes, if si,j > 0, there exists positive first-order proxim-
ity between vi and vj . Otherwise, the first-order proximity between
vi and vj is 0.

Naturally, it is necessary for network embedding to preserve the
first-order proximity because it implies that two vertexes in real-
world networks are always similar if they are linked by an observed
edge. For example, if a paper cites another paper, they should con-
tain some common topic. However, real-world datasets are often
so sparse that the observed links only account for a small portion.
There exist many vertexes which are similar with each other but not
linked by any edges. Therefore, only capturing the first-order prox-
imity is not sufficient. We introduce the second-order proximity to
capture the global network structure.

DEFINITION 3. (Second-Order Proximity) The second-order prox-
imity between a pair of vertexes describes the proximity of the pair’s
neighborhood structure. Let Nu = {su,1, ..., su,|V |} denote the
first-order proximity between vu and other vertexes. Then, second-
order proximity is determined by the similarity ofNu andNv .

Intuitively, the second-order proximity assumes that if two ver-
texes share many common neighbors, they tend to be similar. Such
an assumption has been proved reasonable in many fields [6, 14].
For example, in linguistics words will be similar if they are always
surrounded by similar contexts [6]. People will be friends if they
have many common friends [14]. The second-order proximity has
been demonstrated to be a good metric to define the similarity of
a pair of vertexes, even if they are not linked by an edge [17], and
thus can highly enrich the relationship of vertexes. Therefore, by
introducing the second-order proximity, it is able to characterize
the global network structure and alleviate the sparsity problem.

With the first-order and second-order proximity, we investigate
the problem of how to integrate them simultaneously to preserve
both the local and global structure when we perform network em-
bedding. Such a problem is defined as follows:

DEFINITION 4. (Network Embedding) Given a graph denoted
as G = (V,E), network embedding aims to learn a mapping func-
tion f : vi 7−→ yi ∈ Rd, where d � |V |. The objective of the
function is to make the similarity between yi and yj explicitly pre-
serve the first-order and second-order proximity of vi and vj .

3.2 The Model
3.2.1 Framework

In this paper, we propose a semi-supervised deep model to per-
form network embedding, whose framework is shown in Figure 2.
In detail, to capture the highly non-linear network structure, we
propose a deep architecture, which is composed of multiple non-
linear mapping functions to map the input data to a highly non-
linear latent space to capture the network structure. Furthermore, in
1For signed network, negative links exist. But in this paper we only
consider non-negative links.
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Figure 2: The framework of the semi-supervised deep model of
SDNE

order to address the structure-preserving and sparsity problems, we
propose a semi-supervised model to exploit both the second-order
and first-order proximity. For each vertex, we are able to obtain
its neighborhood. Accordingly, we design the unsupervised com-
ponent to preserve the second-order proximity, by reconstructing
the neighborhood structure of each vertex. Meanwhile, for a small
portion of pairs of nodes, we can obtain their pairwise similarities,
i.e. the first-order proximities. Therefore, we design the super-
vised component to exploit the first-order proximity as the super-
vised information to refine the representations in the latent space.
By jointly optimizing them in the proposed semi-supervised deep
model, SDNE can preserve the highly-nonlinear local-global net-
work structure well and is robust to sparse networks. In the follow-
ing section, we will introduce how to realize the semi-supervised
deep model in detail.

3.2.2 Loss Functions
Before introducing the loss functions, we define some of the

terms and notations in Table 1 which will be used later. Note thatˆ
above the parameters represents the parameters of the decoder.

Table 1: Terms and Notations
Symbol Definition
n number of vertexes
K number of layers

S = {s1, ..., sn} the adjacency matrix for the network
X = {xi}ni=1, X̂ = {x̂i}ni=1 the input data and reconstructed data

Y (k) = {y(k)
i }

n
i=1 the k-th layer hidden representations

W (k), Ŵ (k) the k-th layer weight matrix
b(k), b̂(k) the k-th layer biases

θ = {W (k), Ŵ (k),b(k), b̂(k)} the overall parameters

Now we introduce the loss functions for the semi-supervised
model. We first describe how the unsupervised component exploits
the second-order proximity to preserve the global network struc-
ture.

The second-order proximity refers to how similar the neighbor-
hood structure of a pair of vertexes is. Thus, to model the second-
order proximity, it is required to model the neighborhood of each
vertex. Given a network G = (V,E), we can obtain its adjacency
matrix S, which contains n instances s1, ..., sn. For each instance
si = {si,j}nj=1, si,j > 0 if and only if there exists a link between
vi and vj . Therefore, si describes the neighborhood structure of
the vertex vi and S provides the information of the neighborhood
structure of each vertex. With S, we extend the traditional deep
autoencoder [23] to preserve the second-order proximity.

For the consideration of being self-contained, we briefly review
the key idea of deep autoencoder. It is an unsupervised model
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which is composed of two parts, i.e. the encoder and decoder. The
encoder consists of multiple non-linear functions that map the in-
put data to the representation space. The decoder also consists of
multiple non-linear functions mapping the representations in rep-
resentation space to reconstruction space. Then given the input xi,
the hidden representations for each layer are shown as follows 2:

y
(1)
i = σ(W (1)xi + b(1))

y
(k)
i = σ(W (k)y

(k−1)
i + b(k)), k = 2, ...,K

(1)

After obtaining y
(K)
i , we can obtain the output x̂i by reversing

the calculation process of encoder. The goal of the autoencoder is
to minimize the reconstruction error of the output and the input.
The loss function is shown as follows:

L =

n∑
i=1

‖x̂i − xi‖22 (2)

As [23] proved, although minimizing the reconstruction loss does
not explicitly preserve the similarity between samples, the recon-
struction criterion can smoothly capture the data manifolds and
thus preserve the similarity between samples. Then considering
our case that if we use the adjacency matrix S as the input to the
autoencoder, i.e. xi = si, since each instance si characterizes the
neighborhood structure of the vertex vi, the reconstruction process
will make the vertexes which have similar neighborhood structures
have similar latent representations.

Nevertheless, such a reconstruction process cannot be directly
applied to our problem because of some specific characteristics of
networks. In the networks, we can observe some links but simulta-
neously many legitimate links are not observed, which means that
the links between vertexes do indicate their similarity but no links
do not necessarily indicate their dissimilarity. Moreover, due to the
sparsity of networks, the number of non-zero elements in S is far
less than that of zero elements. Then if we directly use S as the
input to the traditional autoencoder, it is more prone to reconstruct
the zero elements in S. However, this is not what we want. To
address this problem, we impose more penalty to the reconstruc-
tion error of the non-zero elements than that of zero elements. The
revised objective function is shown as follows:

L2nd =

n∑
i=1

‖(x̂i − xi)� bi‖22

= ‖(X̂ −X)�B‖2F

(3)

where � means the Hadamard product, bi = {bi,j}nj=1. If si,j =
0, bi,j = 1, else bi,j = β > 1. Now by using the revised deep au-
toencoder with the adjacency matrix S as input, the vertexes which
have similar neighborhood structure will be mapped near in the
representations space, guaranteed by the reconstruction criterion.
In other words, the unsupervised component of our model can p-
reserve the global network structure by reconstructing the second-
order proximity between vertexes.

It is not only necessary to preserve the global network structure,
but also essential to capture the local structure. We use the first-
order proximity to denote the local network structure. The first-
order proximity can be regarded as the supervised information to
constrain the similarity of the latent representations of a pair of
vertexes. Therefore, we design the supervised component to exploit

2In this work, we use the sigmoid function σ(x) = 1
1+exp(−x)

as
the non-linear activation function

the first-order proximity. The loss function for this goal is defined
as follows 3 :

L1st =

n∑
i,j=1

si,j‖y(K)
i − y

(K)
j ‖22

=

n∑
i,j=1

si,j‖yi − yj‖22

(4)

The objective function of Eq. 4 borrows the idea of Laplacian
Eigenmaps [1], which incurs a penalty when similar vertexes are
mapped far away in the embedding space. Some works about social
networks [13] also use the similar idea. We differentiate them in the
aspect that we incorporate the idea in the deep model to make the
vertexes linked by an edge be mapped near in the embedding space.
As a result, the model preserves the first-order proximity.

To preserve the first-order and second-order proximity simulta-
neously, we propose a semi-supervised model, which combines Eq.
4 and Eq. 3 and joint minimizes the following objective function:

Lmix = L2nd + αL1st + νLreg

= ‖(X̂ −X)�B‖2F + α

n∑
i,j=1

si,j‖yi − yj‖22 + νLreg
(5)

where Lreg is an L2-norm regularizer term to prevent overfitting,
which is defined as follows:

Lreg =
1

2

K∑
k=1

(‖W (k)‖2F + ‖Ŵ (k)‖2F )

3.2.3 Optimization
To optimize the aforementioned model, the goal is to minimize
Lmix as a function of θ. In detail, the key step is to calculate the
partial derivative of ∂Lmix/∂Ŵ

(k) and ∂Lmix/∂W
(k). The de-

tailed mathematical form of the partial derivative is shown as fol-
lows:

∂Lmix

∂Ŵ (k)
=
∂L2nd

∂Ŵ (k)
+ ν

∂Lreg
∂Ŵ (k)

∂Lmix

∂W (k)
=
∂L2nd

∂W (k)
+ α

∂L1st
∂W (k)

+ ν
∂Lreg
∂W (k)

, k = 1, ...,K

(6)

We first look at ∂L2nd/∂Ŵ
(K). It can be rephrased as follows:

∂L2nd

∂Ŵ (K)
=
∂L2nd

∂X̂
· ∂X̂

∂Ŵ (K)
(7)

For the first term, according to Eq. 3 we have:

∂L2nd

∂X̂
= 2(X̂ −X)�B (8)

The calculation of the second term ∂X̂/∂Ŵ is easy since X̂ =

σ(Ŷ (K−1)Ŵ (K)+b̂(K)). Then ∂L2nd/∂Ŵ
(K) is accessible. Based

on back-propagation, we can iteratively obtain ∂L2nd/∂Ŵ
(k), k =

1, ...K − 1 and ∂L2nd/∂W
(k), k = 1, ...K. Now the calculation

of the partial derivative of L2nd is finished.
Then we continue to calculate the partial derivative of ∂L1st/∂W

(k).
The loss function of L1st can be rephrased as follows:

L1st =

n∑
i,j=1

si,j‖yi − yj‖22 = 2tr(Y TLY ) (9)

3For simplicity of notations, we denote network representations
Y (K) = {y(K)

i }ni=1 as Y = {yi}ni=1.
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where L = D − S, D ∈ Rn×n is a diagonal matrix, Di,i =∑
j si,j .
Then we first focus on the calculation of ∂L1st/∂W

(K):

∂L1st

∂W (K)
=
∂L1st

∂Y
· ∂Y

∂W (K)
(10)

Since Y = σ(Y (K−1)W (K) + b(K)), the calculation of the sec-
ond term ∂Y/∂W (K) is easy. For the first term of ∂L1st/∂Y , we
have:

∂L1st

∂Y
= 2(L+ LT ) · Y (11)

Similarly, by using back-propagation we can finish the calcula-
tion of partial derivative of L1st.

Now we have obtained the partial derivatives of the parameters.
With an initialization of the parameters, the proposed deep model
can be optimized by using stochastic gradient descent. Note that
due to the high nonlinearity of the model, it suffers from many local
optimal in the parameter space. Therefore, in order to find a good
region of parameter space, we use Deep Belief Network to pretrain
the parameters at first [11], which has been demonstrated as an
essential initialization of parameters for deep learning in literature
[7]. The full algorithm is presented in Alg. 1.

Algorithm 1 Training Algorithm for the semi-supervised deep
model of SDNE
Input: the network G = (V,E) with adjacency matrix S, the pa-

rameters α and ν
Output: Network representations Y and updated Parameters: θ
1: Pretrain the model through deep belief network to obtain the

initialized parameters θ = {θ(1), ..., θ(K)}
2: X = S
3: repeat
4: Based on X and θ, apply Eq. 1 to obtain X̂ and Y = Y K .
5: Lmix(X; θ) = ‖(X̂−X)�B‖2F +2αtr(Y TLY )+νLreg .
6: Based on Eq. 6, use ∂Lmix/∂θ to back-propagate through

the entire network to get updated parameters θ.
7: until converge
8: Obtain the network representations Y = Y (K)

3.3 Analysis and Discussions
In this section, we present some analysis and discussions of the

proposed semi-supervised deep model of SDNE.
New vertexes: A practical issue for network embedding is how

to learn representations for newly arrived vertexes. For a new ver-
tex vk, if its connections to the existing vertexes is known, we can
obtain its adjacency vector x = {s1,k, ..., sn,k}, where si,k indi-
cates the similarity between the existing vi and the new vertex vk.
Then we can simply feed the x into our deep model and use the
trained parameters θ to get the representations for vk. The com-
plexity for such a process is O(1). If there exist no connections
between vi and the existing vertexes in the network, our method
and state-of-the-art network embedding methods cannot handle. To
handle such case, we can resort to other side information, such as
the content features of the new vertexes, which we leave as the fu-
ture work.

Training Complexity: It is not difficult to see that the training
complexity of our model is O(ncdI), where n is the number of
vertexes, d is the maximum dimension of the hidden layer, c is the
average degree of the network and I is the number of iterations.
Parameter d is usually related to the dimension of embedding vec-
tors but not related to the number of vertexes. I is also independent

with n. For c, it usually can be regarded as a constant in real-world
applications. For example, in the social network, the maximum
number of friends for a people is always bounded [30]. In top-k
similarity graph, c = k. Therefore, cdI is independent with n
and thus the overall training complexity is linear to the number of
vertexes in the network.

4. EXPERIMENTS
In this section, we evaluate our proposed method on several real-

world datasets and applications. The experimental results demon-
strate significant improvements over baselines.

4.1 Datasets
In order to comprehensively evaluate the effectiveness of the rep-

resentations, we use five networked datasets, including three social
networks, one citation network and one language network, for three
real-world applications, i.e. multi-label classification, link predic-
tion and visualization. Considering the characteristics of these dataset-
s, for each application we use one or more datasets to evaluate the
performances. The detailed descriptions are listed as follows.

• BLOGCATALOG [27], FLICKR [27] and YOUTUBE [28]: They
are social network of online users. Each user is labelled by at
least one category. There are overall 39 different categories
for BLOGCATALOG, 195 categories for FLICKR and 47 cat-
egories for categories. These categories can be used as the
ground-truth of each vertex. Therefore, they can be evaluat-
ed on the multi-label classification task.

• ARXIV GR-QC [16]: It is a paper collaboration network
which covers papers in the field of General Relativity and
Quantum Cosmology from arXiv. In this network, the vertex
represents an author and the edge indicates that the authors
have coauthored a scientific paper in arXiv. The dataset is
used for the link-prediction task since we have no category
information of each vertex.

• 20-NEWSGROUP4: This dataset is a collection of approx-
imate 20000 newsgroup documents and each document is
labelled by one of the 20 different groups. We use the tf-
idf vectors of each word to represent the document and the
cosine similarity as the similarity between two documents.
We can construct the network according to such similari-
ties. We select the documents labelled as comp.graphics,
rec.sport.baseball and talk.politics.gums to perform the vi-
sualization task.

To summarize, we conduct experiments on both weighted and
unweighted, sparse and dense, small and large networks. There-
fore, the datasets can comprehensively reflect the characteristics
of the network embedding methods. The detailed statistics of the
datasets can be summarized in Table 2.

Table 2: Statistics of the dataset
Dataset #(V) #(E)

BLOGCATALOG 10312 667966
FLICKR 80513 11799764

YOUTUBE 1138499 5980886
ARXIV GR-QC 5242 28980
20-NEWSGROUP 1720 Full-connected

4http://qwone.com/ jason/20Newsgroups/
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4.2 Baseline Algorithms
We use the following five methods as the baselines. The first

four are network embedding methods. Common Neighbor directly
predicts the links over the networks, which has been demonstrated
to be an effective method to perform link prediction [17].

• DeepWalk [21]: It adopts random walk and skip-gram model
to generate network representations.

• LINE [26]: It defines loss functions to preserve the first-order
or second-order proximity separately. After optimizing the
loss functions, it concatenates these representations.

• GraRep [4]: It extends to high-order proximity and uses the
SVD to train the model. It also directly concatenates the rep-
resentations of first-order and high-order.

• Laplacian Eigenmaps (LE) [1]: It generates network repre-
sentations by factorizing the Laplacian matrix of the adja-
cency matrix. It only exploits the first-order proximity to
preserve the network structure.

• Common Neighbor [17]: It only uses the number of common
neighbors to measure the similarity between vertexes. It is
used as the baseline only in the task of link prediction.

4.3 Evaluation Metrics
In our experiment, we perform the task of reconstruction, link

prediction, multi-label classification and visualization. For recon-
struction and link prediction, we use precision@k and Mean Aver-
age Precision (MAP) to evaluate the performance. Their definitions
are listed as follows:

• precision@k is a metric which gives equal weight to the re-
turned instance. It is defined as follows:

precision@k(i) =
| {j | i, j ∈ V, index(j) ≤ k,∆i(j) = 1} |

k

where V is the vertex set, index(j) is the ranked index of
the j-th vertex and ∆i(j) = 1 indicates that vi and vj have
a link.

• Mean Average Precision (MAP) is a metric with good dis-
crimination and stability. Compared with precision@k, it is
more concerned with the performance of the returned items
ranked ahead. It is calculated as follows:

AP (i) =

∑
j precision@j(i) ·∆i(j)

| {∆i(j) = 1} |

MAP =

∑
i∈QAP (i)

| Q | ,

where Q is the query set.

For the multi-label classification task, we adopt micro-F1 and
macro-F1 as many other works do [27]. In detail, for a label A,
we denote TP(A), FP(A) and FN(A) as the number of true posi-
tives, false positives and false negatives in the instances which are
predicted as A, respectively. Suppose C is the overall label set.
Micro-F1 and Macro-F1 are defined as follows:

• Macro-F1 is a metric which gives equal weight to each class.
It is defined as follows:

Macro− F1 =

∑
A∈C F1(A)

| C |

where F1(A) is the F1-measure for the label A.

• Micro-F1 is a metric which gives equal weight to each in-
stance. It is defined as follows:

Pr =
∑

A∈C TP (A)∑
A∈C (TP (A)+FP (A))

, R =
∑

A∈C TP (A)∑
A∈C (TP (A)+FN(A))

Micro− F1 = 2∗Pr∗R
Pr+R

4.4 Parameter Settings
We propose a multi-layer deep structure in this paper and the

number of layers varies with different datasets. The dimension of
each layer is listed in Table 3. The neural networks have three lay-
ers for BLOGCATALOG, ARXIV GR-QC and 20-NEWSGROUP and
four layers for FLICKR and YOUTUBE. If we use deeper model, the
performance almost remains unchanged or even becomes worse.

Table 3: Neural Network Structures
Dataset #nodes in each layer

BLOGCATALOG 10300-1000-100
FLICKR 80513-5000-1000-100

YOUTUBE 22693-5000-1000-100
ARXIV GR-QC 5242-500-100
20-NEWSGROUP 1720-200-100

For our method, the hyper-parameters of α, β and ν are tuned
by using grid search on the validation set. The parameters for base-
lines are tuned to be optimal. For LINE, the mini-batch size of the
stochastic gradient descent is set to 1. The learning rate of the start-
ing value is 0.025. The number of negative samples is set as 5 and
the total number of samples is 10 billion. In addition, according to
[26], LINE yields better results when concatenating both 1-step and
2-step representations to form the final embedding vectors and do
L2 normalization to the final embedding vectors. We follow their
way to get the results of the LINE. For DeepWalk, we set window
size as 10, walk length as 40, walks per vertex as 40. For GraRep,
we set maximum matrix transition step as 5.

4.5 Experiment Results
In this section, we first evaluate the reconstruction performance.

Then we report the results of the generalization of the network rep-
resentations generated by different embedding methods on three
classic data mining and machine learning applications, i.e. multi-
label classification, link prediction and visualization.

4.5.1 Network Reconstruction
Before proceeding to evaluate the generalization of the proposed

method on real-world applications, we first provide a basic evalua-
tion on different network embedding methods with respect to their
capability of network reconstruction. The reason for this experi-
ment is that a good network embedding method should ensure that
the the learned embeddings can preserve the original network struc-
ture. We use a language network ARXIV GR-QC and a social net-
work BLOGCATALOG as representatives. Given a network, we use
different network embedding methods to learn the network repre-
sentations and then predict the links of the original networks. As
the existing links in the original network are known and can serve as
the ground-truth, we can evaluate the reconstruction performance,
i.e. the training set error, of different methods. The precision@k
and MAP are used as the evaluation metrics. The result on the pre-
cision@k is presented in Figure 3. The result on MAP is shown in
Table 4.

From the results, we have the following observations and analy-
sis:
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Table 4: MAP on ARXIV-GRQC and BLOGCATALOG on reconstruction task

Method ARXIV-GRQC BLOGCATALOG
SDNE GraRep LINE DeepWalk LE SDNE GraRep LINE DeepWalk LE

MAP 0.836** 0.05 0.69 0.58 0.23 0.63** 0.42 0.58 0.28 0.12
Significantly outperforms GraRep at the: ** 0.01 level.
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Figure 3: precision@k on (a) ARXIV GR-QC and (b) BLOG-
CATALOG. The results show that our method achieves better
reconstruction performance than that of baselines.

• Table 4 shows that our method achieves significant improve-
ments in MAP over the baselines in both datasets. Figure 3
shows that the precision@k of our method is consistently the
highest when k increases. It demonstrates that our method is
able to preserve the network structure well.

• Specifically, for the network of ARXIV GR-QC, the preci-
sion@k of our method can reach 100% and maintain around
100% until the k increases to 10000. This indicates that our
method can almost perfectly reconstruct the original network
in this dataset, especially considering that the total number of
links in this dataset is 28980.

• Although SDNE and LINE both exploit the first-order and
second-order proximity to preserve the network structure, S-
DNE achieves better performance. The reasons may be t-
wofold. Firstly, LINE adopts shallow structure, which is d-
ifficult to capture the highly non-linear structure in the un-
derlying network. Secondly, LINE directly concatenates the
representations for the first-order and second-order proxim-
ity, which is sub-optimal than jointly optimizing them in S-
DNE.

• The result that both SDNE and LINE perform better than LE,
which only exploits the first-order proximity to preserve the
network structure, demonstrates that the import of second-
order proximity can help preserve the network structure bet-
ter.

4.5.2 Multi-label Classification
Classification is a so important task among many applications

that the related algorithm and theories have been investigated by
many works [18]. Therefore, we evaluate the effectiveness of d-
ifferent network representations through a multilabel classification
task in this experiment. The representations for the vertexes are
generated from the network embedding methods and are used as
features to classify each vertex into a set of labels. Specifically, we
adopt the LIBLINEAR package [8] to train the classifiers. When
training the classifier, we randomly sample a portion of the labeled
nodes as the training data and the rest as the test. For BLOGCAT-
ALOG, we randomly sample 10% to 90% of the vertexes as the
training samples and use the left vertexes to test the performance.

For FLICKR and for YOUTUBE, we randomly sample 1% to 10%
of the vertexes as the training samples and use the left vertexes to
test the performance. In addition, we remove the vertexes which
are not labelled by any categories in YOUTUBE. We repeat such a
process 5 times and report the averaged Micro-F1 and Macro-F1.
The results are shown in Figure 4 and Figure 5, respectively.
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Figure 4: Micro-F1 and Macro-F1 on BLOGCATALOG. The
results show that our method achieves better classification per-
formance than that of baselines.

From the results, we have the following observations and analy-
sis5:

• In Figure 4 and Figure 5, the curve of our method is con-
sistently above the curves of baselines. It demonstrates that
the learned network representations of our method can better
generalize to the classification task than baselines.

• In Figure 4 (BLOGCATALOG), the improvement margin of
our method over the baselines is more obvious when the
training percentage decreases from 60% to 10%. It demon-
strates that our method can achieve a more significant im-
provement than baselines when the labelled data is limited.
Such an advantage is especially important for real-world ap-
plications because the labelled data is usually scarce.

• In most cases, the performance of DeepWalk is the worst a-
mong the network embedding methods. The reasons are t-
wofold. First of all, DeepWalk does not have an explicit ob-
jective function to capture the network structure. Secondly,
DeepWalk uses a random walk to enrich the neighbors of ver-
texes, which introduces a lot of noises due to the randomness,
especially for vertexes which have high degrees.

4.5.3 Link Prediction
In this section, we concentrate on the link prediction task and

conduct two experiments. The first evaluates the overall perfor-
mance and the second evaluates that how different sparsity of the
networks affects the performance of different methods.

We use the dataset ARXIV GR-QC in this section. To conduct
the link prediction task in a network, we randomly hide a portion
of the existing links and use the left network to train the network
embedding model. After the training, we can obtain the represen-
tations for each vertex and then use the obtained representations
5Some results such as the observation that our method outperforms
LINE have been listed and explained in Section 4.5.1. Therefore,
we only list some particular observations of this experiment.
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(a) Micro-F1 and Macro-F1 on FLICKR
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(b) Micro-F1 and Macro-F1 on YOUTUBE

Figure 5: Micro-F1 and Macro-F1 on (a) FLICKR and (b) YOUTUBE. The results show that our method achieves the best classification
performance among baselines.

Table 5: precision@k on ARXIV GR-QC for link prediction
Algorithm P@2 P@10 P@100 P@200 P@300 P@500 P@800 P@1000 P@10000

SDNE 1 1 1 1 1* 0.99** 0.97** 0.91** 0.257**
LINE 1 1 1 1 0.99 0.936 0.74 0.79 0.2196

DeepWalk 1 0.8 0.6 0.555 0.443 0.346 0.2988 0.293 0.1591
GraRep 1 0.2 0.04 0.035 0.033 0.038 0.035 0.035 0.019

Common Neighbor 1 1 1 0.96 0.9667 0.98 0.8775 0.798 0.192
LE 1 1 0.93 0.855 0.827 0.66 0.468 0.391 0.05

Significantly outperforms Line at the: ** 0.01 and * 0.05 level, paired t-test.

to predict the unobserved link. Unlike the reconstruction task, this
task predicts the future links instead of reconstructing the existing
links. Therefore, this task can show the performance of predictabil-
ity of different network embedding methods. In addition, we add
Common Neighbor in this task because it has been proved as an
effective method to do link prediction [17].

For the first experiment, we randomly hide 15 precentage of ex-
isting links (about 4000 links) and use the precision@k as the eval-
uation metric of predicting the hidden links. We gradually increase
the k from 2 to 10000 and report the result in Table 5. The best
performance is highlighted in bold. Some of the observations and
analysis on Table 5 are listed as follows:

• The result shows that when k increases, the performance of
our method is consistently better than other network em-
bedding methods. It demonstrates that the representations
learned by our method have much better predicting power
for new link formation.

• When k = 1000, the precision of our method is still higher
than 0.9, but that of other methods quickly drops below 0.8.
It demonstrates that our method can keep a high precision
for links ranking ahead. Such an advantage is very importan-
t for some real-world applications such as recommendation
and information retrieval, because users care more about the
results ranked ahead in such applications.

In the second experiment, we change the sparsity of the networks
by randomly removing a portion of links in the original network
and then follow the aforementioned procedure to report the results
of different network embedding methods. The result is shown in
Figure 6.

The result shows that the margin between LE and SDNE or be-
tween LE and LINE becomes larger when the network is sparser. It
demonstrates that the import of second-order proximity is able to
make the learned representations more robust to sparse networks.
Moreover, when we remove 80% of the links, our method still per-
forms significantly better than baselines. It also demonstrates the
power of SDNE in dealing with sparse networks.
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Figure 6: Performance of network embedding on networks of
different sparsity. It shows that SDNE is more robust to the
sparse network.

4.5.4 Visualization
Another important application for network embedding is to gen-

erate visualizations of a network on a two-dimensional space. There-
fore, we visualize the learned representations of the 20-NEWSGROUP
network. We use the low-dimensional network representations learned
by different network embedding methods as the input to the visu-
alization tool t-SNE [31]. As a result, each newsgroup document is
mapped as a two-dimensional vector. Then we can visualize each
vector as a point on a two dimensional space. For documents which
are labelled as different categories, we use different colors on the
corresponded points. Therefore, a good visualization result is that
the points of the same color are near from each other. The visual-
ization figure is shown in Figure 7. Besides the visualization figure,
similar to [4] we use the Kullback-Leibler divergence as a quanti-
tative evaluation metric. The lower the KL divergence, the better
the performance. The result is shown in Table 6.

From Figure 7, we can see that the results of LE and DeepWalk
are not satisfactory because the points belonging to different cate-
gories are mixed with each other. For LINE, the clusters of different
categories are formed. However, in the center part the documents
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(a) SDNE (b) LINE (c) DeepWalk (d) GraRep (e) LE

Figure 7: Visualization of 20-NEWSGROUP. Each point indicates one document. Color of a point indicates the category of the
document. The blue indicates the topic of rec.sport.baseball, the red indicates the topic of comp.graphics and the green indicates the
topic of talk.politics.guns

50 100 150 200 250
0.2

0.4

0.6

0.8

1

#dimension

pr
ec

is
io

n

 

 

P@100
P@500
P@1000
P@10000

(a) #dimension

0 0.1 0.2 0.3 0.4
0.2

0.4

0.6

0.8

1

alpha

pr
ec

is
io

n

 

 

P@100
P@500
P@1000
P@10000

(b) α

0 10 20 30
0

0.2

0.4

0.6

0.8

1

beta

pr
ec

is
io

n

 

 

P@100
P@500
P@1000
P@10000

(c) β

Figure 8: Parameter w.r.t. the number of embedding dimensions, the value of α and the value of β

Table 6: KL-divergence for the 20-NEWSGROUP dataset
Algorithm SDNE GraRep LINE DeepWalk LE

KL divergence 0.68** 0.73 0.87 2.6 2.95
Significantly outperforms GraRep at the: ** 0.01 level.

of different categories are still mixed with each other. For GraRep,
the result looks better because points of the same color form seg-
mented groups. However, the boundaries of each group are not very
clear. Obviously, the visualization of SDNE performs best in both
the aspects of group separation and boundary aspects. The results
shown in Table 6 also quantitatively demonstrate the superiority of
our method in the visualization task.

4.6 Parameter Sensitivity
We investigate the parameter sensitivity in this section. Specifi-

cally, we evaluate how different numbers of the embedding dimen-
sions and different values of hyper-parameter α and β can affect the
results. We report precision@k on the dataset of ARXIV-GRQC.

Choose an appropriate number of embedding dimensions:
We first show how the dimension of the embedding vectors affects
the performance in Figure 8(a). We can see that initially the per-
formance raises when the number of dimension increases. This is
intuitive as more bits can encode more useful information in the
increasing bits. However, when the number of dimensions continu-
ously increases, the performance starts to drop slowly. The reason
is that too large number of dimensions may introduce noises which
will deteriorate the performance. Overall, it is always important
to determine the number of dimensions for the latent embedding
space, but our method is not very sensitive to this parameter.

Find a good balanced point between first-order and second-
order proximity: Then we show how the value of α affects the per-
formance in Figure 8(b). The parameter of α balances the weight of

the first-order proximity and second-order proximity between ver-
texes. When α = 0, the performance is totally determined by the
second-order proximity. And the larger the α, the more the model
concentrates on the first-order proximity. From Figure 8(b), we can
see that the performance of α = 0.1 and α = 0.2 are better than
that of α = 0. It demonstrates that both first-order and second-
order proximity are essential for network embedding methods to
characterize the network structure.

Concentrate more on the reconstruction error for the non-
zero elements: At last, we show how the value of β affects the
performance. The β controls the reconstruction weight of the non-
zero elements in the training graph. The larger the β, the model
will more prone to reconstruct the non-zero elements. The result is
shown in Figure 8(c). We can see that when β = 1, the result is not
good. Because in this case, the model will equally reconstruct the
non-zero and zero elements in the training network. As we have
explained before, no link between two nodes does not indicate dis-
similarity of these two nodes, but the existence of a link between
two nodes does indicate similarity of these two nodes. Therefore,
the reconstruction of zero elements will introduce noises and thus
deteriorate the performance. However, when β is too large, the per-
formance decreases too. The reason is that, in this case, the model
almost ignores the zero-elements when perform reconstruction and
is prone to maintain similarity between any pair of nodes. How-
ever, many zero elements still indicate the dissimilarity between
vertexes. Therefore, the performance drops. This experiment sug-
gests that we should concentrate more on the reconstruction error
of none-zero elements in the training networks but cannot totally
omit the reconstruction error of zero elements when we perform
network embedding.

5. CONCLUSIONS
In this paper, we propose a Structural Deep Network Embed-
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ding, namely SDNE, to perform network embedding. Specifical-
ly, to capture the highly non-linear network structure, we design
a semi-supervised deep model, which has multiple layers of non-
linear functions. To further address the structure-preserving and
sparsity problem, we jointly exploit the first-order proximity and
second-order proximity to characterize the local and global net-
work structure. By jointly optimizing them in the semi-supervised
deep model, the learned representations are local-global structure-
preserved and are robust to sparse networks. Empirically, we eval-
uate the generated network representations in a variety of network
datasets and applications. The results demonstrate substantial gains
of our method compared with state-of-the-art.

Our future work will focus on how to learn representations for a
new vertex which has no linkage to existing vertexes.
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