
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, MAY 2017 1

Graph Embedding Techniques,
Applications, and Performance: A Survey

Palash Goyal and Emilio Ferrara

Abstract—Graphs, such as social networks, word co-occurrence networks, and communication networks, occur naturally in various
real-world applications. Analyzing them yields insight into the structure of society, language, and different patterns of communication.
Many approaches have been proposed to perform the analysis. Recently, methods which use the representation of graph nodes in
vector space have gained traction from the research community. In this survey, we provide a comprehensive and structured analysis of
various graph embedding techniques proposed in the literature. We first introduce the embedding task and its challenges such as
scalability, choice of dimensionality, and features to be preserved, and their possible solutions. We then present three categories of
approaches based on factorization methods, random walks, and deep learning, with examples of representative algorithms in each
category and analysis of their performance on various tasks. We evaluate these state-of-the-art methods on a few common datasets
and compare their performance against one another and versus non-embedding based models. Our analysis concludes by suggesting
some potential applications and future directions. We finally present the open-source Python library, named GEM (Graph Embedding
Methods), we developed that provides all presented algorithms within a unified interface, to foster and facilitate research on the topic.

Index Terms—Graph embedding techniques, Graph embedding applications, Python Graph Embedding Methods GEM Library

F

1 INTRODUCTION

G RAPH analysis has been attracting increasing atten-
tion in the recent years due the ubiquity of net-

works in the real world. Graphs (a.k.a. networks) have
been used to denote information in various areas including
biology (Protein-Protein interaction networks) [1], social
sciences (friendship networks) [2] and linguistics (word
co-occurrence networks) [3]. Modeling the interactions be-
tween entities as graphs has enabled researchers to under-
stand the various network systems in a systematic man-
ner [4]. For example, social networks have been used for
applications like friendship or content recommendation, as
well as for advertisement [5]. Graph analytic tasks can be
broadly abstracted into the following four categories: (a)
node classification [6], (b) link prediction [5], (c) clustering
[7], and (d) visualization [8]. Node classification aims at
determining the label of nodes (a.k.a. vertices) based on
other labeled nodes and the topology of the network. Link
prediction refers to the task of predicting missing links or
links that are likely to occur in the future. Clustering is used
to find subsets of similar nodes and group them together;
finally, visualization helps in providing insights into the
structure of the network.

In the past few decades, many methods have been pro-
posed for the tasks defined above. For node classification,
there are broadly two categories of approaches — methods
which use random walks to propagate the labels [9], [10],
and methods which extract features from nodes and apply
classifiers on them [11], [12]. Approaches for link predic-
tion include similarity based methods [13], [14], maximum
likelihood models [15], [16], and probabilistic models [17],

• Palash Goyal and Emilio Ferrara are with the Department of Computer
Science, University of Southern California (USC), and with the USC
Information Sciences Institute.

Manuscript received April 24, 2017.

[18]. Clustering methods include attribute based models [19]
and methods which directly maximize (resp., minimize) the
inter-cluster (resp., intra-cluster) distances [7], [20]. This sur-
vey will provide a taxonomy that captures these application
domains and the existing strategies.

Typically, a model defined to solve graph-based prob-
lems either operates on the original graph adjacency matrix
or on a derived vector space. Recently, the methods based
on representing networks in vector space, while preserving
their properties, have become widely popular [21], [22], [23].
Obtaining such an embedding is useful in the tasks defined
above.1 The embeddings are input as features to a model
and the parameters are learned based on the training data.
This obviates the need for complex classification models
which are applied directly on the graph.

1.1 Challenges

Obtaining a vector representation of each node of a graph is
inherently difficult and poses several challenges which have
been driving research in this field:

(i) Choice of property: A “good” vector representation
of nodes should preserve the structure of the graph and the
connection between individual nodes. The first challenge is
choosing the property of the graph which the embedding
should preserve. Given the plethora of distance metrics and
properties defined for graphs, this choice can be difficult
and the performance may depend on the application.

(ii) Scalability: Most real networks are large and contain
millions of nodes and edges — embedding methods should

1. The term graph embedding has been used in the literature in two
ways: to represent an entire graph in vector space, or to represent
each individual node in vector space. In this paper, we use the latter
definition since such representations can be used for tasks like node
classification, differently from the former representation.

ar
X

iv
:1

70
5.

02
80

1v
2

 [
cs

.S
I]

 9
 M

ay
 2

01
7

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, MAY 2017 2

be scalable and able to process large graphs. Defining a scal-
able model can be challenging especially when the model is
aimed to preserve global properties of the network.

(iii) Dimensionality of the embedding: Finding the
optimal dimensions of the representation can be hard. For
example, higher number of dimensions may increase the
reconstruction precision but will have high time and space
complexity. The choice can also be application-specific de-
pending on the approach: E.g., lower number of dimensions
may result in better link prediction accuracy if the chosen
model only captures local connections between nodes.

1.2 Our contribution
This survey provides a three-pronged contribution:

(1) We propose a taxonomy of approaches to graph
embedding, and explain their differences. We define four
different tasks, i.e., application domains of graph embed-
ding techniques. We illustrate the evolution of the topic, the
challenges it faces, and future possible research directions.

(2) We provide a detailed and systematic analysis of
various graph embedding models and discuss their perfor-
mance on the various tasks. For each method, we analyze
the properties preserved and its accuracy, through compre-
hensive comparative evaluation on a few common data sets
and application scenarios.

(3) To foster further research in this topic, we finally
present GEM, the open-source Python library we developed
that provides, under a unified interface, implementations of
all graph embedding methods discussed in this survey. To
the best of our knowledge, this is the first paper to survey
graph embedding techniques and their applications.

1.3 Organization of the survey
The survey is organized as follows. In Section 2, we provide
the definitions required to understand the problem and
models discussed next. Section 3 proposes a taxonomy of
graph embedding approaches and provides a description of
representative algorithms in each category. The list of appli-
cations for which researchers have used the representation
learning approach for graphs is provided in Section 4. We
then describe our experimental setup (Section 5) and eval-
uate the different models (Section 6). Section 7 introduces
our Python library for graph embedding methods. Finally,
in Section 8 we draw our conclusions and discuss potential
applications and future research direction.

2 DEFINITIONS AND PRELIMINARIES

We represent the set {1, · · · , n} by [n] in the rest of the
paper. We start by formally defining several preliminaries
which have been defined similar to Wang et al. [23].
Definition 1. (Graph) A graph G(V,E) is a collection of V =
{v1, · · · , vn} vertices (a.k.a. nodes) and E = {eij}ni,j=1

edges. The adjacency matrix S of graph G contains non-
negative weights associated with each edge: sij ≥ 0. If
vi and vj are not connected to each other, then sij = 0.
For undirected weighted graphs, sij = sji ∀i, j ∈ [n].

The edge weight sij is generally treated as a measure of
similarity between the nodes vi and vj . The higher the edge
weight, the more similar the two nodes are expected to be.

Definition 2. (First-order proximity) Edge weights sij are
also called first-order proximities between nodes vi and
vj , since they are the first and foremost measures of
similarity between two nodes.

We can similarly define higher-order proximities be-
tween nodes. For instance,

Definition 3. (Second-order proximity) The second-order
proximity between a pair of nodes describes the prox-
imity of the pair’s neighborhood structure. Let si =
[si1, · · · , sin] denote the first-order proximity between vi
and other nodes. Then, second-order proximity between
vi and vj is determined by the similarity of si and sj .

Second-order proximity compares the neighborhood of
two nodes and treats them as similar if they have a similar
neighborhood. It is possible to define higher-order proximi-
ties using other metrics, e.g. Katz Index, Rooted PageRank,
Common Neighbors, Adamic Adar, etc. (for detailed defini-
tions, omitted here in the interest of space, see Ou et al. [24]).
Next, we define a graph embedding:

Definition 4. (Graph embedding) Given a graphG = (V,E),
a graph embedding is a mapping f : vi → yi ∈ Rd ∀i ∈
[n] such that d� |V | and the function f preserves some
proximity measure defined on graph G.

An embedding therefore maps each node to a low-
dimensional feature vector and tries to preserve the connec-
tion strengths between vertices. For instance, an embedding
preserving first-order proximity might be obtained by min-
imizing

∑
i,j sij‖yi − yj‖22. Let two node pairs (vi, vj) and

(vi, vk) be associated with connections strengths such that
sij > sik. In this case, vi and vj will be mapped to points in
the embedding space that will be closer each other than the
mapping of vi and vk.

3 ALGORITHMIC APPROACHES: A TAXONOMY

In the past decade, there has been a lot of research in the
field of graph embedding, with a focus on designing new
embedding algorithms. More recently, researchers pushed
forward scalable embedding algorithms that can be applied
on graphs with millions of nodes and edges. In the fol-
lowing, we provide historical context about the research
progress in this domain (§3.1), then propose a taxonomy of
graph embedding techniques (§3.2) covering (i) factorization
methods (§3.3), (ii) random walk techniques (§3.4), (iii) deep
learning (§3.5), and (iv) other miscellaneous strategies (§3.6).

3.1 Graph Embedding Research Context and Evolution

In the early 2000s, researchers developed graph embedding
algorithms as part of dimensionality reduction techniques.
They would construct a similarity graph for a set of n
D-dimensional points based on neighborhood and then
embed the nodes of the graph in a d-dimensional vector
space, where d � D. The idea for embedding was to keep
connected nodes closer to each other in the vector space.
Laplacian Eigenmaps [25] and Locally Linear Embedding
(LLE) [26] are examples of algorithms based on this ratio-
nale. However, scalability is a major issue in this approach,
whose time complexity is O(|V |2).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, MAY 2017 3

Since 2010, research on graph embedding has shifted
to obtaining scalable graph embedding techniques which
leverage the sparsity of real-world networks. For example,
Graph Factorization [21] uses an approximate factorization
of the adjacency matrix as the embedding. LINE [22] extends
this approach and attempts to preserve both first order and
second proximities. HOPE [24] extends LINE to attempt pre-
serve high-order proximity by decomposing the similarity
matrix rather than adjacency matrix using a generalized
Singular Value Decomposition (SVD). SDNE [23] uses au-
toencoders to embed graph nodes and capture highly non-
linear dependencies. The new scalable approaches have a
time complexity of O(|E|).

3.2 A Taxonomy of Graph Embedding Methods

We propose a taxonomy of embedding approaches. We cat-
egorize the embedding methods into three broad categories:
(1) Factorization based, (2) Random Walk based, and (3)
Deep Learning based. Below we explain the characteristics
of each of these categories and provide a summary of a
few representative approaches for each category (cf. Table
1), using the notation presented in Table 2.

3.3 Factorization based Methods

Factorization based algorithms represent the connections
between nodes in the form of a matrix and factorize this
matrix to obtain the embedding. The matrices used to
represent the connections include node adjacency matrix,
Laplacian matrix, node transition probability matrix, and
Katz similarity matrix, among others. Approaches to fac-
torize the representative matrix vary based on the matrix
properties. If the obtained matrix is positive semidefinite,
e.g. the Laplacian matrix, one can use eigenvalue decom-
position. For unstructured matrices, one can use gradient
descent methods to obtain the embedding in linear time.

3.3.1 Locally Linear Embedding (LLE)

LLE [26] assumes that every node is a linear combination
of its neighbors in the embedding space. If we assume that
the adjacency matrix element Wij of graph G represents the
weight of node j in the representation of node i, we define

Yi ≈
∑
j

WijYj ∀i ∈ V.

Hence, we can obtain the embedding Y N×d by minimizing

φ(Y) =
∑
i

|Yi −
∑
j

WijYj |2,

To remove degenerate solutions, the variance of the embed-
ding is constrained as 1

N Y
TY = I . To further remove trans-

lational invariance, the embedding is centered around zero:∑
i Yi = 0. The above constrained optimization problem

can be reduced to an eigenvalue problem, whose solution
is to take the bottom d + 1 eigenvectors of the sparse
matrix (I − W)T (I − W) and discarding the eigenvector
corresponding to the smallest eigenvalue.

3.3.2 Laplacian Eigenmaps

Laplacian Eigenmaps [25] aim to keep the embedding of
two nodes close when the weight Wij is high. Specifically,
they minimize the following objective function

φ(Y) =
1

2

∑
i,j

(Yi − Yj)2Wij

= Y TLY,

where L is the Laplacian of graph G. The solution to this
can be obtained by taking the eigenvectors corresponding
to the d smallest eigenvalues of the normalized Laplacian,
Lnorm = D−1/2LD−1/2.

3.3.3 Graph Factorization (GF)

To the best of our knowledge, Graph Factorization [21] was
the first method to obtain a graph embedding in O(|E|)
time. To obtain the embedding, GF factorizes the adjacency
matrix of the graph, minimizing the following loss function

φ(Y, λ) =
1

2

∑
(i,j)∈E

(Wij− < Yi, Yj >)
2 +

λ

2

∑
i

‖Yi‖2,

where λ is a regularization coefficient. Note that the sum-
mation is over the observed edges as opposed to all possible
edges. This is an approximation in the interest of scalability,
and as such it may introduce noise in the solution. Note that
as the adjacency matrix is often not positive semidefinite, the
minimum of the loss function is greater than 0 even if the
dimensionality of embedding is |V |.

3.3.4 GraRep

GraRep [27] defines the node transition probability as
T = D−1W and preserves k-order proximity by minimizing
‖Xk − Y k

s Y
kT
t ‖2F where Xk is derived from T k (refer to

[27] for a detailed derivation). It then concatenates Y k
s for

all k to form Ys. Note that this is similar to HOPE [24]
which minimizes ‖S − YsY T

t ‖2F where S is an appropriate
similarity matrix. The drawback of GraRep is scalability,
since T k can have O(|V |2) non-zero entries.

3.3.5 HOPE

HOPE [24] preserves higher order proximity by minimizing
‖S−YsY T

t ‖2F , where S is the similarity matrix. The authors
experimented with different similarity measures, including
Katz Index, Rooted Page Rank, Common Neighbors, and
Adamic-Adar score. They represented each similarity mea-
sure as S = M−1g Ml, where both Mg and Ml are sparse.
This enables HOPE to use generalized Singular Value De-
composition (SVD) [30] to obtain the embedding efficiently.

3.4 Random Walk based Methods

Random walks have been used to approximate many prop-
erties in the graph including node centrality [31] and sim-
ilarity [32]. They are especially useful when one can either
only partially observe the graph, or the graph is too large
to measure in its entirety. Embedding techniques using ran-
dom walks on graphs to obtain node representations have
been proposed: DeepWalk and node2vec are two examples.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, MAY 2017 4

TABLE 1
List of graph embedding approaches

Category Year Published Authors/Lab Method Time Complexity Properties preserved

Factorization

2000 Science [26] Roweis & Saul LLE O(|E|d2)
2001 NIPS [25] Belkin & Niyogi Laplacian Eigenmaps O(|E|d2) 1st order proximity
2013 WWW [21] Google Research Graph Factorization O(|E|d)
2015 CIKM [27] IBM Research GraRep O(|V |3)
2016 KDD [24] P. Cui & al. HOPE O(|E|d2) 1− kth order proximities

Random Walk
2014 KDD [28] S. Skienna & al. DeepWalk O(|V |)
2016 KDD [29] J. Leskovec & al. node2vec O(|V |) 1− kth order proximities,

structural equivalence
Deep learning 2016 KDD [23] P. Cui & al. SDNE O(|V ||E|) 1st and 2nd order proximities
Miscellaneous 2015 WWW [22] Microsoft Research LINE O(|E|d) 1st and 2nd order proximities

TABLE 2
Summary of notation

G Graphical representation of the data
V Set of vertices in the graph
E Set of edges in the graph
d Number of dimensions
Y Embedding of the graph, |V | × d

Yi Embedding of node vi, 1× d (also ith row of Y)
Ys Source embedding of a directed graph, |V | × d

Yt Target embedding of a directed graph, |V | × d

W Adjacency matrix of the graph, |V | × |V |
D Diagonal matrix of the degree of each vertex, |V | × |V |
L Graph Laplacian (L = D −W), |V | × |V |

< Yi, Yj > Inner product of Yi and Yj i.e. YiY
T
j

S Similarity matrix of the graph, |V | × |V |

3.4.1 DeepWalk
DeepWalk [28] preserves higher-order proximity between
nodes by maximizing the probability of observing the last k
nodes and the next k nodes in the random walk centered at
vi, i.e. maximizing logPr(vi−k, . . . , vi−1, vi+1, . . . , vi+k|Yi),
where 2k + 1 is the length of the random walk.

3.4.2 node2vec
Similar to DeepWalk [28], node2vec [29] preserves higher-
order proximity between nodes by maximizing the prob-
ability of occurrence of subsequent nodes in fixed length
random walks. The crucial difference from DeepWalk is
that node2vec employs biased-random walks that provide a
trade-off between breadth-first (BFS) and depth-first (DFS)
graph searches, and hence produces higher-quality and
more informative embeddings than DeepWalk. Choosing
the right balance enables node2vec to preserve community
structure as well as structural equivalence between nodes.

3.5 Deep Learning based Methods

The growing research on deep learning has led to a deluge
of deep neural networks based methods applied to graphs
[23], [33], [34]. Deep autoencoders have been e.g. used for
dimensionality reduction [35] due to their ability to model
non-linear structure in the data. Recently, SDNE [23] utilized
this ability of deep autoencoder to generate an embedding
model that can capture non-linearity in graphs.

3.5.1 SDNE
Wang et al. [23] proposed to use deep autoencoders to
preserve the first and second order network proximities.
They achieve this by jointly optimizing the two proximities.
The approach uses highly non-linear functions to obtain the
embedding. The model consists of two parts: unsupervised
and supervised. The former consists of an autoencoder
aiming at finding an embedding for a node which can re-
construct its neighborhood. The latter is based on Laplacian
Eigenmaps [25] which apply a penalty when similar vertices
are mapped far from each other in the embedding space.

3.6 Other Methods

3.6.1 LINE
LINE [22] explicitly defines two functions, one each for first-
and second-order proximities, and minimizes the combi-
nation of the two. The function for first-order proximity
is similar to that of Graph Factorization (GF) [21] in that
they both aim to keep the adjacency matrix and dot product
of embeddings close. The difference is that GF does this
by directly minimizing the difference of the two. Instead,
LINE defines two joint probability distributions for each
pair of vertices, one using adjancency matrix and the other
using the embedding. Then, LINE minimizes the Kullback-
Leibler (KL) divergence of these two distributions. The two
distributions and the objective function are as follows

p1(vi, vj) =
1

1 + exp(− < Yi, Yj >)

p̂1(vi, vj) =
Wij∑

(i,j)∈E Wij

O1 = KL(p̂1, p1)

O1 = −
∑

(i,j)∈E

Wij log p1(vi, vj).

The authors similarly define probability distributions
and objective function for the second-order proximity.

3.7 Discussion

We can interpret embeddings as representations which de-
scribe graph data. Thus, embeddings can yield insights into
the properties of a network. We illustrate this in Figure
1. Consider a complete bipartite graph G. An embedding
algorithm which attempts to keep two connected nodes

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, MAY 2017 5

1

2

3

5

6

7

4 8

(a) Graph G1

0.550 0.525 0.500 0.475 0.450 0.425 0.400
0.510

0.505

0.500

0.495

0.490

1, 2, 3, 4, 5, 6, 7, 8

(b) CPE for G1

0.12 0.14 0.16 0.18 0.20 0.22
0.020

0.025

0.030

0.035

0.040

0.045

0.050

1, 2, 3, 4

5, 6, 7, 8

(c) SPE for G1

(d) Graph G2

1.0 0.8 0.6 0.4 0.2 0.0 0.2
0.6

0.4

0.2

0.0

0.2

0.4

0.6
1

2

3

4,5,6

7,8,9

(e) CPE for G2

1.0 0.8 0.6 0.4 0.2 0.0 0.2
0.6

0.4

0.2

0.0

0.2

0.4

0.6
1 3

2

4,5,6
7,8,9

(f) SPE for G2

Fig. 1. Examples illustrating the effect of type of similarity preserved. Here, CPE and SPE stand for Community Preserving Embedding and
Structural-equivalence Preserving Embedding, respectively.

close (i.e., preserve the community structure), would fail to
capture the structure of the graph — as shown in 1(b). How-
ever, an algorithm which embeds structurally-equivalent
nodes together learns an interpretable embedding — as
shown in 1(c). Similarly, in 1(d) we consider a graph with
two star components connected through a hub. Nodes 1 and
3 are structurally equivalent (they link to the same nodes)
and are clustered together in 1(f), whereas in 1(e) they are
far apart. The classes of algorithms above can be described
in terms of their ability to explain the properties of graphs.

Factorization-based methods are not capable of learning
an arbitrary function, e.g., to explain network connectivity.
Thus, unless explicitly included in their objective function,
they cannot learn structural equivalence. In random walk
based methods, the mixture of equivalences can be con-
trolled to a certain extent by varying the random walk
parameters. Deep learning methods can model a wide range
of functions following the universal approximation theorem
[36]: given enough parameters, they can learn the mix of
community and structural equivalence, to embed the nodes
such that the reconstruction error is minimized. We can
interpret the weights of the autoencoder as a representation
of the structure of the graph. For example, 1(c) plots the
embedding learned by SDNE for the complete bipartite
graph G1. The autoencoder stored the bipartite structure
in weights and achieved perfect reconstruction. Given the
variety of properties of real-world graphs, using general
non-linear models that span a large class of functions is a
promising direction that warrants further exploration.

4 APPLICATIONS

As graph representations, embeddings can be used in a vari-
ety of tasks. These applications can be broadly classified as:
network compression (§4.1), visualization (§4.2), clustering
(§4.3), link prediction (§4.4), and node classification (§4.5).

4.1 Network Compression
Feder et al. [37] introduced the concept of network com-
pression (a.k.a. graph simplification). For a graph G, they
defined a compression G∗ which has smaller number of
edges. The goal was to store the network more efficiently
and run graph analysis algorithms faster. They obtained the
compression graph by partitioning the original graph into
bipartite cliques and replacing them by trees, thus reducing
the number of edges. Over the years, many researchers have
used aggregation based methods [38], [39], [40] to compress
graphs. The main idea in this line of work is to exploit
the link structure of the graph to group nodes and edges.
Navlakha et al. [41] used Minimum Description Length
(MDL) [42] from information theory to summarize a graph
into a graph summary and edge correction.

Similar to these representations, graph embedding can
also be interpreted as a summarization of graph. Wang et
al. [23] and Ou et al. [24] tested this hypothesis explicitly by
reconstructing the original graph from the embedding and
evaluating the reconstruction error. They show that a low
dimensional representation for each node (in the order of
100s) suffices to reconstruct the graph with high precision.

4.2 Visualization
Application of visualizing graphs can be dated back to
1736 when Euler used it to solve ”Konigsberger Brucken-
problem” [43]. In the recent years, graph visualization has
found applications in software engineering [44], electrical
circuits [45], biology [1] and sociology [2]. Battista et al. [45]
and Eades et al. [46] survey a range of methods used to
draw graphs and define aesthetic criteria for this purpose.
Herman et al. [47] generalize this and view it from an infor-
mation visualization perspective. They study and compare
various traditional layouts used to draw graphs including
tree-, 3D- and hyperbolic-based layouts.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, MAY 2017 6

As embedding represents a graph in a vector space,
dimensionality reduction techniques like Principal Compo-
nent Analysis (PCA) [48] and t-distributed stochastic neighbor
embedding (t-SNE) [8] can be applied on it to visualize
the graph. The authors of DeepWalk [28] illustrated the
goodness of their embedding approach by visualizing the
Zachary’s Karate Club network. The authors of LINE [22]
visualized the DBLP co-authorship network, and showed
that LINE is able to cluster together authors in the same
field. The authors of SDNE [23] applied it on 20-Newsgroup
document similarity network to obtain clusters of docu-
ments based on topics.

4.3 Clustering
Graph clustering (a.k.a., network partitioning) can be of
two types: (a) structure based, and (b) attribute based clus-
tering. The former can be further divided into two cate-
gories, namely community based, and structurally equiv-
alent clustering. Structure-based methods [7], [20], [49], aim
to find dense subgraphs with high number of intra-cluster
edges, and low number of inter-cluster edges. Structural
equivalence clustering [50], on the contrary, is designed to
identify nodes with similar roles (like bridges and outliers).
Attribute based methods [19] utilize node labels, in addition
to observed links, to cluster nodes.

White et al. [51] used k-means on the embedding to
cluster the nodes and visualize the clusters obtained on
Wordnet and NCAA data sets verifying that the clusters
obtained have intuitive interpretation. Recent methods on
embedding haven’t explicitly evaluated their models on this
task and thus it is a promising field of research in the graph
embedding community.

4.4 Link Prediction
Networks are constructed from the observed interactions
between entities, which may be incomplete or inaccurate.
The challenge often lies in identifying spurious interactions
and predicting missing information. Link prediction refers
to the task of predicting either missing interactions or links
that may appear in the future in an evolving network.
Link prediction is pervasive in biological network analy-
sis, where verifying the existence of links between nodes
requires costly experimental tests. Limiting the experiments
to links ordered by presence likelihood has been shown to
be very cost effective. In social networks, link prediction
is used to predict probable friendships, which can be used
for recommendation and lead to a more satisfactory user
experience. Liben-Nowell et al. [5], Lu et al. [52] and Hasan et
al. [53] survey the recent progress in this field and categorize
the algorithms into (a) similarity based (local and global)
[13], [14], [54], (b) maximum likelihood based [15], [16] and
(c) probabilistic methods [17], [18], [55].

Embeddings capture inherent dynamics of the network
either explicitly or implicitly thus enabling application to
link prediction. Wang et al. [23] and Ou et al. [24] predict
links from the learned node representations on publicly
available collaboration and social networks. In addition,
Grover et al. [29] apply it to biology networks. They show
that on these data sets links predicted using embeddings
are more accurate than traditional similarity based link
prediction methods described above.

4.5 Node Classification
Often in networks, a fraction of nodes are labeled. In
social networks, labels may indicate interests, beliefs, or
demographics. In language networks, a document may be
labeled with topics or keywords, whereas the labels of
entities in biology networks may be based on functionality.
Due to various factors, labels may be unknown for large
fractions of nodes. For example, in social networks many
users do not provide their demographic information due
to privacy concerns. Missing labels can be inferred using
the labeled nodes and the links in the network. The task
of predicting these missing labels is also known as node
classification. Bhagat et al. [6] survey the methods used in
the literature for this task. They classify the approaches into
two categories, i.e., feature extraction based and random
walk based. Feature-based models [11], [12], [56] generate
features for nodes based on their neighborhood and local
network statistics and then apply a classifier like Logistic
Regression [57] and Naive Bayes [58] to predict the labels.
Random walk based models [9], [10] propagate the labels
with random walks.

Embeddings can be interpreted as automatically ex-
tracted node features based on network structure and thus
falls into the first category. Recent work [22], [23], [24], [28],
[29] has evaluated the predictive power of embedding on
various information networks including language, social,
biology and collaboration graphs. They show that embed-
dings can predict missing labels with high precision.

5 EXPERIMENTAL SETUP

Our experiments evaluate the feature representations ob-
tained using the methods reviewed before on the previous
four application domains. Next, we specify the datasets
and evaluation metrics we used. The experiments were
performed on a Ubuntu 14.04.4 LTS system with 32 cores,
128 GB RAM and a clock speed of 2.6 GHz. The GPU used
for deep network based models was Nvidia Tesla K40C.

5.1 Datasets
We evaluate the embedding approaches on a synthetic and
6 real datasets. The datasets are summarized in Table 3.

SYN-SBM: We generate synthetic graph using Stochastic
Block Model [59] with 1024 nodes and 3 communities. We
set the in-block and cross-block probabilities as 0.1 and 0.01
respectively. As we know the community structure in this
graph, we use it to visualize the embeddings learnt by
various approaches.

KARATE [60]: Zachary’s karate network is a well-known
social network of a university karate club. It has been widely
studied in social network analysis. The network has 34
nodes, 78 edges and 2 communities.

BLOGCATALOG [61]: This is a network of social rela-
tionships of the bloggers listed on the BlogCatalog website.
The labels represent blogger interests inferred through the
metadata provided by the bloggers. The network has 10,312
nodes, 333,983 edges and 39 different labels.

YOUTUBE [62]: This is a social network of Youtube
users. This is a large network containing 1,157,827 nodes
and 4,945,382 edges. The labels represent groups of users
who enjoy common video genres.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, MAY 2017 7

TABLE 3
Dataset Statistics

Synthetic Social Network Collaboration Network Biology Network
Name SYN-SBM KARATE BLOGCATALOG YOUTUBE HEP-TH ASTRO-PH PPI
|V | 1024 34 10,312 1,157,827 7,980 18,772 3,890
|E| 29,833 78 333,983 4,945,382 21,036 396,160 38,739

Avg. degree 58.27 4.59 64.78 8.54 5.27 31.55 19.91
No. of labels 3 4 39 47 - - 50

HEP-TH [63]: The original dataset contains abstracts of
papers in High Energy Physics Theory for the period from Jan-
uary 1993 to April 2003. We create a collaboration network
for the papers published in this period. The network has
7,980 nodes and 21,036 edges.

ASTRO-PH [64]: This is a collaboration network of au-
thors of papers submitted to e-print arXiv during the period
from January 1993 to April 2003. The network has 18,772
nodes and 396,160 edges.

PROTEIN-PROTEIN INTERACTIONS (PPI) [65]: This
is a network of biological interactions between proteins in
humans. This network has 3,890 nodes and 38,739 edges.

5.2 Evaluation Metrics
To evaluate the performance of embedding methods on
graph reconstruction and link prediction, we use Precision
at k (Pr@k) and MeanAveragePrecision(MAP) as our
metrics. For node classification, we use micro-F1 and macro-
F1. These metrics are defined as follows:

Pr@k is the fraction of correct predictions in top k

predictions. It is defined as Pr@k =
|Epred(1:k)∩Eobs|

k , where
Epred(1 : k) are the top k predictions and Eobs are the ob-
served edges. For the task of graph reconstruction,Eobs = E
and for link prediction, Eobs is the set of hidden edges.

MAP estimates precision for every node and computes
the average over all nodes, as follows:

MAP =

∑
iAP (i)

|V |
,

where AP (i) =
∑

k Pr@k(i)·I{Epredi
(k)∈Eobsi

}
|{k:Epredi

(k)∈Eobsi
}| , Pr@k(i) =

|Epredi
(1:k)∩Eobsi

|
k , and Epredi and Eobsi are the predicted

and observed edges for node i respectively.
macro-F1, in a multi-label classification task, is defined

as the average F1 of all the labels, i.e.,

macro− F1 =

∑
l∈L F1(l)

|L|
,

where F1(l) is the F1-score for label l.
micro-F1 calculates F1 globally by counting the total

true positives, false negatives and false positives, giving
equal weight to each instance. It is defined as follows:

micro− F1 =
2 ∗ P ∗R
P +R

,

where P =
∑

l∈L TP (l)∑
l∈L(TP (l)+FP (l)) , and R =

∑
l∈L TP (l)∑

l∈L(TP (l)+FN(l)) ,
are precision (P) and recall (R) respectively, and TP (l),
FP (l) and FN(l) denote the number of true positives,
false positives and false negatives respectively among the
instances which are associated with the label l either in the
ground truth or the predictions.

6 EXPERIMENTS AND ANALYSIS

In this section, we evaluate and compare embedding meth-
ods on the for tasks presented above. For each task, we
show the effect of number of embedding dimensions on
the performance and compare hyper parameter sensitivity
of the methods. Furthermore, we correlate the performance
of embedding techniques on various tasks varying hyper
parameters to test the notion of an “all-good” embedding
which can perform well on all tasks.

6.1 Graph Reconstruction

Embeddings as a low-dimensional representation of the
graph are expected to accurately reconstruct the graph.
Note that reconstruction differs for different embedding
techniques (refer to Section 3). For each method, we re-
construct the proximity of nodes and rank pair of nodes
according to their proximity. Then we calculate the ratio
of real links in top k predictions as the reconstruction
precision. As the number of possible node pairs (N(N − 1))
can be very large for networks with a large number of nodes,
we randomly sample 1024 nodes for evaluation. We obtain
5 such samples for each dataset and calculate the mean
and standard deviation of precision and MAP values for
subgraph reconstruction.

Figure 2 illustrates the reconstruction precision obtained
by 128-dimensional embeddings. We observe that although
performance of methods is dataset dependent, embedding
approaches which preserve higher order proximities in gen-
eral outperform others. Exceptional performance of Lapla-
cian Eigenmaps on SBM can be attributed to the lack of
higher order structure in the data set. We also observe that
SDNE reconstruction with decoder outperforms other meth-
ods whereas Euclidean reconstruction is unable to achieve
high precision. Similarly, embeddings learnt by node2vec
have low reconstruction precision. This may be due to the
highly non-linear dimensionality reduction yielding a non-
linear manifold. However, HOPE, which learns linear em-
beddings but preserves higher order proximity reconstructs
the graph well without any additional parameters.

Effect of dimension. Figure 3 illustrates the effect of
dimension on the reconstruction error. With a couple of
exceptions, as the number of dimensions increase, the MAP
value increases. This is intuitive as higher number of di-
mensions are capable of storing more information. We also
observe that SDNE is able to embed the graphs in 16-
dimensional vector space with high precision although de-
coder parameters are required to obtain such precision.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, MAY 2017 8

20 22 24 26 28 210

k

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
pr

ec
is

io
n@

k

Method
LE
GF
n2v
SDNE
HOPE

(a) SBM

20 22 24 26 28 210

k

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n@
k

Method
LE
GF
n2v
SDNE
HOPE

(b) PPI

20 22 24 26 28 210

k

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n@
k

Method
LE
GF
n2v
SDNE
HOPE

(c) AstroPh

20 22 24 26 28 210

k

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n@
k

Method
LE
GF
n2v
SDNE
HOPE

(d) BlogCatalog

20 22 24 26 28 210

k

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n@
k

Method
LE
GF
n2v
SDNE
HOPE

(e) Hep-th

20 22 24 26 28 210

k

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n@
k

Method
LE
GF
n2v
SDNE
HOPE

(f) Youtube

Fig. 2. Precision@k of graph reconstruction for different data sets (dimension of embedding is 128).

21 22 23 24 25 26 27 28

d

0.2

0.4

0.6

0.8

1.0

M
A

P

Method
LE
GF
n2v
SDNE
HOPE

(a) SBM

21 22 23 24 25 26 27 28

d

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
A

P

Method
LE
GF
n2v
SDNE
HOPE

(b) PPI

21 22 23 24 25 26 27 28

d

0.0

0.1

0.2

0.3

0.4

0.5

M
A

P

Method
LE
GF
n2v
SDNE
HOPE

(c) AstroPh

21 22 23 24 25 26 27 28

d

0.0

0.1

0.2

0.3

0.4

M
A

P

Method
LE
GF
n2v
SDNE
HOPE

(d) BlogCatalog

21 22 23 24 25 26 27 28

d

0.0

0.1

0.2

0.3

0.4

M
A

P

Method
LE
GF
n2v
SDNE
HOPE

(e) Hep-th

21 22 23 24 25 26 27 28

d

0.0

0.1

0.2

0.3

0.4

0.5

M
A

P

Method
LE
GF
n2v
SDNE
HOPE

(f) Youtube

Fig. 3. MAP of graph reconstruction for different data sets with varying dimensions.
6.2 Visualization

Since embedding is a low-dimensional vector representation
of nodes in the graph, it allows us to visualize the nodes to
understand the network topology. As different embedding
methods preserve different structures in the network, their
ability and interpretation of node visualization differ. For
instance, embeddings learnt by node2vec with parameters
set to prefer BFS random walk would cluster structurally
equivalent nodes together. On the other hand, methods
which directly preserve k-hop distances between nodes (GF,

LE and LLE with k = 1 and HOPE and SDNE with k > 1)
cluster neighboring nodes together. We compare the ability
of different methods to visualize nodes on SBM and Karate
graph. For SBM, following [23], we learn a 128-dimensional
embedding for each method and input it to t-SNE [8] to
reduce the dimensionality to 2 and visualize nodes in a 2-
dimensional space.

Visualization of SBM is show in Figure 4. As we know
the underlying community structure, we use the commu-
nity label to color the nodes. We observe that embeddings

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, MAY 2017 9

15 10 5 0 5 10 15

15

10

5

0

5

10

15

(a) LLE

15 10 5 0 5 10 15

25

20

15

10

5

0

(b) GF

20 15 10 5 0 5 10 15 20

15

10

5

0

5

10

(c) node2vec

15 10 5 0 5 10 15 20 25

20

10

0

10

20

(d) HOPE

20 15 10 5 0 5 10 15

20

15

10

5

0

5

10

15

(e) SDNE

15 10 5 0 5 10 15

15

10

5

0

5

10

15

(f) LE

Fig. 4. Visualization of SBM using t-SNE (original dimension of embedding is 128). Each point corresponds to a node in the graph. Color of a node
denotes its community.

0.2 0.1 0.0 0.1 0.2 0.3

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0

1

2

3

4

56

7

8
9

10

11

1213

1415

16

17

18

19

20

21

22
232425

26
27

28

29

30

31
3233

(a) LLE

0.02 0.01 0.00 0.01 0.02 0.03

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0
123

4
5

6

7

89

10

11

12 131415

16 17

181920

21

222324252627282930313233

(b) GF

1.2 1.0 0.8 0.6 0.4 0.2 0.0

8.0

7.5

7.0

6.5

6.0

5.5

5.0

0

1
2

3

4

5
6

7 8 9

10

11
12 13

14
15

16

17

18

19

20

21

22

23

24 25

26

27

28

29

30

31

3233

(c) node2vec

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0

1

2

3

456

7

8

9

10
11

12

13

1415

16

17
18

19

20

21

22

23

2425
26

2728
29 3031

32

33

(d) HOPE

0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

5

6

0

1

2

3

456

7

8

9

10

11

12

131415

16

17

18

19

20

21

22

23

24

25

2627

2829
30
31

32

33

(e) SDNE

0.3 0.2 0.1 0.0 0.1 0.2 0.3

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0

1

2

3

4

56

7

8 9

10

11

12

13

1415

16

17

18

19

20

21

22

23
2425

2627

28

29

30

31

32
33

(f) LE

Fig. 5. Visualization of Karate club graph. Each point corresponds to a node in the graph.
generated by HOPE and SDNE which preserve higher order
proximities well separate the communities although as the
data is well structured LE, GF and LLE are able to capture
community structure to some extent.

We visualize Karate graph (see Figure 5) to illustrate the
properties preserved by embedding methods. LLE and LE
((a) and (f)) attempt to preserve the community structure of
the graph and cluster nodes with high intra-cluster edges
together. GF ((b)) embeds communities very closely and
keeps leaf nodes far away from other nodes. In (d), we

observe that HOPE embeds nodes 16 and 21, whose Katz
similarity in the original graph is very low (0.0006), farthest
apart (considering dot product similarity). node2vec and
SDNE ((c) and (e)) preserve a mix of community struc-
ture and structural property of the nodes. Nodes 32 and
33, which are both high degree hubs and central in their
communities, are embedded together and away from low
degree nodes. Also, they are closer to nodes which belong
to their communities. SDNE embeds node 0, which acts a
bridge between communities, far away from other nodes.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, MAY 2017 10

6.3 Link Prediction
Another important application of graph embedding is pre-
dicting unobserved links in the graph. A good network rep-
resentation should be able to capture the inherent structure
of graph well enough to predict the likely but unobserved
links. To test the performance of different embedding meth-
ods on this task, for each data set we randomly hide 20%
of the network edges. We learn the embedding using the
rest of the 80% edges and predict the most likely edges
which are not observed in the training data from the learnt
embedding. As with graph reconstruction, we generate 5
random subgraphs with 1024 nodes and test the predicted
links against the held-out links in the subgraphs.

Figure 6 shows the link prediction results with 128-
dimensional embeddings. Here we can see that the perfor-
mance of methods is highly data set dependent. node2vec
achieves the best performance on BlogCatalog but performs
poorly on other data sets. HOPE achieves good performance
on all data sets which implies that preserving higher order
proximities is conducive to predicting unobserved links.

Effect of dimension. Figure 7 illustrates the effect of
embedding dimension on link prediction. We make two
observations. Firstly, in PPI and BlogCatalog, unlike graph
reconstruction performance does not improve as the number
of dimensions increase. This may be because with more
parameters the models overfit on the observed links and are
unable to predict unobserved links. Secondly, even on the
same data set, relative performance of methods depends on
the embedding dimension. In PPI, HOPE outperforms other
methods for all dimensions, except 4 for which embedding
generated by node2vec achieves higher link prediction MAP.

6.4 Node Classification
Predicting node labels using network topology is widely
popular in network analysis and has variety of applications,
including document classification and interest prediction.
A good network embedding should capture the network
structure and hence be useful for node classification. We
compare the effectiveness of embedding methods on this
task by using the generated embedding as node features
to classify the nodes. The node features are input to a
one-vs-rest logistic regression using the LIBLINEAR library.
For each data set, we randomly sample 10% to 90% of
nodes as training data and evaluate the performance on
the remaining nodes. We perform this split 5 times and
report the mean with confidence interval. For data sets with
multiple labels per node, we assume that we know how
many labels to predict.

Figure 8 shows the results of our experiments. We can see
that node2vec outperforms other methods on the task of node
classification. As mentioned earlier (§3), node2vec preserves
homophily as well as structural equivalence between nodes.
Results suggest this can be useful in node classification: e.g.,
in BlogCatalog users may have similar interests, yet connect
to others based on social ties rather than interests overlap.
Similarly, proteins in PPI may be related in functionality and
interact with similar proteins but may not assist each other.
However, in SBM, other methods outperform node2vec as
labels reflect communities yet there is no structural equiva-
lence between nodes.

Effect of dimension. Figure 9 illustrates the effect of
embedding dimensions on node classification. As with link
prediction, we observe that performance often saturates or
deteriorates after certain number of dimensions. This may
suggest overfitting on the training data. As SBM exhibits
very structured communities, an 8-dimensional embedding
suffices to predict the communities. node2vec achieves best
performance on PPI and BlogCat with 128 dimensions.

7 A PYTHON LIBRARY FOR GRAPH EMBEDDING

We released an open-source Python library, GEM (Graph
Embedding Methods), which provides a unified interface to
the implementations of all the methods presented here, and
their evaluation metrics. The library supports both weighted
and unweighted graphs. GEM’s hierarchical design and
modular implementation should help the users to test the
implemented methods on new datasets as well as serve as a
platform to develop new approaches with ease.

GEM2 provides implementations of Locally Linear Em-
bedding [26], Laplacian Eigenmaps [25], Graph Factoriza-
tion [21], HOPE [24], SDNE [23] and node2vec [29]. For
node2vec, we use the C++ implementation provided by the
authors [64] and yield a Python interface. In addition, GEM
provides an interface to evaluate the learned embedding
on the four tasks presented above. The interface is flexible
and supports multiple edge reconstruction metrics includ-
ing cosine similarity, euclidean distance and decoder based
(for autoencoder-based models). For multi-labeled node
classification, the library uses one-vs-rest logistic regression
classifiers and supports the use of other ad hoc classifiers.

8 CONCLUSION AND FUTURE WORK

This review of graph embedding techniques covered three
broad categories of approaches: factorization based, ran-
dom walk based and deep learning based. We studied the
structure and properties preserved by various embedding
approaches and characterized the challenges faced by graph
embedding techniques in general as well as each category
of approaches. We reported various applications of embed-
ding and their respective evaluation metrics. We empirically
evaluated the surveyed methods on these applications using
several publicly available real networks and compared their
strengths and weaknesses. Finally, we presented an open-
source Python library, named GEM, we developed with
implementation of the embedding methods surveyed and
evaluation tasks including graph reconstruction, link pre-
diction, node classification and visualization.

We believe there are three promising research directions
in the field of graph embedding: (1) exploring non-linear
models, (2) studying evolution of networks, and (3) gener-
ate synthetic networks with real-world characteristics. As
shown in the survey, general non-linear models (e.g. deep
learning based) have shown great promise in capturing the
inherent dynamics of the graph. They have the ability to
approximate an arbitrary function which best explains the
network edges and this can result in highly compressed
representations of the network. One drawback of such
approaches is the limited interpretability. Further research

2. https://github.com/palash1992/GEM

https://github.com/palash1992/GEM

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, MAY 2017 11

20 22 24 26 28 210

k

0.00

0.02

0.04

0.06

0.08

0.10
pr

ec
is

io
n@

k
Method

LE
GF
n2v
SDNE
HOPE

(a) PPI

20 22 24 26 28 210

k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

pr
ec

is
io

n@
k

Method
LE
GF
n2v
SDNE
HOPE

(b) AstroPh

20 22 24 26 28 210

k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

pr
ec

is
io

n@
k

Method
LE
GF
n2v
SDNE
HOPE

(c) BlogCatalog

20 22 24 26 28 210

k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
ec

is
io

n@
k

Method
LE
GF
n2v
SDNE
HOPE

(d) Hep-th

Fig. 6. Precision@k of link prediction for different data sets (dimension of embedding is 128).

21 22 23 24 25 26 27 28

d

0.02

0.04

0.06

0.08

M
A

P

Method
LE
GF
n2v
SDNE
HOPE

(a) PPI

21 22 23 24 25 26 27 28

d

0.00

0.05

0.10

0.15

0.20

0.25
M

A
P

Method
LE
GF
n2v
SDNE
HOPE

(b) AstroPh

21 22 23 24 25 26 27 28

d

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
A

P

Method
LE
GF
n2v
SDNE
HOPE

(c) BlogCatalog

21 22 23 24 25 26 27 28

d

0.00

0.05

0.10

0.15

0.20

M
A

P

Method
LE
GF
n2v
SDNE
HOPE

(d) Hep-th

Fig. 7. MAP of link prediction for different data sets with varying dimensions.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train ratio

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ic

ro
F

1
sc

or
e Method

LE
GF
n2v
SDNE
HOPE

(a) SBM Micro-F1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train ratio

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

M
ic

ro
F

1
sc

or
e

Method
LE
GF
n2v
SDNE
HOPE

(b) PPI Micro-F1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train ratio

0.15

0.20

0.25

0.30

0.35

0.40

M
ic

ro
F

1
sc

or
e

Method
LE
GF
n2v
SDNE
HOPE

(c) BlogCatalog Micro-F1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train ratio

0.2

0.4

0.6

0.8

1.0

M
ac

ro
F

1
sc

or
e Method

LE
GF
n2v
SDNE
HOPE

(d) SBM Macro-F1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train ratio

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
ac

ro
F

1
sc

or
e Method

LE
GF
n2v
SDNE
HOPE

(e) PPI Macro-F1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train ratio

0.05

0.10

0.15

0.20

0.25

M
ac

ro
F

1
sc

or
e

Method
LE
GF
n2v
SDNE
HOPE

(f) BlogCatalog Macro-F1

Fig. 8. Micro-F1 and Macro-F1 of node classification for different data sets varying the train-test split ratio (dimension of embedding is 128).
focusing on interpreting the embedding learned by these
models can be very fruitful. Utilizing embedding to study
graph evolution is a new research area which needs further
exploration. Recent work by [66] and [67] pursued this line
of thought and illustrate how embeddings can be used for
dynamic graphs. Generating synthetic networks with real-
world characteristics has been a popular field of research
[68] primarily for ease of simulations. Low dimensional
vector representation of real graphs can help understand
their structure and thus be useful to generate synthetic
graphs with real world characteristics. Learning embedding
with a generative model can help us in this regard.

ACKNOWLEDGMENTS

The authors are supported by DARPA (grant number
D16AP00115), IARPA (contract number 2016-16041100002),
and AFRL (contract number FA8750-16-C-0112). The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of DARPA,
IARPA, AFRL, or the U.S. Government. The U.S. Govern-
ment had no role in study design, data collection and anal-
ysis, decision to publish, or preparation of the manuscript.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for governmental purposes notwithstanding
any copyright annotation therein.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, MAY 2017 12

21 22 23 24 25 26 27 28

d

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

ic
ro

F
1

sc
or

e Method
LE
GF
n2v
SDNE
HOPE

(a) SBM Micro-F1

21 22 23 24 25 26 27 28

d

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

M
ic

ro
F

1
sc

or
e

Method
LE
GF
n2v
SDNE
HOPE

(b) PPI Micro-F1

21 22 23 24 25 26 27 28

d

0.20

0.25

0.30

0.35

M
ic

ro
F

1
sc

or
e

Method
LE
GF
n2v
SDNE
HOPE

(c) BlogCatalog Micro-F1

21 22 23 24 25 26 27 28

d

0.2

0.4

0.6

0.8

1.0

M
ac

ro
F

1
sc

or
e Method

LE
GF
n2v
SDNE
HOPE

(d) SBM Macro-F1

21 22 23 24 25 26 27 28

d

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

M
ac

ro
F

1
sc

or
e

Method
LE
GF
n2v
SDNE
HOPE

(e) PPI Macro-F1

21 22 23 24 25 26 27 28

d

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

M
ac

ro
F

1
sc

or
e

Method
LE
GF
n2v
SDNE
HOPE

(f) BlogCatalog Macro-F1

Fig. 9. Micro-F1 and Macro-F1 of node classification for different data sets varying the number of dimensions. The train-test split is 50%.
REFERENCES

[1] A. Theocharidis, S. Van Dongen, A. Enright, and T. Freeman,
“Network visualization and analysis of gene expression data using
biolayout express3d,” Nature protocols, vol. 4, pp. 1535–1550, 2009.

[2] L. C. Freeman, “Visualizing social networks,” Journal of social
structure, vol. 1, no. 1, p. 4, 2000.

[3] R. F. i Cancho and R. V. Solé, “The small world of human
language,” Proceedings of the Royal Society of London B: Biological
Sciences, vol. 268, no. 1482, pp. 2261–2265, 2001.

[4] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Den-
sification and shrinking diameters,” ACM Transactions on Knowl-
edge Discovery from Data (TKDD), vol. 1, no. 1, p. 2, 2007.

[5] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem
for social networks,” journal of the Association for Information Science
and Technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[6] S. Bhagat, G. Cormode, and S. Muthukrishnan, “Node classifica-
tion in social networks,” in Social network data analytics. Springer,
2011, pp. 115–148.

[7] C. H. Ding, X. He, H. Zha, M. Gu, and H. D. Simon, “A min-
max cut algorithm for graph partitioning and data clustering,” in
International Conference on Data Mining. IEEE, 2001, pp. 107–114.

[8] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[9] A. Azran, “The rendezvous algorithm: Multiclass semi-supervised
learning with markov random walks,” in Proceedings of the 24th
international conference on Machine learning, 2007, pp. 49–56.

[10] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar,
D. Ravichandran, and M. Aly, “Video suggestion and discovery
for youtube: taking random walks through the view graph,” in
Proc. 17th int. conference on World Wide Web, 2008, pp. 895–904.

[11] S. Bhagat, I. Rozenbaum, and G. Cormode, “Applying link-based
classification to label blogs,” in Proceedings of WebKDD: workshop
on Web mining and social network analysis. ACM, 2007, pp. 92–101.

[12] Q. Lu and L. Getoor, “Link-based classification,” in ICML, vol. 3,
no. 2003, 2003, pp. 496–503.

[13] P. Jaccard, Etude comparative de la distribution florale dans une portion
des Alpes et du Jura. Impr. Corbaz, 1901.

[14] L. A. Adamic and E. Adar, “Friends and neighbors on the web,”
Social networks, vol. 25, no. 3, pp. 211–230, 2003.

[15] A. Clauset, C. Moore, and M. E. Newman, “Hierarchical structure
and the prediction of missing links in networks,” Nature, vol. 453,
no. 7191, pp. 98–101, 2008.

[16] H. C. White, S. A. Boorman, and R. L. Breiger, “Social structure
from multiple networks. i. blockmodels of roles and positions,”
American journal of sociology, vol. 81, no. 4, pp. 730–780, 1976.

[17] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer, “Learning
probabilistic relational models,” in IJCAI, 1999, pp. 1300–1309.

[18] D. Heckerman, C. Meek, and D. Koller, “Probabilistic entity-
relationship models, prms, and plate models,” Introduction to
statistical relational learning, pp. 201–238, 2007.

[19] Y. Zhou, H. Cheng, and J. X. Yu, “Graph clustering based on struc-
tural/attribute similarities,” Proceedings of the VLDB Endowment,
vol. 2, no. 1, pp. 718–729, 2009.

[20] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Transactions on pattern analysis and machine intelligence, vol. 22,
no. 8, pp. 888–905, 2000.

[21] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski,
and A. J. Smola, “Distributed large-scale natural graph factoriza-
tion,” in Proceedings of the 22nd international conference on World
Wide Web. ACM, 2013, pp. 37–48.

[22] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings 24th
International Conference on World Wide Web, 2015, pp. 1067–1077.

[23] D. Wang, P. Cui, and W. Zhu, “Structural deep network em-
bedding,” in Proceedings of the 22nd International Conference on
Knowledge Discovery and Data Mining. ACM, 2016, pp. 1225–1234.

[24] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric tran-
sitivity preserving graph embedding,” in Proc. of ACM SIGKDD,
2016, pp. 1105–1114.

[25] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral
techniques for embedding and clustering,” in NIPS, vol. 14, no. 14,
2001, pp. 585–591.

[26] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction
by locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–
2326, 2000.

[27] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations
with global structural information,” in Proceedings of the 24th ACM
International on Conference on Information and Knowledge Manage-
ment. ACM, 2015, pp. 891–900.

[28] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings 20th international confer-
ence on Knowledge discovery and data mining, 2014, pp. 701–710.

[29] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in Proceedings of the 22nd International Conference on
Knowledge Discovery and Data Mining. ACM, 2016, pp. 855–864.

[30] C. F. Van Loan, “Generalizing the singular value decomposition,”
SIAM Journal on Numerical Analysis, vol. 13, no. 1, pp. 76–83, 1976.

[31] M. E. Newman, “A measure of betweenness centrality based on
random walks,” Social networks, vol. 27, no. 1, pp. 39–54, 2005.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, MAY 2017 13

[32] F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens, “Random-
walk computation of similarities between nodes of a graph with
application to collaborative recommendation,” IEEE Transactions
on knowledge and data engineering, vol. 19, no. 3, 2007.

[33] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning
graph representations,” in Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence. AAAI Press, 2016, pp. 1145–1152.

[34] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional
neural networks for graphs,” in Proceedings of the 33rd annual
international conference on machine learning. ACM, 2016.

[35] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE transactions on pattern
analysis and machine intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[36] K. Hornik, M. Stinchcombe, and H. White, “Universal approxima-
tion of an unknown mapping and its derivatives using multilayer
feedforward networks,” Neural networks, vol. 3, pp. 551–560, 1990.

[37] T. Feder and R. Motwani, “Clique partitions, graph compression
and speeding-up algorithms,” in Proceedings of the twenty-third
annual ACM symposium on Theory of computing, 1991, pp. 123–133.

[38] P. M. Pardalos and J. Xue, “The maximum clique problem,” Journal
of global Optimization, vol. 4, no. 3, pp. 301–328, 1994.

[39] Y. Tian, R. A. Hankins, and J. M. Patel, “Efficient aggregation for
graph summarization,” in Proceedings of the SIGMOD international
conference on Management of data. ACM, 2008, pp. 567–580.

[40] H. Toivonen, F. Zhou, A. Hartikainen, and A. Hinkka, “Compres-
sion of weighted graphs,” in Proc. 17th international conference on
Knowledge discovery and data mining, 2011, pp. 965–973.

[41] S. Navlakha, R. Rastogi, and N. Shrivastava, “Graph summa-
rization with bounded error,” in Proceedings of the international
conference on Management of data. ACM, 2008, pp. 419–432.

[42] J. Rissanen, “Modeling by shortest data description,” Automatica,
vol. 14, no. 5, pp. 465–471, 1978.

[43] D. Jungnickel and T. Schade, Graphs, networks and algorithms.
Springer, 2005.

[44] E. R. Gansner and S. C. North, “An open graph visualization
system and its applications to software engineering,” Software
Practice and Experience, vol. 30, no. 11, pp. 1203–1233, 2000.

[45] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, “Algorithms
for drawing graphs: an annotated bibliography,” Computational
Geometry, vol. 4, no. 5, pp. 235–282, 1994.

[46] P. Eades and L. Xuemin, “How to draw a directed graph,” in Visual
Languages, 1989., IEEE Workshop on. IEEE, 1989, pp. 13–17.

[47] I. Herman, G. Melançon, and M. S. Marshall, “Graph visualization
and navigation in information visualization: A survey,” IEEE Trans
on visualization and computer graphics, vol. 6, no. 1, pp. 24–43, 2000.

[48] K. Pearson, “Liii. on lines and planes of closest fit to systems of
points in space,” The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.

[49] M. E. Newman and M. Girvan, “Finding and evaluating commu-
nity structure in networks,” Physical review E, vol. 69, no. 2, p.
026113, 2004.

[50] X. Xu, N. Yuruk, Z. Feng, and T. A. Schweiger, “Scan: a structural
clustering algorithm for networks,” in Proceedings 13th international
conference on Knowledge discovery and data mining, 2007, pp. 824–833.

[51] S. White and P. Smyth, “A spectral clustering approach to finding
communities in graphs,” in Proceedings of the 2005 SIAM interna-
tional conference on data mining. SIAM, 2005, pp. 274–285.

[52] L. Lü and T. Zhou, “Link prediction in complex networks: A
survey,” Physica A: Statistical Mechanics and its Applications, vol.
390, no. 6, pp. 1150–1170, 2011.

[53] M. Al Hasan and M. J. Zaki, “A survey of link prediction in social
networks,” in Social network data analytics, 2011, pp. 243–275.

[54] L. Katz, “A new status index derived from sociometric analysis,”
Psychometrika, vol. 18, no. 1, pp. 39–43, 1953.

[55] K. Yu, W. Chu, S. Yu, V. Tresp, and Z. Xu, “Stochastic relational
models for discriminative link prediction,” in NIPS, 2006, pp.
1553–1560.

[56] J. Neville and D. Jensen, “Iterative classification in relational data,”
in Proc. Workshop on Learning Statistical Models from Relational Data,
2000, pp. 13–20.

[57] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied
logistic regression. John Wiley & Sons, 2013, vol. 398.

[58] A. McCallum, K. Nigam et al., “A comparison of event models for
naive bayes text classification,” in AAAI-98 workshop on learning for
text categorization, vol. 752. Citeseer, 1998, pp. 41–48.

[59] Y. J. Wang and G. Y. Wong, “Stochastic blockmodels for directed
graphs,” Journal of the American Statistical Association, vol. 82, no.
397, pp. 8–19, 1987.

[60] W. W. Zachary, “An information flow model for conflict and fission
in small groups,” Journal of anthropological research, vol. 33, no. 4,
pp. 452–473, 1977.

[61] L. Tang and H. Liu, “Relational learning via latent social di-
mensions,” in Proceedings of the 15th international conference on
Knowledge discovery and data mining. ACM, 2009, pp. 817–826.

[62] ——, “Scalable learning of collective behavior based on sparse
social dimensions,” in Proceedings of the 18th ACM conference on
Information and knowledge management. ACM, 2009, pp. 1107–1116.

[63] J. Gehrke, P. Ginsparg, and J. Kleinberg, “Overview of the 2003
kdd cup,” ACM SIGKDD Explorations, vol. 5, no. 2, 2003.

[64] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, 2014.

[65] B.-J. Breitkreutz, C. Stark, T. Reguly, L. Boucher, A. Breitkreutz,
M. Livstone, R. Oughtred, D. H. Lackner, J. Bähler, V. Wood
et al., “The biogrid interaction database: 2008 update,” Nucleic acids
research, vol. 36, no. suppl 1, pp. D637–D640, 2008.

[66] H. Dai, Y. Wang, R. Trivedi, and L. Song, “Deep coevolutionary
network: Embedding user and item features for recommenda-
tion,” 2017.

[67] L. Zhu, D. Guo, J. Yin, G. Ver Steeg, and A. Galstyan, “Scalable
temporal latent space inference for link prediction in dynamic
social networks,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 28, no. 10, pp. 2765–2777, 2016.

[68] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic block-
models: First steps,” Social networks, vol. 5, no. 2, pp. 109–137, 1983.

Palash Goyal is a PhD student at the University of Southern California.
His research is funded by IARPA. His research focuses on analyzing
graphs and designing models to understand their behavior.

Emilio Ferrara is Research Assistant Professor at the University of
Southern California, Research Leader at the USC Information Sciences
Institute, and Principal Investigator at the Machine Intelligence and
Data Science (MINDS) research group. He was named IBM Watson
Big Data Influencer in 2015, he is a recipient of the 2016 DARPA
Young Faculty Award, and of the 2016 Complex System Society Junior
Scientific Award. Ferrara’s research focuses on designing machine-
learning systems to model individual behavior in techno-social systems
and characterize information diffusion in such environments.

http://snap.stanford.edu/data

	1 Introduction
	1.1 Challenges
	1.2 Our contribution
	1.3 Organization of the survey

	2 Definitions and Preliminaries
	3 Algorithmic Approaches: A Taxonomy
	3.1 Graph Embedding Research Context and Evolution
	3.2 A Taxonomy of Graph Embedding Methods
	3.3 Factorization based Methods
	3.3.1 Locally Linear Embedding (LLE)
	3.3.2 Laplacian Eigenmaps
	3.3.3 Graph Factorization (GF)
	3.3.4 GraRep
	3.3.5 HOPE

	3.4 Random Walk based Methods
	3.4.1 DeepWalk
	3.4.2 node2vec

	3.5 Deep Learning based Methods
	3.5.1 SDNE

	3.6 Other Methods
	3.6.1 LINE

	3.7 Discussion

	4 Applications
	4.1 Network Compression
	4.2 Visualization
	4.3 Clustering
	4.4 Link Prediction
	4.5 Node Classification

	5 Experimental Setup
	5.1 Datasets
	5.2 Evaluation Metrics

	6 Experiments and Analysis
	6.1 Graph Reconstruction
	6.2 Visualization
	6.3 Link Prediction
	6.4 Node Classification

	7 A Python Library for Graph Embedding
	8 Conclusion and Future Work
	References
	Biographies
	Palash Goyal
	Emilio Ferrara

