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ABSTRACT
A network embedding is a representation of a large graph in a low-
dimensional space, where vertices are modeled as vectors. The
objective of a good embedding is to preserve the proximity (i.e.,
similarity) between vertices in the original graph. This way, typ-
ical search and mining methods (e.g., similarity search, kNN re-
trieval, classification, clustering) can be applied in the embedded
space with the help of off-the-shelf multidimensional indexing ap-
proaches. Existing network embedding techniques focus on homo-
geneous networks, where all vertices are considered to belong to
a single class. Therefore, they are weak in supporting similarity
measures for heterogeneous networks. In this paper, we present
an effective heterogeneous network embedding approach for meta
path based proximity measures. We define an objective function,
which aims at minimizing the distance between two distributions,
one modeling the meta path based proximities, the other modeling
the proximities in the embedded vector space. We also investigate
the use of negative sampling to accelerate the optimization process.
As shown in our extensive experimental evaluation, our method
creates embeddings of high quality and has superior performance
in several data mining tasks compared to state-of-the-art network
embedding methods.

Keywords
heterogeneous information network; meta path; network embed-
ding

1. INTRODUCTION
The availability and growth of large networks, such as social net-

works, co-author networks, and knowledge base graphs, has given
rise to numerous applications that search and analyze information
in them. However, for very large graphs, common information re-
trieval and mining tasks such as link prediction, node classification,
clustering, and recommendation are time-consuming. This moti-
vated a lot of interest [6, 22, 31] in approaches that embed the net-
work into a low-dimensional space, such that the original vertices
of the graph are represented as vectors. A good embedding pre-
serves the proximity (i.e., similarity) between vertices in the origi-
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nal graph. Search and analysis can then be applied on the embed-
ding with the help of efficient algorithms and indexing approaches
for vector spaces.

Heterogeneous information networks (HINs), such as DBLP [15],
YAGO [26], DBpedia [2] and Freebase [4], are networks with nodes
and edges that may belong to multiple types. These graph data
sources contain a vast number of interrelated facts, and they can fa-
cilitate the discovery of interesting knowledge [11,14,17,20]. Fig-
ure 1 illustrates a HIN, which describes the relationships between
objects (graph vertices) of different types (e.g., author, paper, venue
and topic). For example, Jiawei Han (a1) has written a WWW paper
(p1), which mentions topic “Embed” (t1).

Compared to homogeneous networks, the relationships between
objects in a HIN are much more complex. The proximity among
objects in a HIN is not just a measure of closeness or distance, but
it is also based on semantics. For example, in the HIN in Figure 1,
author a1 is close to both a2 and v1, but these relationships have
different semantics. a2 is a co-author of a1, while v1 is a venue
where a1 has a paper published.

Meta path [29] is a recently proposed proximity model in HINs.
A meta path is a sequence of object types with edge types in be-
tween modeling a particular relationship. For example, A→ P →
V → P → A is a meta path, which states that two authors (A)
are related by their publications in the same venue (V ). Based on
meta paths, several proximity measures have been proposed. For
example, PathCount [29] counts the number of meta path instances
connecting the two objects, while Path Constrained Random Walk
(PCRW) [14] measures the probability that a random walk start-
ing from one object would reach the other via a meta path in-
stance. These measures have been shown to have better perfor-
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mance compared to proximity measures not based on meta paths,
in various important tasks, such as k-NN search [29], link predic-
tion [27, 28, 35], recommendation [34], classification [12, 13] and
clustering [30].

Although there are a few works on embedding HINs [7, 21],
none of them is designed for meta path based proximity in gen-
eral HINs. To fill this gap, in this paper, we propose HINE, which
learns a transformation of the objects (i.e., vertices) in a HIN to
a low-dimensional space, such that the meta path based proximi-
ties between objects are preserved. More specifically, we define
an appropriate objective function that preserves the relative prox-
imity based rankings the vertices in the original and the embedded
space. As shown in [29], meta paths with too large lengths are not
very informative; therefore, we only consider meta paths up to a
given length threshold l. We also investigate the use of negative
sampling [19] in order to accelerate the optimization process.

We conduct extensive experiments on four real HIN datasets to
compare our proposed HINE method with state-of-the-art network
embedding methods (i.e., LINE [31] and DeepWalk [22]), which do
not consider meta path based proximity. Our experimental results
show that our HINE method with PCRW as the meta path based
proximity measure outperforms all alternative approaches in most
of the qualitative measures used.

The contributions of our paper are summarized as follows:

• This is the first work that studies the embedding of HINs
for the preservation of meta path based proximities. This is
an important subject, because meta path based proximity has
been proved to be more effective than traditional structured
based proximities.

• We define an objective function, which explicitly aims at
minimizing the the distance between two probability distri-
butions, one modeling the meta path based proximities be-
tween the objects, the other modeling the proximities in the
low-dimensional space.

• We investigate the use of negative sampling to accelerate the
process of model optimization.

• We conduct extensive experiments on four real HINs, which
demonstrate that our HINE method is the most effective ap-
proach for preserving the information of the original net-
works; HINE outperforms the state-of-the-art embedding meth-
ods in many data mining tasks, e.g., classification, clustering
and visualization.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work. In Section 3, we formally define the problem.
Section 4 describes our HINE method. In Section 5, we report our
experimental results. Section 6 concludes the paper.

2. RELATED WORK

2.1 Heterogeneous Information Networks
The heterogeneity of nodes and edges in HINs bring challenges,

but also opportunities to support important applications. Lately,
there has been an increasing interest in both academia and industry
in the effective search and analysis of information from HINs. The
problem of classifying objects in a HIN by authority propagation is
studied in [12]. Follow-up work [13] investigates a collective clas-
sification problem in HINs using meta path based dependencies.
PathSelClus [30] is a link based clustering algorithm for HINs, in
which a user can specify her clustering preference by providing

some examples as seeds. The problem of link prediction on HINs
has been extensively studied [27, 28, 35], due to its important ap-
plications (e.g., in recommender systems). A related problem is
entity recommendation in HINs [34], which takes advantage of the
different types of relationships in HINs to provide better recom-
mendations.

2.2 Meta Path and Proximity Measures
Meta path [29] is a general model for the proximity between ob-

jects in a HIN. Several measures have been proposed for the prox-
imity between objects w.r.t. a given meta path P . PathCount mea-
sures the number of meta path instances connecting the two objects,
and PathSim is a normalized version of it [29]. Path constrained
random walk (PCRW) was firstly proposed [14] for the task of re-
lationship retrieval over bibliographic networks. Later, [17] pro-
posed an automatic approach to learn the best combination of meta
paths and their corresponding weights based on PCRW. Finally,
HeteSim [25] is recently proposed as an extension of meta path
based SimRank. In this paper, we focus on the two most popular
proximity measures, i.e., PathCount and PCRW.

2.3 Network Embedding
Network embedding aims at learning low-dimensional represen-

tations for the vertices of a network, such that the proximities among
them in the original space are preserved in the low-dimensional
space. Traditional dimensionality reduction techniques [3,8,24,32]
typically construct the affinity graph using the feature vectors of the
vertexes and then compute the eigenvectors of the affinity graph.
Graph factorization [1] finds a low-dimensional representation of
a graph through matrix factorization, after representing the graph
as an adjacency matrix. However, since these general techniques
are not designed for networks, they do not necessarily preserve the
global network structure, as pointed out in [31].

Recently, DeepWalk [22] is proposed as a method for learn-
ing the latent representations of the nodes of a social network,
from truncated random walks in the network. DeepWalk com-
bines random walk proximity with the SkipGram model [18], a lan-
guage model that maximizes the co-occurrence probability among
the words that appear within a window in a sentence. However,
DeepWalk has certain weaknesses when applied to our problem set-
tings. First, the random walk proximity it adopts does not consider
the heterogeneity of a HIN. In this paper, we use PCRW, which
extends random walk based proximity to be applied for HINs. Sec-
ond, as pointed out in [31], DeepWalk can only preserve second-
order proximity, leading to poor performance in some tasks, such as
link recover and classification, which require first-order proximity
to be well-preserved.

LINE [31] is a recently proposed embedding approach for large-
scale networks. Although it uses an explicit objective function to
preserve the network structure, its performance suffers from the
way it learns the vector representations. By design, LINE learns
two representations separately, one preserving first-order proximity
and the other preserving second-order proximity. Then, it directly
concatenates the two vectors to form the final representation. In
this paper, we propose a network embedding method, which does
not distinguish the learning of first and second-order proximities
and embeds proximities of all orders simultaneously.

GraRep [6] further extends DeepWalk to utilize high-order prox-
imities. GraRep does not scale well in large networks due to the ex-
pensive computation of the power of a matrix and the involvement
of SVD in the learning process. SDNE [33] is a semi-supervised
deep model that captures the non-linear structural information over
the network. The source code of SDNE is not available, so this ap-
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Figure 2: Schemas of two heterogeneous networks

proach cannot be reproduced and compared to ours. Similarly, [5]
embeds entities in knowledge bases using an innovative neural net-
work architecture and TriDNR [21] extends this embedding model
to consider features from three aspects of the network: 1) network
structure, 2) node content, and 3) label information. Our current
work focuses on meta path based proximities, so it does not con-
sider any other information in the HIN besides the network struc-
ture and the types of nodes and edges.

3. PROBLEM DEFINITION
In this section, we formulate the problem of heterogeneous infor-

mation network (HIN) embedding for meta path based proximities.
We first define a HIN as follows:

DEFINITION 1. (Heterogeneous Information Network) A het-
erogeneous information network (HIN) is a directed graph G =
(V,E) with an object type mapping function φ : V → L and a
link type mapping function ψ : E → R, where each object v ∈ V
belongs to an object type φ(v) ∈ L, and each link e ∈ E belongs
to a link type ψ(e) ∈ R.

Figure 1 illustrates a small bibliographic HIN. We can see that
the HIN contains two authors, three papers, three venues, two top-
ics, and four types of links connecting them. For the ease of discus-
sion, we assume that each object belongs to a single type; however,
our technique can easily be adapted to the case where objects be-
long to multiple types.

DEFINITION 2. HIN Schema. Given a HIN G = (V,E) with
mappings φ : V → L and ψ : E → R, the schema TG of G is
a directed graph defined over object types L and link typesR, i.e.,
TG = (L,R).

The HIN schema expresses all allowable link types between ob-
ject types. Figure 2(a) shows the schema of the HIN in Figure 1,
where nodes A, P , T and V correspond to author, paper, topic
and venue, respectively. There are also different edge types in
the schema, such as ‘publish’ and ‘write’. Figure 2(b) shows the
schema of a movie-related HIN, with M , A, D, P , C representing
movie, actor, director, producer and composer, respectively.

In a HIN G, two objects o1, o2 may be connected via multiple
edges or paths. Conceptually, each of these paths represents a spe-
cific direct or composite relationship between them. In Figure 1,
authors a1 and a2 are connected via multiple paths. For example,
a1 → p3 → a2 means that a1 and a2 are coauthors of paper p3,
and a1 → p1 → p2 → a2 means that a2’s paper p2 cites a1’s paper
p1. These two paths represent two different relationships between
author a1 and a2.

Each different type of a relationship is modeled by a meta path
[29]. Specifically, a meta path P is a sequence of object types
l1, . . . , ln connected by link types r1, . . . , rn−1 as follows:

P = l1
r1−→ l2 . . . ln−1

rn−1−−−→ ln.

For example, a meta path A write−−−→ P
write−1

−−−−−→ A represents the
coauthor relationship between two authors.

An instance of the meta path P is a path in the HIN, which con-
forms to the pattern of P . For example, path a1 → p3 → a2 in

Figure 1 is an instance of meta path A write−−−→ P
write−1

−−−−−→ A.

DEFINITION 3. (Meta Path based Proximity) Given a HING =
(V,E) and a meta path P , the proximity of two nodes os, ot ∈ V
with respect to P is defined as:

s(os, ot | P) =
∑

pos→ot∈P

s(os, ot | pos→ot) (1)

where pos→ot is a meta path instance of P linking from os to
ot, and s(os, ot | pos→ot) is a proximity score w.r.t. the instance
pos→ot .

There are different ways to define s(os, ot | pos→ot) in the liter-
ature. Here, we only list two definitions that we use as test cases in
our experiments.

• According to the PathCount (PC) model, each meta path in-
stance is equally important and should be given equal weight.
Hence, s(os, ot | pos→ot) = 1 and the proximity between
two objects w.r.t. P equals the number of instances of P
connecting them, i.e., s(os, ot | P) = |{pos→ot ∈ P}|.1

• Path Constrained Random Walk (PCRW) [14] is a more
sophisticated way to define the proximity s(os, ot | pos→ot)
based on an instance pos→ot . According to this definition,
s(os, ot | pos→ot) is the probability that a random walk re-
stricted on P would follow the instance pos→ot .

Note that the embedding technique we introduce in this paper
can also be easily adapted to other meta path based proximity mea-
sures, e.g., PathSim [29], HeteSim [25] and BPCRW [17].

DEFINITION 4. (Proximity in HIN) For each pair of objects
os, ot ∈ V , the proximity between os and ot in G is defined as:

s(os, ot) =
∑
P

s(os, ot | P) (2)

where P is some meta path, and s(os, ot | P) is the proximity w.r.t.
the meta path P as defined in Definition 3.

According to Definition 4, the proximity of two objects equals
the sum of the proximities w.r.t. all meta paths. Intuitively, this can
capture all kinds of relationships between the two objects. We now
provide a definition for the problem that we study in this paper.

DEFINITION 5. (HIN Embedding for Meta Path based Prox-
imity) Given a HIN G = (V,E), develop a mapping f : V → Rd

that transforms each object o ∈ V to a vector in Rd, such that
the proximities between any two objects in the original HIN are
preserved in Rd.

4. HINE
In this section, we introduce our methodology for embedding

HINs. We first discuss how to calculate the truncated estimation
of meta path based proximity in Section 4.1. Then, we introduce
our model and define the objective function we want to optimize in
Section 4.2. Finally, we present a negative sampling approach that
accelerates the optimization of the objective function in Section 4.3.
1For the ease of presentation, we overload notationP to also denote
the set of instances of meta path P .



Table 1: Meta paths and instances connecting a1 and a2

Length P pos→ot sPC sPCRW
2 APA a1 → p3 → a2 1 0.25
3 APPA a1 → p1 → p2 → a2 1 0.5

4 APTPA
a1 → p1 → t1 → p2 → a2 1 0.25
a1 → p3 → t2 → p3 → a2 1 0.25

APV PA a1 → p3 → v3 → p3 → a2 1 0.25
· · · · · · · · · · · · · · ·

4.1 Truncated Proximity Calculation
According to Definition 4, in order to compute the proximity of

two objects oi, oj ∈ V , we need to accumulate the corresponding
meta path based proximity w.r.t. each meta path P . For example,
in Table 1, we list some meta paths that have instances connecting
a1 and a2 in Figure 1. We can see that there is one length-2 meta
path, one length-3 meta path and two length-4 meta paths that have
instances connecting a1 and a2. Generally speaking, the number of
possible meta paths grows exponentially with their length and can
be infinite for certain HIN schema (in this case, the computation of
s(oi, oj) is infeasible).

As pointed out in [29], shorter meta paths are more informa-
tive than longer ones, because longer meta paths link more remote
objects (which are less related semantically). Therefore, we use
a truncated estimation of proximity, which only considers meta
paths up to a length threshold l. This is also consistent with pre-
vious works on network embedding, which aim at reserving low-
order proximity (e.g., [22] reserves only second-order proximity,
and [31] first-order and second-order proximities). Therefore, we
define:

ŝl(oi, oj) =
∑

len(P)≤l

s(oi, oj | P) (3)

as the truncated proximity between two objects oi and oj .
For the case of PCRW based proximity, we have the following

property:

PROPERTY 1.

ŝl(oi, oj) =
∑

(oi,o′)∈E

p
ψ(oi,o

′)
oi→o′

× ŝl−1(o
′, oj)

where pψ(oi,o
′)

oi→o′
is the transition probability from oi to o′ w.r.t. edge

type ψ(oi, o′). If there are n edges from oi that belong to edge type
ψ(oi, o

′), then ψ(oi, o′) = 1
n

.

PROOF. Assume that p = oi → o′ → · · · → oj is a meta path
instance of length l. According to definition of PCRW:

s(oi, oj | p[1 : l]) = p
ψ(oi,o

′)
oi→o′

× s(o′, oj | p[2 : l]) (4)

where p[i : j] is the subsequence of path instance p from the i-th to
the j-th objects, and p[2 : l] is a length l − 1 path instance. Then,
by summing over all the length-l path instances for Equation 4, we
get Property 1.

Based on Property 1, we develop a dynamic programming ap-
proach (Algorithm 1) to calculate the truncated proximities. Basi-
cally, we compute the proximity matrix Ŝk for each k from 1 to
l. We first initialize the proximity matrix Ŝ0 (lines 1-3). Then,
we use the transition function in Property 1 to update the proxim-
ity matrix for each k (lines 4-9). If we use PCRW as the meta
path based proximity measure, inc(os, o′, Ŝk−1[o

′, ot]) in line 9
equals pψ(os,o

′)
os→o′ × Ŝk−1[o

′, ot]. The algorithm can also be used

Algorithm 1: Calculate Truncated Proximity
Input: HIN G = (V,E), length threshold l

Output: Truncated Proximity Matrix Ŝl
1 Ŝ0 ← ∅
2 for os ∈ V do
3 Ŝ0[os, os]← 1.0
4 for k ∈ [1 · · · l] do
5 Ŝk ← ∅
6 for os ∈ V do
7 for o′ ∈ neighbor(os) do
8 for (o′, ot) ∈ Ŝk−1 do
9 Ŝk[os, ot]←

Ŝk[os, ot] + inc(os, o′, Ŝk−1[o
′, ot])

10 return Ŝl;

for PathCount, in which case we set inc(os, o′, Ŝk−1[o
′, ot]) =

Ŝk−1[o
′, ot].

We now provide a time complexity analysis for computing the
truncated proximities on a HIN using Algorithm 1. For each object
os ∈ V , we need to enumerate all the meta path instances within
length l. Suppose the average degree in the HIN is D; then, there
are on average lD such instances. Hence, the total time complexity
for proximity calculation is O(|V | · lD), which is linear to the size
of the HIN.

4.2 Model
We now introduce our HINE embedding method, which pre-

serves the meta path based proximities between objects as described
above. For each pair of objects oi and oj , we use Sigmoid function
to define their joint probability, i.e.,

p(oi, oj) =
1

1 + e−vi·vj
(5)

where vi(or vj) ∈ Rd is the low-dimensional representation of
object oi (or oj). p : V 2 → R is a probability distribution over a
pair of objects in the original HIN.

In the original HIN G, the empirical joint probability of oi and
oj can be defined as:

p̂(oi, oj) =
s(oi, oj)∑
o′∈V s(oi, o

′)
(6)

To preserve the meta path based proximity s(·, ·), a natural ob-
jective is to minimize the distance of these two probability distri-
butions:

O = dist(p̂, p) (7)

In this paper, we choose KL-divergence as the distance metric,
so we have:

O = −
∑

oi,oj∈V

s(oi, oj) log p(oi, oj) (8)

4.3 Negative Sampling
Directly optimizing the objective function in Equation 8 is prob-

lematic. First of all, there is a trivial solution: vi,d = ∞ for all i
and all d. Second, it is computationally expensive to calculate the
gradient, as we need to sum over all the non-zero proximity scores
s(oi, oj) for a specific object oi. To address these problems, we
adopt negative sampling proposed in [19], which basically samples
a small number of negative objects to enhance the influence of pos-
itive objects.
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Formally, we define an objective function for each pair of objects
with non-zero meta path based proximity s(oi, oj):

T (oi, oj) = − log (1 + e−vivj )−
K∑
1

Ev′∈Pn(oi)[log (1 + eviv
′
)]

(9)
where K is the times of sampling, and Pn(v) is some noise distri-
bution. As suggested by [19], we set Pn(v) ∝ dout(v)

3/4 where
dout(v) is the out-degree of v.

We adopt the asynchronous stochastic gradient descent (ASGD)
algorithm [23] to optimize the objective function in Equation 9.
Specifically, in each round of the optimization, we sample some
pairs of objects oi and oj with non-zero proximity s(oi, oj). Then,
the gradient w.r.t. vi can be calculated as:

∂O

∂vi
= −s(oi, oj) ·

e−vivj

1 + e−vivj
· vj (10)

5. EXPERIMENTS
In this section, we conduct extensive experiments in order to

test the effectiveness of our proposed HIN embedding approach.
We first introduce our datasets and the set of methods to be com-
pared in Section 5.1. Then, we evaluate the effectiveness of all
approaches on five important data mining tasks: network recovery
(Section 5.2), classification (Section 5.3), clustering (Section 5.4),
k-NN search (Section 5.5) and visualization (Section 5.6). In addi-
tion, we conduct a case study (Section 5.7) to compare the quality
of top-k lists. We evaluate the influence of parameter l in Section
5.8. Finally, we assess the runtime cost of applying our proposed
transformation in Section 5.9.

5.1 Dataset and Configurations

Datasets. We use four real datasets in our evaluation. Table 2
shows some statistics about them.

• DBLP. The schema of DBLP network is shown in Figure
2(a). We use a subset of DBLP, i.e., DBLP-4-Area taken
of [29], which contains 5,237 papers (P), 5,915 authors (A),
18 venues (V), 4,479 topics (T). The authors are from 4 ar-
eas: database, data mining, machine learning and informa-
tion retrieval.

• MOVIE. We extracted a subset from YAGO [10], which con-
tains knowledge about movies. The schema of MOVIE net-
work is shown in Figure 2(b). It contains 7,332 movies (M),
10,789 actors (A), 1,741 directors (D), 3,392 producers (P)
and 1,483 composers (C). The movies are divided into five
genres: action, horror, adventure, sci-fi and crime.

Table 2: Statistics of Datasets

|V | |E| Avg. degree |L| |R|
DBLP 15,649 51,377 6.57 4 4

MOVIE 25,643 40,173 3.13 5 4
YELP 37,342 178,519 9.56 4 3
GAME 6,909 7,754 2.24 4 3

• YELP. We extracted a HIN from YELP, which is about re-
views given to restaurants. It contains 33,360 reviews (V),
1,286 customers (C), 82 food-related keywords (K) and 2,614
restaurants (R). We only extract restaurants from one of the
following types: fast food, American, sushi bar. The schema
of the HIN is shown in Figure 3(a).

• GAME. We extracted from Freebase [4] a HIN, which is
related to video games. The HIN consists of 4,095 games
(G), 1,578 publishers (P), 2,043 developers (D) and 197 de-
signers (S). All the game objects extracted are of one of the
three genres: action, adventure, and strategy. The schema is
shown in Figure 3(b).

Competitors. We compare the following network embedding ap-
proaches:

• DeepWalk [22] is a recently proposed social network em-
bedding method (see Section 2.3 for details). In our experi-
ment settings, we ignore the heterogeneity and directly feed
the HINs for embedding. We use default training settings,
i.e., window size w = 5 and length of random walk t = 40.

• LINE [31] is a method that preserves first-order and second-
order proximities between vertices (see Section 2.3 for de-
tails). For each object, it computes two vectors; one for
the first-order and one for the second-order proximities sep-
arately and then concatenates them. We use equal represen-
tation lengths for the first-order and second-order proxim-
ities, and use the default training settings; i.e., number of
negative samplings. K = 5, starting value of the learning
rate ρ0 = 0.025, and total number of training samplings
T = 100M . Same as DeepWalk, we directly feed the HINs
for embedding.

• HINE_PC is our HINE model using PathCount as the meta
path based proximity. We implemented the process of prox-
imity computing in C++ on a 16GB memory machine with
Intel(R) Core(TM) i5-3570 CPU @ 3.4 GHz. By default, we
use l = 2. In Section 5.8, we study the influence of parame-
ter l.

• HINE_PCRW is our HINE model using PCRW as the meta
path based proximity. All the other configurations are the
same as those of HINE_PC.

Unless otherwise stated, the dimensionality d of the embedded
vector space equals 10.

5.2 Network Recovery
We first compare the effectiveness of different network embed-

ding methods at a task of link recovery. For each type of links
(i.e., edges) in the HIN schema, we enumerate all pairs of objects
(os, ot) that can be connected by such a link and calculate their
proximity in the low-dimensional space after embedding os to vs
and ot to vt. Finally, we use the area under ROC-curve (AUC)



to evaluate the performance of each embedding. For example, for
edge type write, we enumerate all pairs of authors ai and papers
pj in DBLP and compute the proximity for each pair. Finally, us-
ing the real DBLP network as ground-truth, we compute the AUC
value for each embedding method.

The results for d = 10 are shown in Table 3. Observe that,
in general, HINE_PC and HINE_PCRW have better performance
compared to LINE and DeepWalk. In order to analyze the reasons
behind the bad performance of LINE, we also included two special
versions of LINE: LINE_1st (LINE_2nd) is a simple optimiza-
tion approach that just uses stochastic gradient descent to optimize
just the first-order (second-order) proximity among the vertices.
LINE_1st has much better performance than LINE_2nd because
second-order proximity preservation does not facilitate link predic-
tion. LINE, which concatenates LINE_1st and LINE_2nd vectors,
has worse performance than LINE_1st because its LINE_2nd vec-
tor component harms link prediction accuracy. This is consistent
with our expectation, that training proximities of multiple orders
simultaneously is better than training them separately. Among all
methods, HINE_PCRW has the best performance in preserving the
links of HINs; in the cases where HINE_PCRW loses by other
methods, its AUC is very close to them. HINE_PCRW outper-
forms HINE_PC, which is consistent with results in previous work
that find PCRW superior to PC (e.g., [10]). The rationale is that
a random walk models proximity as probability, which naturally
weighs nearby objects higher compared to remote ones.

5.3 Classification

Table 5: Results of Classification with d = 10

LINE DeepWalk HINE_PC HINE_PCRW

DBLP Macro-F1 0.816 0.839 0.844 0.868
Micro-F1 0.817 0.840 0.844 0.869

MOVIE Macro-F1 0.324 0.280 0.346 0.365
Micro-F1 0.369 0.328 0.387 0.406

YELP Macro-F1 0.898 0.339 0.470 0.886
Micro-F1 0.887 0.433 0.518 0.878

GAME Macro-F1 0.451 0.487 0.415 0.438
Micro-F1 0.518 0.545 0.501 0.518

Overall Macro-F1 0.622 0.486 0.519 0.639
Micro-F1 0.648 0.537 0.563 0.668

Table 6: Results of Clustering with d = 10

NMI LINE DeepWalk HINE_PC HINE_PCRW
DBLP 0.3920 0.4896 0.4615 0.4870

MOVIE 0.0233 0.0012 0.0460 0.0460
YELP 0.0395 0.0004 0.0015 0.0121
GAME 0.0004 0.0002 0.0022 0.0004
Overall 0.1138 0.1229 0.1278 0.1364

We conduct a task of multi-label classification. For DBLP, we
use the areas of authors as labels. For MOVIE, we use the genres
of movies as labels. For YELP, we use the restaurant types as la-
bels. For GAME, we use the type of games as labels. We first use
different methods to embed the HINs. Then, we randomly partition
the samples into a training and a testing set with ratio 4 : 1. Fi-
nally, we use k nearest neighbor (k−NN) classifiers with k = 5 to
predict the labels of the test samples. We repeat the process for 10
times and compute the average Macro-F1 and Micro-F1 scores to
evaluate the performance.

(a) LINE (b) DeepWalk

(c) HINE_PC (d) HINE_PCRW

Figure 6: Visualization Results on DBLP

Table 5 shows the results for d = 10. We can see that all
methods have better results on DBLP and YELP, than on MOVIE
and GAME. This is because the average degree on MOVIE and
GAME is smaller, and the HINs are sparser (See Table 2). Ob-
serve that HINE_PC and HINE_PCRW outperform DeepWalk and
LINE in DBLP and MOVIE; HINE_PCRW performs the best in
both datasets. On YELP, LINE has slightly better results than
HINE_PCRW (about 1%), while DeepWalk has a very poor per-
formance. On GAME, DeepWalk is the winner, while LINE and
HINE_PCRW perform similarly. Overall, we can see that HINE_PCRW
has the best (or close to the best) performance, and LINE has quite
good performance. On the other hand, DeepWalk’s performance is
not stable.

We also measured the performance of the methods for different
values of d. Figures 5(a) and 5(b) show the results on DBLP. As
d becomes larger, all approaches get better in the beginning, and
then converge to a certain performance level. Observe that overall,
HINE_PCRW has the best performance in classification tasks.

5.4 Clustering
We also conducted clustering tasks to assess the performance of

the methods. In DBLP we cluster the authors, in MOVIE we clus-
ter the movies, in YELP we cluster the restaurants, and in GAME
we cluster the games. We use the same ground-truth as in Sec-
tion 5.3. We use normalized mutual information (NMI) to evaluate
performance.

Table 6 shows the results for d = 10. We can see that the
performance of all methods in clustering tasks is not as stable as
that in classification. All the embedding methods perform well
on DBLP, but they have a relatively bad performance on the other
three datasets. On DBLP, DeepWalk and HINE have better per-
formance than LINE. On MOVIE, HINE_PC and HINE_PCRW
outperform all other approaches. On YELP, LINE has better per-
formance than HINE_PCRW, and DeepWalk has very poor perfor-
mance. On GAME, DeepWalk outperforms the others. Overall, we
can see that HINE_PCRW outperforms all the other methods in the
task of clustering.

Figure 5(c) shows performance of the approaches for different
d values on DBLP. Observe that HINE_PCRW in general outper-



Table 3: Accuracy of Network Recovery (d = 10)

Edge Type LINE_1st LINE_2nd LINE DeepWalk HINE_PC HINE_PCRW

DBLP

write 0.9885 0.7891 0.8907 0.9936 0.9886 0.9839
publish 0.9365 0.6572 0.8057 0.9022 0.9330 0.9862
mention 0.9341 0.5455 0.7186 0.9202 0.8965 0.8879

cite 0.9860 0.9071 0.9373 0.9859 0.9598 0.9517

MOVIE

actIn 0.9648 0.5214 0.8425 0.7497 0.9403 0.9733
direct 0.9420 0.5353 0.8468 0.7879 0.9359 0.9671

produce 0.9685 0.5334 0.8599 0.7961 0.9430 0.9900
compose 0.9719 0.5254 0.8574 0.9475 0.9528 0.9864

YELP

issue 0.9249 0.4419 0.8744 1.0000 0.5083 0.9960
towards 0.9716 0.4283 0.9221 0.5372 0.5155 0.9981
mention 0.8720 0.4178 0.7738 0.5094 0.5951 0.8534

GAME

design 0.9599 0.4997 0.6781 0.9313 0.9219 0.9828
develop 0.9021 0.5043 0.7736 0.9328 0.8592 0.9843
publish 0.7800 0.4719 0.6786 0.9711 0.7617 0.9756

Overall Average 0.9359 0.5556 0.8185 0.8546 0.8365 0.9655

forms all other methods. Only for a narrow range of d (d = 10)
DeepWalk slightly outperforms HINE_PCRW (as also shown in
Table 6). Generally speaking, HINE_PCRW best preserves the
proximities among authors in the task of clustering.

5.5 k-NN Search
We compare the performances of three methods, i.e., LINE, Deep-

Walk and HINE_PCRW, on k-NN search tasks. Specifically, we
conduct a case study on DBLP, to compare the quality of k nearest
authors for venue WWW in the embedded space. We first eval-
uate the quality of k-NN search by counting the average number
of papers that the authors in the k-NN result have published in
WWW, when varying k from 1 to 100 (Figure 4(a)). We can see
that the nearest authors found in the embedding by HINE_PCRW
have more papers published in WWW compared to the ones found
in the spaces of LINE and DeepWalk.

We then use the top-k author list for venue WWW in the origi-
nal DBLP network as ground-truth. We use two different metrics
to evaluate the quality of top-k lists in the embedded space, i.e.,
Spearman’s footrule F and Kendall’s tau K [9]. The results are
shown in Figures 4(b) and 4(c). We can see that the top-k list of
HINE_PCRW is closer to the one in the original HIN.

5.6 Visualization
We compare the performances of all approaches on the task of vi-

sualization, which aims to layout an HIN on a 2-dimensional space.
Specifically, we first use an embedding method to map DBLP into
a vector space, then, we map the vectors of authors to a 2-D space
using the t-SNE [16] package.

The results are shown in Figure 6. LINE can basically sepa-
rate the authors from different groups (represented by the same
color), but some blue points mixed with other groups. The result of
DeepWalk is not very good, as many authors from different groups
are mixed together. HINE_PC clearly has better performance than
DeepWalk. Compared with LINE, HINE_PC can better separate
different groups. Finally, HINE_PCRW’s result is the best among
these methods, because it clearly separates the authors from differ-
ent groups, leaving a lot of empty space between the clusters. This
is consistent with the fact that HINE_PCRW has the best perfor-
mance in classifying the authors of DBLP.

5.7 Case Study
We perform a case study, which shows the k-NN objects to a
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Figure 7: Performances w.r.t. l

given object in DBLP. Specifically, we show in Table 4 the top-5
closest venues, authors and topics to author Jiawei Han in DBLP.

By looking at the results for top-5 venues, we can see that LINE
does not give a good top-5 list, as it cannot rank KDD in the top
publishing venues of the author. DeepWalk is slightly better, but it
ranks ICDM at the 5th position, while HINE_PCRW ranks KDD
and ICDM as 1st and 2nd, respectively. Looking at the results
for authors, observe that HINE_PCRW gives a similar top-5 list to
DeepWalk, except that HINE_PCRW prefers top researchers, e.g.,
Christos Faloutsos. Looking the results for topics, note that only
HINE_PCRW can provide a general topic like “mining”.

5.8 Effect of the l Threshold
We now study the effect of l on different data mining tasks, e.g.,

classification and clustering. Figure 7(a) and (b) shows the results
of classification on DBLP. We can see that 1) HINE_PCRW has
quite stable performance w.r.t. l, and it achieves its best perfor-
mance when l = 2. 2) The performance of HINE_PC is best when
l = 1. This is because PathCount views meta path instances of
different length equally important, while PCRW assigns smaller



weights to the longer instances when performing the random walk.
This explains why HINE_PCRW outperforms HINE_PC in these
tasks.

Figure 7(c) shows the results of clustering on DBLP. The results
are similar those of classification, except that HINE_PC has much
better performance than HINE_PCRW when l = 1. This is natural,
because when l = 1, HINE_PCRW can only capture very local
proximities. When l > 1, HINE_PCRW outperforms HINE_PC.

5.9 Efficiency
We show in Figure 7(d) the running time for computing all-pair

truncated proximities on DBLP with the method described in Sec-
tion 4.1. We can see that our proposed algorithm can run in a rea-
sonable time and scales well with l. Specifically, in our experi-
ments with l = 2, the time for computing all-pair proximities is
less than 1000s. In addition, note that using ASGD to solve our
objective function in our experiments is very efficient, taking on
average 27.48s on DBLP with d = 10.

6. CONCLUSION
In this paper, we study the problem of heterogeneous network

embedding for meta path based proximity, which can fully utilize
the heterogeneity of the network. We also define an objective func-
tion, which aims at minimizing the distance of two distributions,
one modeling the meta path based proximities, the other modeling
the proximities in the embedded low-dimensional space. We also
investigate using negative sampling to accelerate the optimization
process. As shown in our extensive experiments, our embedding
methods can better recover the original network, and have better
performances over several data mining tasks, e.g., classification,
clustering and visualization, over the state-of-the-art network em-
bedding methods.
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Table 4: Top-5 similar lists for Jiawei Han

LINE DeepWalk HINE_PCRW
k conf author topic conf author topic conf author topic
1 PAKDD Jiawei Han clustermap KDD Jiawei Han itemsets KDD Jiawei Han closed
2 PKDD Gao Cong orders PAKDD Xifeng Yan farmer ICDM Xifeng Yan mining
3 SDM Lei Liu summarizing PKDD Ke Wang closed SDM Ke Wang itemsets
4 KDD Yiling Yang ccmine SDM Yabo Xu tsp PAKDD Christos Faloutsos sequential
5 ICDM Daesu Lee concise ICDM Jason Flannick prefixspan PKDD Xiaoxin Yin massive
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Figure 4: Results of Top-k lists for venue WWW
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