
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1195

Context-aware Path Ranking for Knowledge Base Completion

Sahisnu Mazumder, Bing Liu
Department of Computer Science, University of Illinois at Chicago, USA

sahisnumazumder@gmail.com, liub@cs.uic.edu

Abstract
Knowledge base (KB) completion aims to infer
missing facts from existing ones in a KB. Among
various approaches, path ranking (PR) algorithms
have received increasing attention in recent years.
PR algorithms enumerate paths between entity-
pairs in a KB and use those paths as features to train
a model for missing fact prediction. Due to their
good performances and high model interpretabil-
ity, several methods have been proposed. However,
most existing methods suffer from scalability (high
RAM consumption) and feature explosion (trains
on an exponentially large number of features) prob-
lems. This paper proposes a Context-aware Path
Ranking (C-PR) algorithm to solve these problems
by introducing a selective path exploration strategy.
C-PR learns global semantics of entities in the KB
using word embedding and leverages the knowl-
edge of entity semantics to enumerate contextu-
ally relevant paths using bidirectional random walk.
Experimental results on three large KBs show that
the path features (fewer in number) discovered by
C-PR not only improve predictive performance but
also are more interpretable than existing baselines.

1 Introduction
Knowledge bases (KBs), like Freebase [Bollacker et al.,
2008], WordNet [Miller, 1995] and ConceptNet [Speer and
Havasi, 2012] have recently grown their popularity due to
their applications in improving many NLP tasks like rela-
tion extraction [Du et al., 2015], syntactic parsing [Gesmundo
and Hall, 2014] and question answering [Berant et al., 2013].
Such KBs contain large collections of facts about things, peo-
ple and places often represented as triples, e.g., (Obama,
PresidentOf, USA). However, KBs are typically missing a
large percentage of facts about common entities [West et al.,
2014] which makes them difficult to fulfill their full poten-
tials. But, enriching KBs with all possible facts manually is
also infeasible. Thus, researchers have devised techniques
to automatically infer new facts from existing ones, which is
formally known as the KB completion problem.

Broadly speaking, the main approaches to solving the KB
completion problem include path ranking (PR) [Lao et al.,

2011; 2015; Gardner et al., 2014]; embedding [Bordes et
al., 2011; 2013; Nickel et al., 2011]; graphical models like
Markov logic networks [Jiang et al., 2012] and tensor/matrix
factorization [Nickel et al., 2015] methods. This paper fo-
cuses on path ranking (PR). In PR-based methods, KB is en-
coded as a multi-relation graph formed with a set of triples,
where two nodes (entity-pair in a triple) are linked by a la-
beled edge (relationship in that triple). A path between two
entities is a sequence of relations linking them. Given a re-
lation r, PR-based methods enumerate paths (except path r)
between entity-pairs linked by r and use them as features to
train a binary classifier to predict if new instances (entity-
pairs) can be linked by r or not.

Due to the high interpretability (as opposed to embedding
techniques), no need for external logic rules (as opposed to
MLN) [Wang et al., 2016] and better performance than latent
features [Toutanova, 2015], PR-based algorithms have re-
ceived increased attention in recent years. A number of works
[Gardner et al., 2013; 2014; Gardner and Mitchell, 2015;
Lao et al., 2015] have proposed improved techniques. How-
ever, they still suffer from two major problems considering
limitations in computational resources:
• Scalability. Exploring all possible paths between entity-

pairs using breadth-first search (BFS) with Subgraph
Feature Extraction (SFE) [Gardner and Mitchell, 2015]
has shown state-of-the-art predictive performance com-
pared to the random walk based PR approach [Lao et
al., 2011]. However, it is not always possible to have
enough RAM to run the algorithm successfully on large
graphs. Specifically, as the graph becomes denser (de-
gree of nodes increases), even BFS with SFE becomes
intractable in moderate sized graphs (see Table 3). In
such cases, we have to perform random walks. However,
training models on millions of path features obtained via
billions of random walks [Kyrola, 2013] is also not fea-
sible with limited RAM. And with disk based data struc-
tures, the training could get extremely slow.
• Feature Explosion. Even if we have sufficient RAM,

with a large number of paths (features), the length of
the feature vector grows exponentially. Specially, if we
want to derive new features from existing ones and aug-
ment them with the old ones like path-bigrams [Nee-
lakantan et al., 2015], “Any-Relation” features [Gardner
and Mitchell, 2015] etc., the feature explosion problem

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1196

Figure 1: Correlation between contextual similarity and % of data
instance labels.

makes the optimization (hence, training) computation-
ally intensive and time consuming (see Table 3).

In such scenarios, we need a solution that can learn from
fewer features without suffering in predictive performance.

A natural solution is to use context-aware path search, i.e.,
to find paths that are contextually relevant with respect to the
source and target entity pair. A path is considered as contex-
tually relevant if all intermediate entities encountered while
following the path from source to target, are contextually rel-
evant with regard to both the source and target entities. For
example, given a source-target entity-pair (apple, eat), enti-
ties like “fruit” and “bite” are contextually relevant to (apple,
eat), while entities like “company” and “drink” are not, al-
though they may be neighboring nodes of either “apple” (‘ap-
ple’, ‘IsA’, ‘company’) or “eat” (‘eat’, ‘RelatedTo’, ‘drink’)
in the graph. Thus, given (apple, eat), choosing paths in-
volving nodes like “fruit”, “bite” etc., are more reasonable
than those involving “company” and “drink.” Adopting this
context-aware strategy in PR helps select more relevant and
discriminative path features. To investigate the potential of
this idea, we experimented with a randomly chosen set of la-
beled data instances (entity-pairs) from our Freebase dataset
(see Sec 5.2). Figure 1 shows the correlation between con-
textual similarity of an entity-pair and existence (denoted by
labels) of a relation in between them. We found that contex-
tual similarity (computed using word vectors) is significantly
correlated [R2 = 0.91 (+ve label) and R2 = 0.85 (-ve la-
bel) with exponential fit, where R2 denotes the coefficient of
determination] with the labels of data instances. Here (Fig-
ure 1), we see that contextual similarity can discriminate the
positively labeled (relation exists) entity-pairs from negative
ones (relation doesn’t exist). The findings suggest that lever-
aging context-aware path search in PR-based methods might
result in significant gain in predictive performance with sig-
nificantly reduced number of features.

In this paper, we propose a novel PR-based KB comple-
tion approach, namely Context-aware Path Ranking (C-PR
in short), which incorporates the aforementioned idea. In
particular, C-PR learns the semantics of entities in KB us-
ing a neural word embedding model [Mikolov et al., 2013a]
and leverages the contextual similarity information of enti-
ties for finding contextually relevant paths while performing
random walks through the graph. Paths found by C-PR are

more discriminative in nature and fewer in number compared
to that found using straightforward random walk in existing
PR-based methods. Details of C-PR is discussed in Sec 4.

To the best of our knowledge, this is the first study that
extends PR by incorporating the contextual information of
entity-pairs during path search. We empirically verify the ef-
fectiveness of C-PR by comparing it with the state-of-the-art
baselines on three real-world, large-scale KBs with varying
size and density: Freebase, WordNet and ConceptNet. Exper-
imental results show that C-PR substantially outperforms the
baselines in terms of scalability, predictive performance and
model interpretability.

2 Related Work
As discussed earlier, there are four main approaches to KB
completion: path ranking, embedding, graphical models and
tensor/matrix factorization. C-PR is a PR-based algorithm.
Thus, we focus on reviewing the related works in PR.

PR is a random walk-based inference technique for KB
completion. It was first proposed by [Lao and Cohen, 2010]
and later, extended by many successive works, including im-
proving KB inference using latent syntactic cues [Gardner
et al., 2013], incorporating vector space similarity into ran-
dom walk [Gardner et al., 2014], introducing subgraph fea-
ture extraction [Gardner and Mitchell, 2015] to generate more
predictive paths and learning relational features with bidirec-
tional random walk [Lao et al., 2015]. Other recent works
include building predictive models with multi-task learning
[Wang et al., 2016] and learning compositional vector space
models [Neelakantan et al., 2015; Das et al., 2016]. However,
none of these techniques uses entity’s contextual information
to find more relevant and predictive paths as C-PR.

Recently, [Freitas et al., 2014] modeled entity semantics
using term co-occurrence patterns and proposed an algorithm
(called DNA) to find paths between two terms using a sim-
ilarity threshold and maximum path length. One key dif-
ference between DNA and C-PR is that C-PR is based on
word embedding while DNA is based on the traditional vec-
tor space model. Numerous papers [Baroni et al., 2014;
Levy et al., 2015] have shown that word embedding is more
powerful in representing word semantics. C-PR also differs
from DNA in a number of other ways:

(1) DNA tells how two entities can be linked through a
related node sequence, whereas C-PR predicts missing rela-
tions between entities. (2) DNA uses unidirectional naviga-
tion and appends the target as the last node in the path when it
reaches the maximum path length, which often do not ensure
that the 2nd last node and target actually have a direct rela-
tionship in KB. C-PR follows edges in KB to find complete
paths between two nodes. (3) DNA selects nodes related to
only the target node. So, they often go out of context with re-
spect to the source. C-PR chooses nodes that are semantically
related to both source and target and automatically restrains
the path exploration to go out-of-context. (4) If we increase
the maximum path length, the accuracy of DNA drops as it
explores less coherent paths (see Sec 6.3 of [Freitas et al.,
2014]). C-PR automatically constrains itself from going out
of context. So, it does not explore longer irrelevant paths. (5)

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1197

C-PR doesn’t use any fixed similarity threshold like DNA. It
dynamically sets the threshold for each entity-pair.

3 Path Ranking Algorithm
The basic idea of a path ranking (PR) algorithm is to enu-
merate paths between two entities in a KB and use those
paths as features to train a model for predicting missing re-
lations between them. Here, a path is a sequence of relations
〈r1, r2, .., rl〉 that links two entities. A typical PR algorithm
works as follows: Given an entity pair (h, t), PR performs
random walks over KB (encoded as a multi-relation graph) to
find paths starting from h (or t) and ending at t (or h) with
bounded length. Next, PR selects a set of paths as features,
according to precision-recall measure [Lao et al., 2011] or
simply frequency [Gardner et al., 2014]. Once the features
are selected, given an entity pair (h, t) and a path π, PR com-
putes random walk probability P (t | h, π) [Lao et al., 2011]
(the probability of arriving at t given a random walk starting
from h and following exactly all relations in π) and uses the
probability as the feature value for path-feature π. Finally,
PR constructs a training data Dr for each relation r by com-
bining a set of positively labeled (linked by r) and a set of
negatively labeled (not linked by r) entity-pairs. Next, PR
trains a binary classifier for r on the feature matrix of Dr

constructed using the path features extracted for each entity
pair (h, t) ∈ Dr. The trained classifier for relation r is then
used to predict whether a given test entity pair (which is not
presently linked by r in KB) can be linked by r or not.

4 Proposed Context-aware Path Ranking
Given a KB containing a collection of triples T ={(h, r, t) | h,
t ∈ E, r ∈ R }, whereE is the entity set andR is the relation
set, we encode the KB as a multi-relation graph G = (E, T)
with entities represented as nodes and triples (h, r, t) ∈ T
as directed edges labeled with r from h to t. Then, the KB
completion problem can be defined as a binary classification
problem, where given a relation r ∈ R and an entity pair (h,
t) such that (h, r, t) /∈ T , we want to predict whether h and
t can be linked by r or not. In PR-based KB completion ap-
proaches, each relation r is associated with a set of labeled
training instances formed by extracting path features (Sec 3).
C-PR proposes a novel random walk-based path feature ex-
traction technique, by leveraging the context of the source-
target entity-pair while exploiting the graph structure. The
path feature extraction of C-PR works in two steps: contex-
tual similarity computation and context-aware path finding.

To compute contextual similarity, we use the distributed
semantics of entities in G using neural word embedding
[Mikolov et al., 2013a; 2013b]. Given a large corpus C, a
word embedding model learns the embedding of words in a
continuous vector space to capture the distributed semantics
of words based on their contexts in C. We use the word2vec
model in [Mikolov et al., 2013a] with the skip-gram architec-
ture. C-PR currently employs a pre-trained word2vec model
for Freebase1 [with 1.4M vocabulary size and 1000D word
vector for each Freebase entity] and a pre-trained Google

1https://code.google.com/archive/p/word2vec

News word2vec1 model [containing 300D vectors for 3M
words and phrases] (for WordNet and ConceptNet experi-
ments2) both trained on Google News Corpus (size 100B).
Given the word vectors Wh and Wt for an entity pair (h,
t) in G, we compute the contextual similarity of h and t as
sim(h, t) = Wh·Wt

‖Wh‖‖Wt‖ and use the measure for navigating
through the graph structure for finding contextual paths.

Given the source node h and target node t in G, Context-
aware Path Finding enumerates paths between h and t us-
ing a bidirectional random walk (RW in short). The bidirec-
tional RW performs random walk starting from both h and
t simultaneously and meets in some intermediate common
node reached from both ends. Let vkf be the last node vis-
ited from the forward direction and Fseq=〈h, v1f , v2f , , vkf 〉 be
the forward node sequence enumerated so far in a given bidi-
rectional RW considering source as h and target as t. Sim-
ilarly, let vkb be the last node visited from the backward di-
rection and Bseq=〈t, v1b , v2b , , vkb 〉 be the backward node se-
quence enumerated so far in the same random walk. Then, for
a given random step in forward direction, in order to expand
the forward sequence Fseq, the Context-aware Path Finding
performs the following steps:

Step-1. The Path Finding algorithm finds the set of con-
textual neighbors of vkf . For a node v in G, its set of contex-
tual neighbors Ncontext(v) is given by Ncontext(v) = {v′ |
v
′ ∈ NG(v), Relv(v

′
, h, t) ≥ sim(h, t), v

′
/∈ Fseq}, where

NG(v) is the set of all neighboring nodes of v. Relv(v, h, t)
is the contextual relevance of v with respect to h and t, com-
puted as the linear combination of sim(v, h) and sim(v, t):
Relv(v, h, t) = θ × sim(v, h) + (1 − θ) × sim(v, t), 0
≤ θ ≤ 1. Relv(v, h, t) measures how strongly node (word) v
is contextually related to both h and t considering the corpus
C. Currently, C-PR uses θ = 0.5 to give equal importance
to both source and target. If Relv(v, h, t) ≥ sim(h, t), v is
considered as contextually relevant to node pair (h, t); other-
wise v is excluded fromNcontext(v) and does not take part in
expansion of any node sequence further.

Once Ncontext(v
k
f) is computed, the Path Finding algo-

rithm randomly selects a node v ∈ Ncontext(v
k
f) and per-

forms step-2. If Ncontext(v
k
f) is φ, it sets a flag indicating

forward node sequence expansion process is stuck. If both
forward and backward node sequence expansion process gets
stuck, the algorithm returns an empty path.

Step-2. The Path Finding algorithm checks whether v
= vlb ∈ Bseq, l ≤ k or not. If not, it performs step-
3. If yes, it infers that it has found a complete path and
stops the random walk from exploring nodes further. Next,
the algorithm merges the forward node sequence Fseq and
reverse of backward node subsequence Bseq[: l − 1] =

〈t, v1b , v2b , ..., v
l−1
b 〉 to generate complete path node sequence

Pseq = 〈h, v1f , ..., v, v
l−1
b , ..., v1b , t〉. Finally, the sequence of

relations is inferred from Pseq by considering all the rela-
tions in between consecutive nodes in Pseq and returned as
the explored path in the given bidirectional RW.

2We found high coverage of WordNet and ConceptNet entities in
the vocabulary of Google News word2vec model.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1198

Table 1: Example of C-PR path search execution trace on a given KB Completion Query from our ConceptNet dataset.

KB Completion Query C-PR’s Context-aware Path Search Execution Trace Example

Entity-pair: (oven, burn)
Query Relation: UsedFor

Source-Target
Similarity: 0.2039

After iter-1: Fseq: [‘oven’, ‘rack’]; Bseq: [‘burn’, ‘wood’],
During iter-2: Fseq: [‘oven’, ‘rack’, ‘grill’], Backward Seq: [‘burn’, ‘wood’, ‘pyrography’].
Bseq went out-of-context at ‘pyrography’ with ∆(pyrography,wood)=-0.044<0. path expansion stopped
After iter-1: Fseq: [‘oven’, ‘microwave’]; Bseq: [‘burn’, ‘smoke’],
During iter-2: Fseq: [‘oven’, ‘microwave’, ‘cook’]; Bseq: [‘burn’, ‘smoke’, ‘oven’],
Node overlapping detected during Bseq expansion at ‘oven’, Pseq: [‘oven’, ‘smoke’, ‘burn’]
Full path (N: Node, R: Relation): ‘oven(N)’– AtLocation(R)−1 → ‘smoke(N)’– RelatedTo(R)→ ‘burn(N)’
Inferred Path feature for the given query from current random walk: “AtLocation−1 → RelatedTo”

Step-3. If v /∈ Bseq, the Path Finding algorithm com-
putes the difference in contextual relevance of node v and
the last node (vkf) in Fseq as ∆(v, vkf) = Relv(v, h, t) −
Relv(vkf , h, t). If ∆(v, vkf) ≥ 03, v is regarded as “in-
context” for the nodes in Fseq and appended as vk+1

f in
Fseq. Otherwise, v is inferred as out-of-context (node that
is generic and often appears in multiple semantically differ-
ent contexts) with regard to the nodes in Fseq and hence,
excluded from further consideration for expansion of Fseq.

Similar steps (1, 2 and 3) as mentioned above are followed
for expansion ofBseq using simultaneous random walk from
the backward direction. The overall iterative process (forward
and backward node sequence exploration) in Context-aware
Path Finding stops when the length of the enumerated path
at a given iteration reaches a pre-defined maximum allowed
path-length denoted as η. We set numWalkers (number of
random walks to be performed per source-target pair) as n.
Table 1 shows an example of execution trace of C-PR.

Once we enumerate a set of paths between an entity pair
(h, t), we consider the paths as features following the typi-
cal PR method (Sec 3). But, instead of using random walk
probabilities, we use binarized path feature vectors following
[Gardner and Mitchell, 2015] which showed that using binary
feature values (indicating the presence or absence of a path)
instead of computationally expensive random walk probabil-
ities gives statistically indistinguishable performance.

Next, we train a binary classifier using logistic regression
(LR) on training feature matrix and use it to predict test in-
stances (see Sec 5.2 for labeled dataset generation). We use
sklearn python ML library for training the LR model with
L2-regularization. Other parameters of the LR model are:
tolerance set to 0.0001, maximum iterations for convergence
to 200, and class weight set as ‘balanced’. We choose LR
because LR not only has been used in existing PR-based
approaches [Lao and Cohen, 2010; Gardner et al., 2014;
Gardner and Mitchell, 2015], but also has been shown to give
better performances compared to SVM [Wang et al., 2016].

5 Experiments
We evaluate C-PR empirically in terms of scalability, predic-
tive performance and model interpretability. We performed

3We analyzed a set of path search results for a collection of
entity-pairs in our dataset and found that whenever ∆(v, vkf) < 0,
node v becomes more generic (e.g., generic words like ‘people’, ‘an-
imal’ which may appear in many contexts) and often leads the path
to become contextually irrelevant. C-PR leverages this idea and au-
tomatically restrains itself from going out-of-context.

Table 2: Statistics of our dataset

Freebase Wordnet ConceptNet
#Relations 1,345 18 55
#Entities 13,871 13,595 88,931
#Triples 819,962 113,040 1.79M
#Relations Tested 25 18 19
Avg. # training
instances per relation 3,970 2,188 4,000

Avg. # testing
instances per relation 998 544 1,000

experiments on Amazon EC2 linux server having Intel Xeon
processor, 264GB RAM and 64 CPU cores in order to support
the baselines that use exhaustive path search.

5.1 Data
We used three datasets for our experiments: two standard
ones, viz (1) FB15k 4, (2) WordNet 4 and (3) one dataset
created by us from ConceptNet 5 triples. FBK15k is a rel-
atively dense subgraph of Freebase. The WordNet dataset
is comparatively small and ConceptNet dataset is the largest
one among the three. We choose these three datasets in order
to evaluate C-PR on semantically different5 KBs with diverse
size and density. Using each dataset, we build a fairly large
graph and use it as input to C-PR and the baselines. We also
augment the graph with inverse relation triples (t, r−1, h) for
each (h, r, t) following the baseline methods. Table 2 shows
the statistics of the graph and the labeled datasets.

5.2 Experimental Setup
Labeled Dataset Generation. For each of the three datasets,
the triple number varies significantly across relations. Thus,
to make the train and test data as balanced as possible for
all testing relations and to experiment with fairly large la-
beled set of instances, we search for relations in our graph
with ≥ 1000 instances6. For Freebase, we found 86 such re-
lations and randomly selected 257 semantically distinct rela-
tions from various domains like film, location, music, sports,

4https://everest.hds.utc.fr/doku.php?id=en:smemlj12
5Freebase contains facts about persons, places and things; Word-

Net is a lexical KB of English; ConceptNet is a common sense KB.
6We observed that the number of triples for most relations are

very small causing small train and test size after splitting. Choosing
relations with triple number ≥ k as test relations enables creating
balanced dataset of size at least k for all test relations.

7Due to high resource usage, cost and training time for SFE-PR
and SFE-PR+AR, it is not possible to evaluate all relations in KB.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1199

Table 3: Comparison of Scalability of C-PR with the baseline methods [η = 7, numWalker = 20].

Baselines Our Method
B-PR B-PR+Bi BB-PR BB-PR+Bi SFE-PR SFE-PR+AR DNA-PR DNA-PR+Bi C-PR C-PR+Bi

Path Finding
Algorithm

Unidirectional RW
(Two-sided)

Bidirectional
RW

Breadth First Search
(Exhustive)

DNA + Unidirectional
RW (Two-sided)

Context-aware
Bidirectional RW

Freebase (in-memory word2vec model = 5.4GB, in-memory Graph = 49 MB)
#Avg. Feat./rel. 458 1193 1815 4020 551M 893M* 868 2084 834 1536
RAM Consump. 1.1 GB >>100 GB 7.2 GB 7.2 GB
Avg. tr. time/rel. 0.1576 sec 0.2559 sec 0.2994 sec 0.3921 sec 70.23 min 105.64 min* 0.167 sec 0.304 sec 0.1773 sec 0.2339 sec

WordNet (in-memory word2vec model = 3.4GB, in-memory Graph = 7.1MB)
#Avg. Feat./rel. 164 258 358 506 2.5M 6.2M 212 319 149 216
RAM Consump. 376 MB 48GB 49GB 5.3 GB 5.3 GB
Avg. tr. time/rel. 0.0724 sec 0.0900 sec 0.1138 sec 0.1305 sec 4.5 sec 12.22 sec 0.0739 sec 0.0993 sec 0.0716 sec 0.0882 sec

ConceptNet (in-memory word2vec model = 3.4GB, in-memory Graph = 136MB)
#Avg. Feat./rel. 221 386 556 858 386M 716M* 339 555 517 719
RAM Consump. 2.2 GB >>100GB 6.2 GB 6.2 GB
Avg. tr. time/rel. 0.1401 sec 0.1750 sec 0.1723 sec 0.2062 sec 70.15 min 109.82 min* 0.1580 sec 0.1833 sec 0.1729 sec 0.1948 sec

Table 4: Comparison of predictive performance of C-PR with the baseline methods [η = 7, numWalker = 20].

Freebase WordNet ConceptNet
Model MAP Avg. F1 (+) Avg. F1 (-) MAP Avg. F1 (+) Avg. F1 (-) MAP Avg. F1 (+) Avg. F1 (-)

B-PR 0.6747 0.4629 0.9069 0.8823 0.8083 0.9615 0.6298 0.3021 0.9068
B-PR+Bi 0.6800 0.4710 0.9014 0.8834 0.8093 0.9606 0.6421 0.3431 0.9057
BB-PR 0.7695 0.6309 0.9175 0.9409 0.9046 0.9781 0.6771 0.4235 0.9109
BB-PR+Bi 0.7635 0.6057 0.9052 0.9283 0.8813 0.9709 0.6792 0.4537 0.9005
SFE-PR 0.5579 0.1988 0.8261 0.8437 0.7298 0.9495 0.5888 0.2574 0.8214
SFE-PR+AR 0.6079* 0.3975* 0.8498* 0.8820 0.8293 0.9599 0.7222* 0.3657* 0.8641*
DNA-PR 0.6947 0.5079 0.9085 0.8916 0.8252 0.9646 0.6422 0.3333 0.9079
DNA-PR+Bi 0.7057 0.5207 0.9032 0.8927 0.8208 0.9622 0.6574 0.3742 0.9059

C-PR 0.7999 0.7105 0.9292 0.9445 0.9082 0.9792 0.7401 0.5551 0.9221
0.7996* 0.7133* 0.9272* 0.7529* 0.5776* 0.9253*

C-PR+Bi 0.7904 0.7000 0.9233 0.9364 0.8971 0.9757 0.7399 0.5774 0.9186
0.7885* 0.7014* 0.9204* 0.7512* 0.5954* 0.9218*

education etc. For each of the 25 relations, we randomly shuf-
fle the list of distinct triples, choose 1000 triples and split
them into 80% training, 20% test. As the number of relations
in WordNet is relatively small, we select all 18 relations for
test. For ConceptNet, we found 19 relations with ≥ 1000 in-
stances and consider them for test. The train and test split for
these two datasets is done in the same way as for Freebase.

Given a relation r and an observed triple (h, r, t) in train-
ing or testing, the entity-pair (h, t) is regarded as a positive
instance for r. Following [Wang et al., 2016], for each pos-
itive instance (h, t), we generate four negative ones, two by
randomly corrupting the head h, and the other two by cor-
rupting the tail t by using only entities that have appeared in
corresponding positions. Note that, the testing triples are not
used for constructing the graph and also, none of the negative
instances overlap with the positive ones.
Baselines. We consider the following representative and
state-of-the-art PR-based algorithms as baselines. We do not
consider non-PR based methods here, as the path ranking
(PR) algorithm outperforms embedding-based TransE model
[Bordes et al., 2013] on FB15k [Wang et al., 2016].

Binarized Two-sided PR (B-PR) is the path-ranking al-
gorithm described in Section 3. Following [Gardner and
Mitchell, 2015], we also consider binarized path features for
learning the PR-classifier like in our proposed C-PR.

Binarized Bidirectional PR (BB-PR) is an extension of B-
PR where we replace unidirectional two-sided RW (Random
Walk) with bidirectional RW following the recent work [Lao
et al., 2015]. BB-PR can be thought of as a version of C-PR

that does not use context for path enumeration task.
B-PR+Bi is a simple extension to B-PR which augments

the feature set with bigrams as in [Neelakantan et al., 2015].
BB-PR+Bi is an extension to BB-PR with bigrams.
SFE-PR8 is a PR-based method that uses BFS (breadth-

first search) with Subgraph Feature Extraction (SFE) for ex-
tracting path features [Gardner and Mitchell, 2015]. SFE-PR
uses only PR-style features for feature matrix construction.

SFE-PR+AR8 is an extension to SFE-PR with “Any-
Relation” features [Gardner and Mitchell, 2015].

DNA-PR is a modified version (to support path ranking) of
the DNA algorithm (Sec. 2) where (1) we use the pre-trained
word2vec models9 for learning distributional semantics like
in C-PR and (2) employ unidirectional random walk (instead
of unidirectional exhaustive search like in DNA) while ex-
actly following the context-aware path finding strategy as pro-
posed in DNA [Freitas et al., 2014]. We use 0.05 as the simi-
larity threshold as used in [Freitas et al., 2014].

DNA-PR+Bi is an extension to DNA-PR with bigrams.
Evaluation Metrics. We use mean average precision (MAP),
where p@k is computed following [Lao et al., 2011]. We also
use Avg. F1 score for +ve and -ve classes for evaluation.

5.3 Results and Analysis
We compare C-PR and baselines in three aspects as discussed
below. The results for C-PR and random-walk based base-

8https://github.com/matt-gardner/pra
9The reference text corpus used by [Freitas et al., 2014] for learn-

ing distributional semantics is not publicly available.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1200

Table 5: Comparisons of model interpretability of Top-k features for C-PR and BB-PR on one Freebase and one ConceptNet test relation.

BB-PR C-PR
Freebase

Test Relation: /flim/film distributor/films distributed Avg. Precision: [BB-PR: 0.8050 vs. C-PR: 0.8906] +ve F1 score: [BB-PR: 0.6667 vs. C-PR: 0.8232]
award nominee−1 →netflix genre/titles−1 →netflix genres−1; films distributed→
film/distributors→production company/films→ film/release region→film/release region−1; or-
ganization relationship/parent→production companies−1; location/mailing address/country
→person/nationality−1 →award winner−1 →award nomination−1; film/distributor−1 →
film/release distribution medium→film/release distribution medium−1 →estimated budget/
currency−1 →dated money value/currency−1;

films distributed→nominated for→film/starring →flim/actor→performance/film; organi-
zation relationship/child→award winner→films distributed; film distributor−1 → produc-
tion companies→films distributed; film distributor−1 →netflix genres→production company/
films; film distributor−1 →film/distribution medium→film distribution medium−1;

ConceptNet
Test Relation: Antonym Avg. Precision: [BB-PR: 0.6987 vs. C-PR: 0.7996] +ve F1 score: [BB-PR: 0.4659 vs. C-PR: 0.6686]
RelatedTo−1 →RelatedTo−1; DerivedFrom→Antonym−1; Antonym→Synonym; Antonym
→RelatedTo; EtymologicallyDerivedFrom→EtymologicallyDerivedFrom−1; Antonym−1 →
RelatedTo; IsA→IsA−1; RelatedTo→ RelatedTo−1 →RelatedTo−1 →RelatedTo; Syn-
onym→ Antonym; EtymologicallyDerivedFrom−1 → RelatedTo

Antonym→Synonym−1; Synonym→Antonym−1; IsA→ RelatedTo→RelatedTo−1;
Antonym−1 →Synonym−1; RelatedTo→IsA; RelatedTo→Antonym−1 →RelatedTo;
Antonym→Synonym; EtymologicallyDerivedFrom−1; RelatedTo→Antonym;
Antonym−1 →RelatedTo

lines are obtained using maximum path length η = 710 and
numWalkers = 20 11. In Tables 3 and 4, for SFE-PR+AR’s
results (marked *) due to extremely high RAM usage and
training time (> 6.5 hrs), we had to terminate the execution
of 2 ConceptNet and 6 Freebase test relations.

Evaluation-I: Scalability. In this experiment, we eval-
uate C-PR and baselines in terms of Avg. number of fea-
tures extracted for training, total RAM consumption in train-
ing all test relations and Avg. training time per test relation.
From the results in Table 3, it is clear that SFE-PR and SFE-
PR+AR end up extracting an exponentially large number of
features (due to the use of exhaustive path search like BFS)
which drastically increases their training time. Whereas, C-
PR and other random-walk based baselines train on signif-
icantly fewer features which makes their training time sig-
nificantly less. Moreover, the feature explosion problem in
SFE-PR and SFE-PR+AR accounts for the extremely high
RAM consumption which makes their execution infeasible
with limited computational resources. For example, we could
not train all test relations using SFE-PR on a local sever hav-
ing 132GB of RAM in a single run. We noted that the highest
RAM consumption for SFE-PR+AR during training a Con-
ceptNet relation ‘causes’ with 2.25B features is 142GB and
the corresponding training time is 6.25 hrs.

Evaluation-II: Predictive Performance. Table 4 shows
the comparative results of predictive performance of C-PR
and baselines. To judge the overall improvements in pre-
dictive performance, we performed paired t-test considering
+ve F1 scores (or avg. precision) on each relation as paired
data. For both Freebase and ConceptNet, C-PR outperforms
all baselines with p < 0.01. For Freebase and WordNet, C-
PR outperforms C-PR+Bi with p < 0.05. For ConceptNet,
although C-PR+Bi outperforms C-PR with p < 0.01 based on
Avg. +ve F1, the improvement of C-PR over C-PR+Bi con-
sidering MAP is statistically insignificant. In other words,
augmenting C-PR with path bigram features doesn’t ensure
consistency in performance improvement. For WordNet, C-
PR outperforms all baselines except BB-PR with p < 0.01.

10Smaller η (≤ 4) often causes random walk to stop before reach-
ing target. Larger η (≥10) reduces feature overlapping (due to speci-
ficity of longer paths) making feature matrix too sparse.

11Using low value of numWalkers (like 20) gives a small set of
extracted features. This sets the stage for evaluating the main claim
of C-PR: gaining higher predictive performance by learning from
fewer number of discriminative path features.

The improvements of C-PR over BB-PR is statistically indis-
tinguishable due to small size and sparsity of the WordNet
dataset. From the analysis performed over three KBs, we can
conclude that the denser (like Freebase) and the larger (like
ConceptNet) the KB becomes, the better the C-PR performs
compared to the baselines, which is very important as real-
life KBs are getting larger and larger. For smaller and sparser
KBs like WordNet, C-PR performs as good as BB-PR.

Evaluation-III: Model Interpretablity. Table 5 shows the
results of model interpretability experiments performed fol-
lowing [Wang et al., 2016]. We selected top-k features for
one Freebase relation (k = 5) and one ConceptNet relation
(k = 10) and compared C-PR with BB-PR (performed best
among all baselines). We exclude WordNet from this analy-
sis as the performance improvement of C-PR over BB-PR on
Wordnet is statistically indistinguishable. Features marked
with blue color in Table 5 represents less interpretable and
black ones are more interpretable to human perception. For
example, for relation ‘Antonym’, an interpretable feature for
C-PR is “Antonym→Synonym−1” which can be explained
as: if a is antonym of b and b is synonym of c, then a is
antonym of c. Out of top-10 features for Antonym, we see
that 7 features are interpretable for C-PR and 5 features are
interpretable for BB-PR. And for relation flims distributed,
all top-5 features are interpretable for C-PR whereas only 3
features are interpretable for BB-PR. This analysis suggests
that, C-PR discovers more interpretable features than BB-PR
as a result of its context-aware path search strategy, which
also accounts for the gain in its predictive performance.

6 Conclusion
This paper proposed C-PR to extend path ranking algorithm
by incorporating a context-aware path search strategy in ran-
dom walk. Experimental results on three large-scale, real-
world KBs show that the strategy enables discovery of much
fewer, more discriminative and interpretable path features
compared to existing baselines, which in turn accounts for C-
PR’s significant gain in predictive performance with reason-
able RAM consumption and significantly less training time.
This makes C-PR a viable solution for performing inference
on large-scale KBs with limited computational resources.

Acknowledgments
This work was supported in part by National Science Foun-
dation (NSF) under grant no. IIS-1407927 and IIS-1650900.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1201

References
[Baroni et al., 2014] Marco Baroni, Georgiana Dinu, and

Germán Kruszewski. Don’t count, predict! a systematic
comparison of context-counting vs. context-predicting se-
mantic vectors. In ACL, 2014.

[Berant et al., 2013] Jonathan Berant, Andrew Chou, Roy
Frostig, and Percy Liang. Semantic parsing on freebase
from question-answer pairs. In EMNLP. 2013.

[Bollacker et al., 2008] Kurt Bollacker, Colin Evans,
Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase:
a collaboratively created graph database for structuring
human knowledge. In SIGMOD, 2008.

[Bordes et al., 2011] Antoine Bordes, Jason Weston, Ronan
Collobert, and Yoshua Bengio. Learning structured em-
beddings of knowledge bases. In Conference on artificial
intelligence, 2011.

[Bordes et al., 2013] Antoine Bordes, Nicolas Usunier,
Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling
multi-relational data. In NIPS, 2013.

[Das et al., 2016] Rajarshi Das, Arvind Neelakantan, David
Belanger, and Andrew McCallum. Chains of reasoning
over entities, relations, and text using recurrent neural net-
works. arXiv preprint arXiv:1607.01426, 2016.

[Du et al., 2015] Lan Du, Anish Kumar, M. Johnson, and
Massimiliano Ciaramita. Using entity information from
a knowledge base to improve relation extraction. In work-
shop of ALTA, 2015.

[Freitas et al., 2014] André Freitas, Joao Carlos Pereira
da Silva, Edward Curry, and Paul Buitelaar. A distri-
butional semantics approach for selective reasoning on
commonsense graph knowledge bases. In International
Conference on Applications of Natural Language to Data
Bases/Information Systems, 2014.

[Gardner and Mitchell, 2015] Matt Gardner and Tom M
Mitchell. Efficient and expressive knowledge base com-
pletion using subgraph feature extraction. In EMNLP,
2015.

[Gardner et al., 2013] Matt Gardner, Partha Pratim Talukdar,
Bryan Kisiel, and Tom Mitchell. Improving learning and
inference in a large knowledge-base using latent syntactic
cues. In ACL, 2013.

[Gardner et al., 2014] Matt Gardner, Partha Pratim Talukdar,
Jayant Krishnamurthy, and Tom Mitchell. Incorporat-
ing vector space similarity in random walk inference over
knowledge bases. In ACL, 2014.

[Gesmundo and Hall, 2014] Andrea Gesmundo and Keith
Hall. Projecting the knowledge graph to syntactic parsing.
In EACL, 2014.

[Jiang et al., 2012] Shangpu Jiang, Daniel Lowd, and Dejing
Dou. Learning to refine an automatically extracted knowl-
edge base using markov logic. In ICDM, 2012.

[Kyrola, 2013] Aapo Kyrola. Drunkardmob: billions of ran-
dom walks on just a pc. In RecSys, 2013.

[Lao and Cohen, 2010] Ni Lao and William W Cohen. Re-
lational retrieval using a combination of path-constrained
random walks. In Machine learning, 2010.

[Lao et al., 2011] Ni Lao, Tom Mitchell, and William W Co-
hen. Random walk inference and learning in a large scale
knowledge base. In EMNLP, 2011.

[Lao et al., 2015] Ni Lao, Einat Minkov, and William W Co-
hen. Learning relational features with backward random
walks. In ACL, 2015.

[Levy et al., 2015] Omer Levy, Yoav Goldberg, and Ido Da-
gan. Improving distributional similarity with lessons
learned from word embeddings. In TACL, 2015.

[Mikolov et al., 2013a] Tomas Mikolov, Kai Chen, Greg
Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In ICLR Workshop, 2013.

[Mikolov et al., 2013b] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality.
In NIPS, 2013.

[Miller, 1995] George A Miller. Wordnet: a lexical database
for english. In Communications of the ACM, 1995.

[Neelakantan et al., 2015] Arvind Neelakantan, Benjamin
Roth, and Andrew McCallum. Compositional vector space
models for knowledge base completion. In ACL, 2015.

[Nickel et al., 2011] Maximilian Nickel, Volker Tresp, and
Hans-Peter Kriegel. A three-way model for collective
learning on multi-relational data. In ICML, 2011.

[Nickel et al., 2015] Maximilian Nickel, Kevin Murphy,
Volker Tresp, and Evgeniy Gabrilovich. A review of re-
lational machine learning for knowledge graphs. arXiv
preprint arXiv:1503.00759, 2015.

[Speer and Havasi, 2012] Robert Speer and Catherine
Havasi. Representing general relational knowledge in
conceptnet 5. In LREC, 2012.

[Toutanova, 2015] Kristina Toutanova. Observed versus la-
tent features for knowledge base and text inference. In
ACL Workshop on Continuous Vector Space Models and
their Compositionality, 2015.

[Wang et al., 2016] Quan Wang, Jing Liu, Yuanfei Luo, Bin
Wang, and C Lin. Knowledge base completion via coupled
path ranking. In ACL, 2016.

[West et al., 2014] Robert West, Evgeniy Gabrilovich, Kevin
Murphy, Shaohua Sun, Rahul Gupta, and Dekang Lin.
Knowledge base completion via search-based question an-
swering. In WWW, 2014.

