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a b s t r a c t 

This paper presents HBIN-LBD, a novel literature-based discovery (LBD) method that exploits the lexico- 

citation structures within the heterogeneous bibliographic information network (HBIN) graphs. Unlike 

other existing LBD methods, HBIN-LBD harnesses the metapath features found in HBIN graphs for dis- 

covering the latent associations between scientific papers published in otherwise disconnected research 

areas. Further, this paper investigates the effects of incorporating semantic and topic modeling compo- 

nents into the proposed models. Using time-sliced historical bibliographic data, we demonstrate the per- 

formance of our method by reconstructing two LBD hypotheses: the Fish Oil and Raynaud’s Syndrome hy- 

pothesis and the Migraine and Magnesium hypothesis. The proposed method is capable of predicting the 

future co-citation links between research papers of these previously disconnected research areas with up 

to 88.86% accuracy and 0.89 F-measure. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Literature-based discovery (LBD) is a systematic computational

approach for making novel inferences about previously unknown

connections across disparate research fields by chaining together

complementary pieces of knowledge from their respective litera-

tures [42] . Using LBD, a novel assertion such as ‘dietary fish oil al-

leviates Raynaud’s Syndrome’ can be inferred based on pre-existing

assertions in the existing literatures, for example ‘dietary fish oil

lowers blood viscosity’ and ‘high blood viscosity is observed among

Raynaud’s Syndrome sufferers’ . Note that these assertions have been

previously published in disparate groups of research papers [53] . 

Basic LBD techniques search for a set of intermediate terms

that frequently co-occur with a source term and a target term

[42] . Following the example above, the term ‘ blood viscosity ’ is one

of the instrumental intermediate terms in associating the source

term ‘ dietary fish oil ’ with the target term ‘ Raynaud’s Syndrome ’.

More sophisticated LBD methods incorporate natural language pro-

cessing (NLP) techniques with domain-specific ontologies. For in-

stance, Hristovski et al. [20] used a third-party NLP tool to au-

tomatically extract complementary subject - relation - object predica-
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ions from a biomedical corpus. These extracted predications could

hen be used for inferring novel relationships in literatures. 

These existing LBD methods have several limitations. A term co-

ccurrence method typically suffers from the imprecise meaning of

uch co-occurrences [27] . On the other hand, NLP-based methods

re effective only when they are applied to mining literatures in

 certain domain for which the required NLP tools and ontologies

re easily available [32] . Most importantly, these existing methods

ave not exploited the valuable bibliographic metadata that are

asily available in most scientific publications. 

In this paper, we extend the state-of-the-art of the cur-

ent literature-based discovery research. We propose a new LBD

ethod that harnesses the lexico-citation information found in a

eterogeneous bibliographic information network (HBIN). Fig. 1 il-

ustrates an example of HBIN graph. Unlike previous works, we

iew literature-based discovery as a link prediction problem with

he goal of answering the following research question: ‘ how do we

ccurately predict the future co-citation links between research papers

n previously disconnected research fields? ’. 

A pair of research papers are said to be co-cited if they are cited

ogether by another paper [43] . For LBD, new cross-disciplinary

o-citation links that span the boundaries of previously discon-

ected research fields may point to the convergence of these

elds [9] . For example, Swanson’s seminal LBD paper formed many

ew co-citation links between previously disconnected fish oil

nd Raynaud’s Syndrome research papers [48] . Consequently, the

http://dx.doi.org/10.1016/j.knosys.2016.10.015
http://www.ScienceDirect.com
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.10.015&domain=pdf
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Fig. 1. Illustration of an HBIN graph. P nodes refer to papers published in disparate 

research areas. Latent metapaths between P nodes may be formed via various en- 

tities in the bibliographic metadata space: term ( T ), author ( AU ), publisher ( V ), topic 

( TP ), cited reference ( P ref ) and citing paper ( P cite ). 
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1 http://ctdbase.org/ . 
ffectiveness of an LBD method can be measured based on its abil-

ty to predict the future occurrence of these co-citation links. 

Our new method, HBIN-LBD , addresses the research problem

bove by exploiting the latent interconnections between various

bjects in the bibliographic metadata space of a heterogeneous

BIN graph. These connections include such associations as term

o-occurence, co-authorship, and shared references. In this study

e also study the effects of applying word sense disambiguation

n the proposed model. Finally, we explore the performance gain

rom incorporating topic modeling into our model. 

Our contributions are two-fold. First, we propose a novel

iterature-based discovery method that mine the latent features in

BIN graphs. To the best of our knowledge, this is the first method

hat employs heterogeneous information networks for solving LBD

asks. Secondly, we demonstrate the usefulness lexico-citation fea-

ures of HBIN graphs for predicting the co-citation links between

apers from previously disconnected research areas. In addition,

e report on the performance gain from incorporating semantic

nd topic modeling components into the model. 

We organize the rest of this paper as follows. Section 2 presents

elated work. Section 3 introduces our novel technique and algo-

ithms, including some theoretical discussions. In Section 4 , we de-

cribe our evaluation methodology and present the experimental

esults. Section 5 further discusses our research findings and high-

ights the innovation in our work. Finally, Section 6 presents the

onclusion and suggests some future research directions. 

. Related work 

.1. Heterogeneous Bibliographic Information Network (HBIN) 

The HBIN graph is a special type of heterogeneous informa-

ion network [17,46] . A collection of scientific publications can be

iewed as a network of information that consists of interconnected

eterogeneous bibliographic objects. Unlike homogeneous informa-

ion networks, heterogeneous information networks can encode

icher information and better capture different semantics between

arious real world objects [17] . HBIN allows various information to

ropagate across different types of objects and links [46] . These

nformation can then be used to capture and model the previously

nknown associations between research papers. 

Most of the existing LBD methods are based on a simple dis-

overy model known as the ABC model [42] . The model suggests
hat when term A co-occurs with term B and term B co-occurs

ith term C , then it may be inferred that term A is possibly related

o term C [42,53] . Unfortunately, literature-based discovery cannot

e solely modeled using just this simplistic model [27,42] . On the

ther hand, various semantics are known to propagate through dif-

erent bibliographic objects in HBIN graphs [46] . These information

ould provide a more holistic way for understanding the previously

nknown associations between disjoint research papers in LBD. In-

tead of performing LBD using just the lexical information (e.g.

erm co-occurrence), HBIN graphs provide other potentially use-

ul non-lexical information such as citation relations. For example,

26] observed that certain intermediate terms connecting disjoint

arkinson’s and Crohn’s disease papers could only be found in the

itles of their shared references instead of their own titles. 

More specifically, mining HBIN graphs allows one to construct

omposite relations known as metapaths by adjoining different

ypes of information links [17,46] . Through a metapath, informa-

ion that propagates through lexical objects and links such as

erms can be seamlessly combined with other non-lexical infor-

ation propagating through non-lexical objects such as cited ref-

rences, publishers or authors. As a result, metapaths provide

he versatility for exploring different lexico-citation structures that

ould be useful for an LBD task. 

A number of recent LBD methods have explored methods that

tilize certain graph data structures. For example, Cameron et al.

8] introduced a method that automatically finds clusters of con-

extually similar paths in a semantic predication graph . These clus-

ers are used to elucidate the latent associations between disjoint

oncepts in the literatures for reconstructing eight scientific dis-

overies. However, unlike the HBIN graphs, it does not use hetero-

eneous information networks and strongly depends on the avail-

bility of domain-specific NLP tools and ontology. 

In another example, Ding et al. [10] combined the lexical and

itation information from the literature in the form of an entity-

etrics graph . The method models the latent relationships among

iological entities (e.g. diseases, drugs) based on the existing ci-

ation relationships between their respective research papers. For

xample, assuming paper A cites paper B , the method links each

iological entity mentioned in paper A with each biological en-

ity mentioned in paper B . It then computes a clustering coefficient

core from the entitymetrics graph and uses the score as a feature

or predicting the interactions between genes and drugs. The pre-

iction results are compared with in the entries in the Compara-

ive Toxicogenomics Database (CTD) 1 . Different from HBIN graphs,

he entitymetrics graph does not consider bibliographic metadata

lements such as authorship or shared references. 

.2. LBD as a link prediction problem 

As previously mentioned, this paper considers LBD as a link

rediction problem. The goal of link prediction is to predict the oc-

urrence of new links in the future snapshots of a network based

n the existing one [14,28] . Link prediction consists of two main

teps: (a) learn a number of predictive features from a network,

nd then (b) use the features to predict the occurrence of a link in

 future snapshot of the same network [14] . 

Kastrin et al. [22] recently proposed formulating LBD as a prob-

em in predicting the implicit links within a co-occurrence network

f Medical Subject Headings (MeSH) terms. In contrast, we address

 link prediction problem in HBIN graphs. HBIN graphs include

arious types of bibliographic metadata information and therefore

ontain richer information than just MeSH terms. Further, unlike

eSH terms which target biomedical literatures, HBIN metadata

http://ctdbase.org/
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information is not domain-specific and can be easily obtained from

literatures in various research fields. 

Prior link prediction work has proposed using HBIN metadata

information for predicting co-authorship links [45] . We note that

their work is different from ours as their predicted co-authorship

links do not necessarily span across disparate research fields. In

contrast, the focus of LBD is to predict cross-disciplinary links. Be-

sides that, compared to Sun et al.’s method, our method proposes

using a different set of metadata structures. 

Other works that mined information from HBIN graphs usu-

ally aim at solving citation recommendation problems [30,37] . For

instance, Ren et al. [37] developed a method that learns the ci-

tation interest of a query paper from HBIN graphs in order to

recommend a set of relevant citations for it. They used features

such as the relevance and authority of bibliographic objects in the

HBIN graphs. The algorithm outperformed other link prediction al-

gorithms for predicting the direct citation links between papers

in DBLP database 2 with 17.68% improvement on recall (0.4279 vs

0.3636). Liu et al. [30] proposed a method that extracts the ci-

tation contexts between research papers and uses this informa-

tion to learn the citation topics between the papers using a su-

pervised topic modeling algorithm. These topics are then used to

compute the citation probability between research papers. Their

method outperformed other HBIN-based models with nearly 60%

improvement on the Mean Average Precision for predicting direct

citation links between research papers in the ACM Digital Library 3 .

We emphasize that the works described above are only lim-

ited to predicting direct citations between papers, not co-citations.

Ren et al. [37] and Liu et al. [30] also placed no requirement that

predicted relationships be spanning across two different research

fields. In contrast, literature-based discovery aims at predicting the

co-citation links between papers from two different research fields.

LBD problem requires that these research fields are effectively dis-

connected from each other such that they have no research paper

in common, never cite each other, and have never been co-cited

before [50] . As such, our work addresses a fundamentally different

problem from the ones addressed by both Ren et al. [37] and Liu

et al. [30] . 

2.3. Semantic aspects and topic modeling 

The existing LBD methods typically involve mapping raw terms

in texts to corresponding standard concept names [8,20] . This al-

lows the meaning of words to be determined more precisely. It

also reduces word sense ambiguities. Owing to the availability of

biomedical NLP tools and ontologies, this has been a valid ap-

proach for many biomedical LBD methods [42] . However, the ef-

fects of semantic processing on domain-independent LBD methods

such as HBIN-LBD is not as widely understood [36] . In this work

we explore a dictionary-based word sense disambiguation tech-

nique and study its effects on the performance of our model. 

Similarly, the effects of incorporating topic modeling [6] for

literature-based discovery have been rarely studied. In HBIN

graphs, topical information between papers usually propagate

through links between a term and a paper object. For example, a

research paper on fish oil topic is more likely to form a link with

the term ‘ fish ’ compared to a paper on Raynaud’s Syndrome. In this

work we explore the efficacy of using topic modeling for generat-

ing new synthetic topic objects in the HBIN graphs. These nodes

provide an alternative way for propagating topical information be-

tween papers other than through term objects. We describe these

models in more detail in the following sections. 
2 http://dblp.uni-trier.de/ . 
3 http://dl.acm.org/ . 

A  

T  

e  

a  
. Method and models for learning HBIN for LBD 

In this paper, we propose HBIN-LBD, a novel LBD method that

earns various lexico-citation features from HBIN graphs. The goal

f HBIN-LBD is to discover the latent associations between re-

earch papers through the existing interconnections of various bib-

iographic metadata such as author, term, publisher, cited refer-

nces, and citing papers. Using a machine learning algorithm, we

emonstrate the performance of these features for predicting fu-

ure co-citations links between a pair of research papers from dif-

erent fields. We operationalize this problem as a multiclass classi-

cation task [18,40] . 

We believe that HBIN-LBD is the first method that uses het-

rogeneous metapath features from an HBIN graph for performing

BD tasks. These features can be useful for inferring latent asso-

iations between two research papers. For instance, research pa-

ers that share many similar references may use a common set of

ackground knowledge [23,26] . This information could be used to

redict the possible associations between them. Fig. 2 shows an

verview of the proposed HBIN-LBD method. 

Three different models are proposed in this paper: the (a) HBIN-

BD , (b) HBIN-LBD-Semantic , and (c) HBIN-LBD-Topic . We describe

ach model in more detail in the following sections. 

.1. The HBIN-LBD model 

This first model explores the effectiveness of various meta-

ath features extracted from HBIN graphs for predicting fu-

ure co-citation links between research papers. We define HBIN

s an undirected graph G = (V, E ) with a vertex type map-

ing function τ : V → A and an edge type mapping function φ :

 → R [46] . We define seven types of vertices, such that A =
 P core , P re f , P cite , AU, V, T , T P } , and six types of edges R : 

1. ν1 
written _ by −−−−−−→ ν2 ; τ ( ν1 ) ∈ { P core , P ref , P cite }, τ (ν2 ) = AU, ν1 , ν2 ∈ V

2. ν1 
published _ in −−−−−−−→ ν2 ; τ ( ν1 ) ∈ { P core , P ref , P cite }, τ (ν2 ) = V, ν1 , ν2 ∈ V

3. ν1 
contains −−−−−→ ν2 ; τ ( ν1 ) ∈ { P core , P ref , P cite }, τ (ν2 ) = T , ν1 , ν2 ∈ V

4. ν1 
cites −−→ ν2 ; τ (ν1 ) = P core , τ (ν2 ) = P re f , ν1 , ν2 ∈ V

5. ν1 
cited _ by −−−−−→ ν2 ; τ (ν1 ) = P core , τ (ν2 ) = P cite , ν1 , ν2 ∈ V

6. ν1 
about −−−→ ν2 ; τ ( ν1 ) ∈ { P core , P ref , P cite }, τ (ν2 ) = T P, ν1 , ν2 ∈ V

The meaning of each type of vertices is as follows. The core pa-

er ( P core ) is any paper that belongs to either one of the disparate

esearch areas under study. Borrowing the example used at the be-

inning of this paper, a core paper belongs to either a fish oil or

 Raynaud’s Syndrome research area. The cited reference ( P ref ) is a

aper that is cited by a core paper, whereas the citing paper ( P cite )

efers to a paper that cites a core paper. Both are considered as

on-core papers and could be categorized into any research field.

he author ( AU ) vertex refers to the author of a core paper or a

on-core paper. The venue ( V ) is the publisher of a paper. This is

sually the title of a journal or the name of a conference proceed-

ng. The term ( T ) refers to the term appearing in the titles or ab-

tracts of core and non-core papers, excluding general stopwords.

astly, the topic ( TP ) vertex refers to the most probable topic of a

aper. This will be learned using a standard topic modeling algo-

ithm. 

.1.1. HBIN metapath features 

We define different types of metapaths for our HBIN graphs.

 metapath M is a path defined on the HBIN network schema

 G = (A , R ) . It joins three or more vertices using two or more

dges such that M = ν1 

e 1 −→ ν2 

e 2 −→ . . . 
e l −→ νl+1 , where the starting

nd ending vertices are of the same vertex type P core , τ (ν1 , νl+1 ) =

http://dblp.uni-trier.de/
http://dl.acm.org/
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Fig. 2. Overview of the HBIN-LBD method. 

Table 1 

Metapaths used in the HBIN-LBD model. 

No. Metapath Description 

1. two _ term Core papers share a term 

2. two _ author Core papers share an author 

3. two _ v enue Core papers share a publisher 

4. two _ re f Core papers share a reference (ref.) 

5. three _ term _ re f Core paper shares a term with other core paper’s ref 

6. three _ term _ cite Core paper shares a term with other core paper’s citer 

7. t hree _ aut hor _ re f Core paper shares an author with other core paper’s ref 

8. t hree _ aut hor _ cite Core paper shares an author with other core paper’s citer 

9. three _ v enue _ re f Core paper shares a publisher with other core paper’s ref 

10. three _ v enue _ cite Core paper shares a publisher with other core paper’s citer 

11. f our _ term _ re f Core papers’ refs. share a term 

12. f our _ t erm _ cit e Core papers’ citers share a term 

13. f our _ author _ re f Core papers’ refs. share an author 

14. f our _ author _ cite Core papers’ citers share an author 

15. f our _ v enue _ re f Core papers’ refs. share a publisher 

16. f our _ v enue _ cite Core papers’ citers share a publisher 
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c  
 core , P core ∈ A , and φ(e 1 , . . . , e l ) ∈ R . Note that the given metapath

efinition is similar to a definition provided by Sun et al. [47] , ex-

ept for the vertex type constraint on ν1 and νl+1 . 

Table 1 lists all metapath types defined in our first model. Since

etapaths are essentially composite relations of various edge types

n HBIN graph, they can capture various relationship meaning be-

ween HBIN objects. Each metapath contains rich latent informa-

ion that can be used for predicting previously unknown relation-

hips between disjoint core papers. 

The degree of a metapath indicates its length and the distance

etween two core papers. An n -degree metapath is a sequence of

 distinct edges. Unless indicated otherwise, we assume that a

etapath connects two disjoint core papers p core x , p core y that be-

ong to two disjoint sets of research papers P x and P y , such that

 x ∩ P y = ∅ . The core papers constitute the endpoints of a metap-

th. This metapath structure distinguishes our method from Sun

t al. [45] , where both endpoints of a metapath must be the au-

hor vertices. In the following sections, we explain the three main

ypes of metapaths. 
i) Two-degree metapath features . Two-degree metapaths such

s p core x 
cites −−→ p re f z 

cites ←−− p core y suggests a bibliographic coupling be-

ween core papers p core x , p core y . Bibliographic coupling could sug-

est that the scientific contributions of the two papers are built

pon a common set of background knowledge. This may point to

reviously unknown connections between them [23] . 

ii) Three-degree metapath features . Three-degree metapaths pro-

ide richer semantic interpretations. For example, the following

etapath exists between a dietary fish oil core paper [31] ( p core x )

nd a Raynaud’s Syndrome core paper [4] ( p core y ): p core x 

published _ in −−−−−−−→
 z 

published _ in ←−−−−−−− p cite u 

cited _ by ←−−−−− p core y . According to this metapath, p core x 

nd p cite u [5] were published by the same journal Prostaglandins

 v z ) which indicates their relevance to each other. Also, p core y is

ited by p cite u which also indicate the relevance between p core y and

p cite u . As such, p core x and p core y may be relevant to each other. 
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(iii) Four-degree metapath features . Finally, we also consider four-

degree metapaths, such as: 

p core x 

cites −−→ p re f u 

contains −−−−→ t z 
contains ←−−−− p re f w 

cites ←−− p core y 

This metapath suggests that, although p core x and p core y cite distinct

references p re f u , p re f w , their references contain a common term t z .

This metapath configuration may point to the relevance between

p core x and p core y . 

For example, a dietary fish oil core paper [13] ( p core x ) cited

[21] ( p re f u ) and another Raynaud’s Syndrome core paper [4] ( p core y )

cited [11] ( p re f w ). On the other hand, p re f u and p re f w shared a com-

mon term prostacyclin in their titles. This suggests a latent asso-

ciation between core papers p core x and p core y . In fact, prostacyclin

in fish oil can disrupt the platelet aggregation in human blood.

It has been demonstrated that this disruption eventually alleviates

the symptoms of Raynaud’s Syndrome disease [8] . 

3.1.2. Computing metapath edge weights as features 

We compute the appropriate metapath edge weights which is

a key element for an effective link prediction [14] . We define the

strength of a metapath is a function of the weights of its com-

ponent edge and propose six scoring schemes to compute these

weights. Our method is novel in that it takes into consideration

the local importance and the global importance of a metapath edge.

We explain these concepts later. 

(i) Paper-to-paper edge weight . The weight of an edge connecting

two vertices p i and p j is computed using either one of the follow-

ing schemes: 

w 

(
p i −→ p j 

)
= 

1 

−→ 

count 
(

p i , P 
i 
ref 

) · 1 

N 

( 

N ∑ 

k =1 

−→ 

count 
(
P k , p j 

)
count ( P k ) 

) 

;

0 ≤ w ≤ 1 (1)

w (p i ← − p j ) = 

1 

← −
count (p i , P 

i 
cit 

) 
· 1 

N 

( 

N ∑ 

k =1 

← −
count (P k , p j ) 

count (P k ) 

) 

;

0 ≤ w ≤ 1 (2)

In the right-hand side of Eq. (1) , the first factor of the product

refers to the local importance of p j which is inversely proportional

to the total number of references cited by p i which is denoted by
−→ 

count (p i , P 
i 
re f 

) . The less references cited by p i , the more important

p j is to p i [30] . 

The second factor of the product approximates the global im-

portance of p j relative to N disjoint sets of paper P k ... P N . Function
−→ 

count (P k , p j ) denotes the total number of papers in literature set

P k that cite p j . This is then normalized by dividing it over the total

number of papers in P k . Hence, we assume that the more relevant

p j is to the literature set P k , the more frequently it will be cited

by the component papers in this set. By implication, if p j is im-

portant to two sets P k and P k +1 , then its total global importance

score will be higher than another paper that is only relevant to

one of the sets. Such reference paper could signal potential con-

nections between two disjoint literature that are not previously

known. Eq. (2) follows a similar principle for measuring the im-

portance of paper p j that cites p i . 

(ii) Paper-to-term edge weight . Eq. (3) measures the weight of an

edge connecting p i and t j : 

w 

(
p i − t j 

)
= 

freq 
(

p i , t j 
)

freq ( T p i ) 
· 1 

N 

( 

N ∑ 

k =1 

freq 
(
P k , t j 

)
freq 

(
T P k 

)
) 

; 0 ≤ w ≤ 1 (3)
actor 
f req (p i ,t j ) 

f req (T p i 
) 

accounts for the local importance of a term t j . It

easures how frequently t j appears in paper p i , which is normal-

zed by the total number of non-unique terms in p i . We assume

hat term frequency is positively correlated with its importance.

esides, function 

f req (P k ,t j ) 

f req (T P k 
) 

captures the frequency of t j in all papers

n set P k which is normalized by the total number of non-unique

erms in P k . Altogether, Eq. (3) favors terms that frequently appear

n both disjoint literature sets. 

iii) Paper-to-author edge weight . Eq. (4) measures the impor-

ance of author a j with respect to paper p i : 

 

(
p i − a j 

)
= 

1 

count ( p i , AU p i ) 
· 1 

N 

( 

N ∑ 

k =1 

freq 
(
a j , AU P k 

)
freq 

(
AU P k 

)
) 

; 0 ≤ w ≤ 1 

(4

unction count (p i , AU p i ) denotes the total number of authors in p i 
uch that the importance of a j to p i is inversely proportional to the

otal authors of p i (the local importance ). Function f req (a j , AU P k 
)

enotes the total number of non-unique co-authorship pairs be-

ween author a j and the other authors in P k . Function f req (AU P k 
)

enotes the total number of non-unique co-authorship pairs be-

ween authors in P k . Hence, the more frequently a j publishes pa-

ers together with other authors in P k , the more important her

ontribution is to P k (the global importance ). 

iv) Paper-to-venue edge weight . Eq. (5) measures the edge

eight connecting publisher v j and paper p i : 

 

(
p i − v j 

)
= 

1 

N 

( 

N ∑ 

k =1 

count 
(
P k , v j 

)
count ( P k ) 

) 

; 0 ≤ w ≤ 1 (5)

unction count ( P k , v j ) denotes the total number of papers in P k 
hat have been published by v j . Function count ( P k ) denotes the to-

al number of papers in P k . We assume the more papers published

y v j in P k , the more important v j is to P k . 

.1.3. Edge weight features aggregation 

The overall weight of a single metapath is computed by ag-

regating the weights of its component edges. Fig. 3 outlines the

teps for generating various metapath features for our co-citation

ink prediction task. Referring to the figure, assume that we have

wo core papers p i , p j such that τ (p i ) = A 1 , τ (p j ) = A 2 , and A 1 =
 2 = P core . For the sake of generality, let x represent p i and y rep-

esent p j . Assuming that both core papers are connected by more

han one metapaths, the simplest metapath feature score can be

alculated by counting the number of unique metapaths between

hem, i.e. the path count . Other features include computing the sum

f all metapath weights as well as finding the average , the min-

mum , and the maximum edge weight score of all metapaths be-

ween x and y . Note that these aggregation techniques focus on

erifying the efficacy of each of the edge weighting schemes de-

cribed above. 

Using these techniques, given a metapath two_term connecting

 and y , five feature values can be computed: two_term_pathcount,

wo_term_sum, two_term_avg, two_term_min , and two_term_max .

ince there are 16 different types of metapaths (please refer again

o Table 1 ) and 5 possible aggregation techniques, for each pair of

ore papers we obtained 80 different f eatures and used these fea-

ures to train a classification algorithm. We will describe the learn-

ng process later in this paper. 
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Fig. 3. Feature extraction for the HBIN-LBD model. 
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.1.4. The symmetry of metapaths 

Now we provide some theoretical considerations behind our

odel. It is important for an LBD method to adhere to the sym-

etric property of literature-based discovery. Using the ABC model

s an example, this suggests that a hidden connection A − C should

e consistently found regardless of whether one starts searching

or the connection from the point of view A or from the point of

iew of C [24,39] . The symmetry property of LBD is captured by

he following theorem. 

heorem 1. The connections A-B-C and C-B-A equally suggest the

mplicit connection between A and C regardless of the starting and

he ending point of the search. 

Our proposed HBIN metapaths fulfil this theorem as follows. 

emma 1. Given core paper vertices x and y, it is true that

f (x, y ) pathcount = f (y, x ) pathcount , where f ( x, y ) pathcount is a function

hat counts the number unique metapaths between p core x and p core y . 

Recall that a shortest metapath M would join at least three ver-

ices of type A , such that M = (A 1 , A 2 , A 3 ) . Each component edge

n M can be modeled using vector W ( i, j ) between adjacent vertex

ypes A i and A j , where w (a i , a j ) = 1 if there is an edge between a i 
nd a j . Hence, for the M given above, two adjacency vectors can be

efined: W (A 1 , A 2 ) and W (A 3 , A 2 ) . 

We can then formulate L 1, 3 as the scalar product of the adja-

ent vectors W (A 1 , A 2 ) and W (A 3 , A 2 ) . L 1, 3 gives the total count

f unique metapaths between A 1 and A 3 . From this point, it is

asy to see the symmetry of the f ( x, y ) pathcount can be proven as

ollows. 

roof. f (x, y ) pathcount = L x,y = L y,x = f (y, x ) pathcount , since L x,y =
 (x, :) · W (y, :) = W (y, :) · W (x, :) , where · means the scalar

roduct of two vectors. 

For example, in Fig. 3 , we can observe that the total meta-

ath count between A and A is 3, where W (A , :) = [1 , 1 , 1] ,
2 4 2 
 (A 4 , :) = [1 , 1 , 1] , and 1 refers to an edge between A 2 or A 4 to

ach vertex A 3 a, . . . , A 3 c. 

The commutativity of vectors W (x, :) · W (y, :) = W (y, :) ·
 (x, :) gives HBIN metapaths their symmetry. It is easy to infer

rom the above that a metapath eventually consists of a set of

djacent pairwise commutative vectors, such that the symmetry

roperty is applicable to a metapath of any length [12] . There-

ore, borrowing from the previous example, it is also true that

f (A 1 , A 4 ) pathcount = f (A 4 , A 1 ) pathcount . 

Finally, since computing f ( x, y ) sum 

, f ( x, y ) avg , f ( x, y ) min , and f ( x,

 ) max depends on the exact metapath count, the same symmetry

roperty applies to all of these functions. We note that a similar

etapath symmetry property has been demonstrated by Sun et al.

47] for the PathSim algorithm. 

.1.5. The predictiveness of mixed-degree metapaths 

In addition to the symmetry property of metapaths, the inclu-

ion of metapaths of different degrees (or lengths) in the HBIN-

BD model could help increase its overall predictive accuracy. This

s supported by the latent space theory of link prediction [19] . Hoff

t al. proposed a theory which associates every vertex in a social

etwork with a position in a D -dimensional latent space. The the-

ry postulates that an edge between two vertices in a network can

e predicted if their positions in the latent space are in proxim-

ty to each other. Since the vertex latent positions are unobserved,

he main research problem is concerned with accurately estimating

hese positions [19] . 

Sarkar et al. [38] extended Hoff et al.’s theory to explain why

ertain link prediction algorithms such as the common neighbours

nd Adamic/Adar algorithms performed well in many prior empir-

cal studies [28] . They showed that the performance of these algo-

ithms can be explained by their ability to better estimate the po-

itions of two vertices in the same latent space, as previously pro-

osed by Hoff et al. Specifically, they found that the good perfor-

ance of these algorithms is correlated with their ability to yield
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Fig. 4. Semantic processing pipeline for the HBIN-LBD-Semantic model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 Finding instances of a four-degree metapath between 

core papers. 

Input: Weighted HBIN graph G (V, E) ; a source core paper s and a 

target core paper t , τ (s, t ) ∈ P core ; a metadata vertex type mt ∈ 

{ AU, V, T , T P } ; and a citation vertex type ct ∈ { P re f , P cite } . 
Output: M s,t , i.e. a set of metapaths connecting s and t . 

1: M s,t ← ∅ 
2: Get vertices v s i that is directly connected to s in G , where v s i ∈ 

G ∧ τ (v s i ) ∈ ct . Call this set V s . 

3: Get vertices v t i that is directly connected to t in G , where v t i ∈ 

G ∧ τ (v t i ) ∈ ct . Call this set V t . 

4: if V s ∩ V t 
 = ∅ then 

5: Remove V s ∩ V t from V t 
6: end if 

7: Get metadata vertices v mt (s,i ) 
that is directly connected to each 

vertex in V s , where v mt (s,i ) 
∈ G ∧ τ (v mt (s,i ) 

) ∈ mt . Call this set 

V mt s . 

8: Get metadata vertices v mt (t,i ) 
that is directly connected to each 

vertex in V t , where v mt (t,i ) 
∈ G ∧ τ (v mt (t,i ) 

) ∈ mt . Call this set 

V mt t . 

9: Build a biadjacency matrix B = { V s , V t , V mt } , such that B i j 
 = ∅ if 

and only if there is a set of common metadata vertices V mt ∈ 

{ V mt s , V mt t } connecting v s i and v t j . 
10: for all B i j in B do 

11: if B i j 
 = ∅ then 

12: for k ← 1 , | B i, j | do 

13: Compute the aggregate score of metapath s − V s i −
V mt k 

− V t j − t and add it into M s,t . 

14: end for 

15: end if 

16: end for 
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5 https://wordnet.princeton.edu/ . 
tighter bounds on the distance between the vertices in the latent

space [38] . 

A further extension of the theory explains the importance of

including metapaths of different degrees (2-, 3-, and 4-degree) in

the HBIN-LBD model. [38] found that the lack of short paths (i.e. 2-

degree paths) between two vertices makes it difficult to yield tight

bounds between them in the latent space. We believe that this

scenario is typical of literature-based discovery, where two groups

of research papers from disparate research areas are expected to

share very few common things [49,50,52] . As such, the number of

short paths between them would be relatively few. On the other

hand, longer paths tend to yield looser bounds between vertices,

which in turn adversely affect a link prediction performance. To

compensate this, a higher number of longer paths are needed to

yield tighter bounds. Unfortunately, including a higher number of

longer paths would lead to higher computational costs of an algo-

rithm [3,41] . 

Sarkar et al. [38] suggested that this problem can be alleviated

by including just a few short paths between the vertices. The ex-

istence of these short paths could dramatically increase the tight-

ness of bounds yielded by longer paths. Consequently, the follow-

ing theorem motivates our model: 

Theorem 2. The inclusion of mixed-degree metapaths could increase

the overall accuracy of co-citation link prediction between disjoint

groups of research papers in literature-based discovery. Having a few

two-degree metapaths could increase the tightness of bounds yielded

by three- and four-degree metapaths. 

We emphasise that the theorem has been derived by Sarkar

et al. [38] . Due to page limit, we refer the reader to the authors’

paper for proofs of the theorem. 

3.1.6. Algorithm for extracting metapaths 

Algorithm 1 shows our algorithm for finding instances of a four-

degree metapath between two core papers s and t . Steps 4–6 ex-

clude any bibliographic coupling or existing co-citation between

the papers because the goal of four-degree metapaths is to capture

distant connections between them. 

We implemented the algorithm using Python-based network

analysis libraries provided by the Stanford Network Analysis

Project 4 . Steps 2–3 and 7–8 were achieved using the Breadth-First

Search algorithm [41] with total time complexity O (4(| V | + | E| )) ,
where | V | and | E | are the number of vertices and edges in G , re-

spectively. The time complexity of steps 10 to 16 is O (| V s | × | V t |

× | V mt |). We emphasize that the current study focuses on the ef-

fectiveness of the proposed models instead on their computational

efficiency. 

3.2. The HBIN-LBD-semantic model 

We also introduce a second model, HBIN-LBD-Semantic, which

is a variant of the HBIN-LBD model with added semantic compo-

nents. This model’s algorithm consists of a few stages organized as

a processing pipeline as shown in Fig. 4 . 
4 https://snap.stanford.edu/snappy/index.html . 
HBIN-LBD-Semantic applies a dictionary-based semantic pro-

essing algorithm on the title and/or abstract text of papers. This

s done in order to standardize the terminological representation

f different words that have a similar meaning. Basic text prepro-

essing such as stopwords removal and stemming are common in

BD [56] , but they cannot resolve more complex linguistic prob-

ems such as word sense disambiguation [44] . 

HBIN-LBD-Semantic uses WordNet 5 as the source for dictionary

erms. Unlike other LBD methods, we choose WordNet instead of

he other domain-dependent ontologies such as the Unified Medi-

al Language Systems (UMLS) 6 in order to ensure that our model is

asily applicable to mining literature in various research domains. 

.2.1. Word sense disambiguation 

The first stage of our algorithm extracts sentences from the ti-

les and/or abstracts of papers in the raw corpus using a regex-

ased sentence tokenization tool sent _ tokenize. 7 From each sen-

ence, we identified the n-gram noun phrases (NP) using NLTK 

8 .

e then remove stopwords and lemmatize the extracted NPs and
6 https://www.nlm.nih.gov/research/umls/ . 
7 http://www.nltk.org/ . 
8 https://gist.github.com/alexbowe/879414#file- nltk- intro- py . 

https://snap.stanford.edu/snappy/index.html
https://wordnet.princeton.edu/
https://www.nlm.nih.gov/research/umls/
http://www.nltk.org/
https://gist.github.com/alexbowe/879414#file-nltk-intro-py
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Fig. 5. Topic modeling components of the HBIN-LBD-Topic model. 
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Table 2 

HBIN-LBD-Topic metapaths. 

No. Metapath Description 

17. two _ topic Core papers share a topic 

18. three _ topic _ re f Core paper shares a topic with other core paper’s ref. 

19. three _ topic _ cite Core paper shares a topic with other core paper’s citer 

20. f our _ topic _ re f Core papers’ refs. share a topic 

21. f our _ t erm _ cit e Core papers’ citers share a topic 

1  

h  

i  

t  

f  

h
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w  
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t
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w  
ap each NP to its standard dictionary term in WordNet, known

s synsets . A synset represents words or lemmas that have a sim-

lar meaning. To map a single-term NP to its appropriate synset,

e first search for a synset that directly maps to the phrase. If the

P maps to more than one candidate synsets, we then apply the

dapted Lesk Algorithm 

9 to determine the most appropriate synset

1] . For instance, synset dog.n.01 can be used to replace lemma

ames that have similar meaning or senses such as ‘ dog ’, ‘ domestic

og ’, and ‘ Canis familiaris ’. 

.2.2. Multiple synsets resolution 

One limitation of using the Adapted Lesk Algorithm is that it

s possible for an NP to be mapped to more than one synsets.

s such, in order to more precisely disambiguate the sense of an

P, we select the synset that has the same morphological stem

s the target phrase. If more than one synsets have the matching

tem, we subsequently select the synset that has the highest fre-

uency of occurrence in our corpus. This is akin to the dominant

ynset approach [29] , except that we compute the synset’s occur-

ence frequency in the target corpus instead of in WordNet. If more

han one qualifying candidate synsets remain, we then look for the

ynset that has the target NP in its WordNet gloss or definition [1] .

The final resolution step is to compute the average path similar-

ty score of each candidate synset given a set of randomly selected

ynsets from the existing sense disambiguation results. This score

s computed based on the average length of the shortest path be-

ween a candidate synset and each random synset in the WordNet

emantic tree [34] . The candidate synset that has the highest aver-

ge path similarity score is selected. 

.2.3. Short words removal and singleton resolution 

This stage removes the single-character words such as t or v

rom the previous synset mapping results. Further, we also resolve

ingletons , i.e. synsets that occur only once in the entire target text

orpus. Their presence may suggest possible mapping errors. Al-

ernatively, they may point to instances of words that are too rare

o be useful in our LBD task. We substitute these singletons with

andomly picked hypernyms or hyponyms for retaining the single-

ons’ information without introducing unnecessary noises into the

orpus. If neither hypernym nor hyponym is found, the singleton

s removed. 

.3. The HBIN-LBD-topic model 

We explore a third LBD model, HBIN-LBD-Topic. This model

pplies the Latent Dirichlet Allocation (LDA) topic modeling algo-

ithm 

10 [6] in order to construct and incorporate new topic vertices

 TP ) in the HBIN graphs. The processing pipeline for generating the

ew TP vertices is shown in Fig. 5 . 

We evaluated the topic modeling quality given n number of

opics; n = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90,
9 https://github.com/alvations/pywsd . 
10 https://radimrehurek.com/gensim/ . 

f  

t  

w  

e

00}. For each number of topics, we compute its average topic co-

erence score. Topic coherence score indicates topic modeling qual-

ty in relation to human judgment. The nearer the score to 0.00,

he better quality the generated topics are [33] . In our case, we

ound the coherence scores consistently deteriorated for n > 10,

ence we chose n = 10 as suitable number of topics. 

Given n topics, we add n new TP vertices into an HBIN graph

nd link a P vertex to its topmost topic. The edge weight score

 (P −→ T P ) between these nodes is assigned with the topmost

opic’s probability score. Using this model, we obtain five addi-

ional metapaths as shown in Table 2 . 

. Experiments and results 

We demonstrate the effectiveness of our models in replicating

wo classic literature-based discovery instances: (i) the previously

nknown relationships between Dietary Fish Oil and Raynaud’s Syn-

rome (DFORS) hypothesis [48] , and (2) the neglected connections

n Migraine and Magnesium (MM) hypothesis [51] . They form the

valuation ground truths for our models. For example, the follow-

ng Fig. 6 shows previously disconnected clusters of fish oil and

aynaud’s Syndrome papers became connected via new co-citation

inks following the publication of Swanson’s hypothesis in 1986.

ur goal is to predict the occurrence of such new links based on

he available bibliographic data prior to 1986. 

The DFORS and MM datasets are used in our evaluation because

hey have become the commonly accepted evaluation ground

ruths for many prior LBD methods [57] . Defining other ground

ruths for LBD evaluation has been challenging and often results

n contentious debates among LBD researchers [25,35,42] . It is also

ifficult to directly use other bibliographic datasets such as DBLP

37] or ACM Digital Library [30] because no well-defined instance

f a scientific discovery has been proposed for these datasets. 

Using curated knowledge bases such as the CTD database

10] does not immediately address our current evaluation goal. Our

oal is to test the performance of our method in predicting a fu-

ure discovery based on a pre-discovery bibliographic dataset. This

ataset is defined based on a specific cut-off publication date. It

ould take much effort to define similar publication cut-off dates

or voluminous gene-disease associations in CTD database. Further,

he definition of ‘discovery’ in relation to these associations are not

ell-defined [10] . To do that requires substantial effort by domain

xperts which is outside the scope of this paper. 

https://github.com/alvations/pywsd
https://radimrehurek.com/gensim/
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Fig. 6. The evolution of DFORS clusters in time-sliced co-citation networks before and after the publication of Swanson’s hypothesis. The upper cluster represents a group 

of fish oil papers, while the lower cluster is a group of Raynaud’s Syndrome papers. Both networks are visualized using the Sci 2 Tool. 11 , based on a bibliographic dataset 

retrieved from the Thomson Reuter’s Web of Science. 
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4.1. Datasets 

We retrieved the bibliographic records of DFORS papers from

the Web of Science (WoS) 12 using the same search keywords origi-

nally used by Swanson [48] . Each record in this dataset includes a

paper’ title, author(s), and publisher as well as the lists of its cited

references and citing papers. We restricted our retrieval to papers

published between year 1900 and 1985 prior to the publication of

Swanson’s hypothesis in 1986. Further, we limited the query re-

sults to 485 records with abstracts, consisting of 352 fish oil and

133 Raynaud’s Syndrome core papers. 

For the second hypothesis, we also used the original search key-

words [51] to retrieve the MM bibliographic records and restricted

the query to papers published prior to 1988. We obtained 43,075

migraine and magnesium records. These records include 20,043

abstracts retrieved from Pubmed using Biopython 13 and the rest

are simply the paper titles. We then built HBIN graphs from the

previously retrieved datasets. The HBIN graph for DFORS dataset

has 25,176 vertices and 108,544 edges. The MM graph consists of

1,095,566 vertices and 9,010,218 edges. 

4.1.1. Learning sets preparation 

Each instance in our learning sets represents a unique pair of

core papers. We defined three classes and labeled each instance

based on the presence or absence of co-citation link between the

core paper pair following the publication of the target hypotheses.

Class ‘+1’ refers to a pair of previously disconnected core papers

from disparate clusters ( inter -cluster) which became co-cited fol-

lowing the publication of the hypothesis. Class ‘-1’ refers to a pair

of previously disconnected core papers from within the same clus-

ter ( intra -cluster). These papers also subsequently became co-cited.

Class ‘0’ refers to a pair of core papers (either inter or intra -cluster)

which never became co-cited. We obtained 2055 instances from

the DFORS graph, with 685 instances in each class. From the MM
11 Sci2 Team. (2009). Science of Science (Sci2) Tool. Indiana University and SciTech 

Strategies. 
12 http://thomsonreuters.com/thomson-reuters- web- of- science/ . 
13 http://biopython.org/DIST/docs/api/Bio.Entrez-module.html . 

Z  
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l
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T  
raph we obtained 6366 instances, with 2122 instances in each

lass. 

.2. Experimental settings 

.2.1. Learning sets partitioning 

We learned our HBIN models using the Weka’s implemen-

ation of the Support Vector Machine (SVM) algorithm [15] . The

yperparameters of the learner were optimized using Auto-Weka

55] based on cross-validation (CV) sets as well as various training,

alidation and testing % splits. Note that these splits were hermet-

cally sealed from each other and were obtained with independent

andom sampling. 

.3. Performance benchmarking 

The performance of the existing LBD methods are usually com-

ared by how well they rank certain target intermediate terms

onnecting the disjoint sets of literatures [57] . The higher and the

ore precise the ranking, the better the performance. Our goal is

o predict future links between the papers instead of producing

 list of ranked terms. As such, it is more appropriate to evalu-

te their performance using a link prediction-oriented evaluation

ethod. Specifically, we examined the performance of our models

n predicting different types of future co-citation links as indicated

y the class labels. 

For current experiments, we compared the performance of our

odels against three popular link prediction algorithms: Common

eighbours (CN), Adamic/Adar (AA), and LDA topic similarity score

LDA) [28] . We chose CN and AA due to their good performance for

any social network link prediction tasks [14] . We chose LDA to

nd out whether topic similarity alone could account for the emer-

ence of co-citation links between papers. In addition, we took the

eroR classifier [15] as the lowest baseline. ZeroR classifies all in-

tances in the learning set by simply choosing the majority class

abel. 

We evaluated eight variants of our models. Two variants are

erived from the HBIN-LBD model: ( i ) HBIN-T and ( ii ) HBIN-TA .

hese models are similar except HBIN-T includes the terms in the

http://thomsonreuters.com/thomson-reuters-web-of-science/
http://biopython.org/DIST/docs/api/Bio.Entrez-module.html
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Table 3 

Comparisons of the overall performance of HBIN models against baselines on DFORS and 

MM datasets (10-fold CV) in predicting instances of all classes. 

Methods DFORS dataset MM dataset 

Acc.% F1 P R Acc.% F1 P R 

HBIN-T 87 .74 0 .88 0 .88 0 .88 78 .48 0 .78 0 .79 0 .79 

HBIN-TA 87 .35 0 .87 0 .87 0 .87 78 .34 0 .78 0 .78 0 .78 

HBIN-T-TOPIC 87 .50 0 .87 0 .87 0 .88 77 .56 0 .77 0 .78 0 .78 

HBIN-TA-TOPIC 88 .86 0 .89 0 .89 0 .89 77 .66 0 .78 0 .78 0 .78 

SHBIN-T 84 .87 0 .85 0 .85 0 .85 75 .40 0 .75 0 .75 0 .75 

SHBIN-TA 87 .59 0 .88 0 .88 0 .88 77 .25 0 .77 0 .77 0 .77 

SHBIN-T-TOPIC 84 .96 0 .85 0 .85 0 .85 76 .74 0 .77 0 .77 0 .77 

SHBIN-TA-TOPIC 88 .22 0 .88 0 .88 0 .88 79 .99 0 .80 0 .80 0 .80 

AA 60 .44 0 .61 0 .61 0 .60 49 .89 0 .46 0 .50 0 .50 

CN 61 .41 0 .61 0 .63 0 .61 48 .04 0 .45 0 .48 0 .48 

LDA 62 .48 0 .53 0 .61 0 .63 45 .54 0 .35 0 .33 0 .46 

ZeroR 33 .09 0 .27 0 .22 0 .33 33 .30 0 .24 0 .22 0 .33 

Table 4 

Comparisons of the overall performance of HBIN models against baselines on DFORS and 

MM datasets (70:15:15% split) in predicting instances of all classes. 

Methods DFORS dataset MM dataset 

Acc.% F1 P R Acc.% F1 P R 

HBIN-T 80 .91 0 .81 0 .81 0 .81 78 .01 0 .78 0 .78 0 .78 

HBIN-TA 86 .04 0 .86 0 .86 0 .86 77 .28 0 .77 0 .78 0 .77 

HBIN-T-TOPIC 82 .85 0 .83 0 .83 0 .83 78 .01 0 .78 0 .78 0 .78 

HBIN-TA-TOPIC 88 .03 0 .88 0 .88 0 .88 77 .28 0 .78 0 .77 0 .77 

SHBIN-T 81 .55 0 .82 0 .82 0 .82 74 .76 0 .75 0 .75 0 .75 

SHBIN-TA 82 .20 0 .82 0 .82 0 .82 76 .02 0 .76 0 .76 0 .76 

SHBIN-T-TOPIC 82 .52 0 .83 0 .83 0 .83 77 .17 0 .77 0 .77 0 .77 

SHBIN-TA-TOPIC 82 .20 0 .82 0 .83 0 .82 78 .85 0 .79 0 .79 0 .79 

AA 58 .58 0 .59 0 .59 0 .59 50 .26 0 .46 0 .49 0 .50 

CN 59 .22 0 .60 0 .61 0 .59 50 .26 0 .41 0 .36 0 .50 

LDA 61 .81 0 .54 0 .58 0 .62 43 .56 0 .33 0 .42 0 .44 

ZeroR 33 .01 0 .16 0 .12 0 .33 31 .09 0 .15 0 .09 0 .31 

Table 5 

Feature ranking for DFORS and MM datasets. 

Rank HBIN-TA-TOPIC SHBIN-TA-TOPIC 

Features Avg. merit Features Avg. merit 

1 three_term_cite_max 0 .611 four_venue_ref_max 0 .410 

2 four_topic_ref_sum 0 .571 four_term_ref_pathcount 0 .347 

3 four_topic_ref_pathcount 0 .555 four_topic_ref_max 0 .368 

4 four_topic_ref_max 0 .448 four_term_ref_sum 0 .341 

5 four_term_ref_sum 0 .443 four_term_ref_max 0 .335 

... ... ... ... ... 

101 two_venue_pathcount 0 .003 two_topic_max 0 .004 

102 two_venue_avg 0 .001 two_topic_min 0 .003 

103 two_venue_sum 0 .001 two_topic_pathcount 0 .002 

104 two_venue_min 0 .001 two_topic_sum 0 .001 

105 two_venue_max 0 .001 two_topic_avg 0 .001 
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ore and non-core papers’ titles whereas HBIN-TA incorporates ad-

itional terms from the core papers’ abstracts. Two other variants

re derived from the HBIN-LBD-Semantic model: ( iii ) the SHBIN-

 semantically process the terms in HBIN-T, whereas ( iv ) SHBIN-

A semantically processes the terms in HBIN-TA. Finally, four vari-

nts are derived based on the HBIN-LBD-Topic model. The ( v )

BIN-T-TOPIC and ( vi ) HBIN-TA-TOPIC models train and incorpo-

ate topic nodes based on the terms in the HBIN-T and HBIN-

A models, respectively. Finally, the ( vii ) SHBIN-T-TOPIC and ( viii )

HBIN-TA-TOPIC models train and incorporate topic nodes based

n semantically-processed terms in SHBIN-T and SHBIN-TA mod-

ls, respectively. 

.4. Results 

We present our experimental results in this section. 
.4.1. Overall performance 

The overall performance of our models on both DFORS and MM

atasets are shown in Table 3 . 

The HBIN-TA-TOPIC model performed the best with 88.86% ac-

uracy (F1: 0.89) with 10-fold CV on the DFORS dataset. The

HBIN-TA-TOPIC model performed the best on the MM dataset

ith 79.99% accuracy (F1: 0.80). Both models outperformed all

aselines. This suggests the efficacies of our method. Table 4 shows

imilar performance of the models based on the 70:15:15 percent-

ge split validation. 

These overall performance results suggest that our models are

seful for predicting previously unknown relationships between

apers from disparate research areas. The good overall accuracies

uggest that the models can effectively predict both the absence

r presence of future co-citation links between research papers.

hey are able to discriminate between pairs of core papers that
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Fig. 7. Performance difference of using title text only vs. using title and abstract text of the HBIN models built for the DFORS and MM datasets. 
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are likely to form future inter-cluster co-citation links (instances

of class ‘+1’) and those that will only form intra-cluster links (in-

stances of class ‘-1’). This could help surmise the hidden connec-

tions between papers in two disjoint research fields. 

4.4.2. Feature rank 

Table 5 summarizes the performance of different metapath fea-

tures in the HBIN-TA-TOPIC model on the DFORS dataset. It also

shows the performance of the features in the SHBIN-TA-TOPIC

model on MM dataset. The performance are measured using In-

foGain merit scores. 

The result suggests three _ term _ cite _ max as the best performing

feature of the HBIN-TA-TOPIC model on DFORS dataset. In contrast,

features that involve the sharing of publishers between the cited

references of core papers’ ( f our _ v enue _ re f max ) gave the most per-

formance contribution for the SHBIN-TA-TOPIC model. Both results

suggest the good performance of features that combine both lexi-

cal and non-lexical information in the HBIN graphs. 

4.4.3. The influence of semantic processing and topic model 

Fig. 7 shows the performance of models that use terms from ti-

tles and abstracts of research papers compared to those that use

terms from the titles only and without the abstracts. The result

suggests incorporating more texts from the abstracts did not lead

to more superior models. We note that both HBIN-T and HBIN-TA

do not involve the proposed semantic and topic modeling compo-
ents. The purpose of this comparison is to solely observe the per-

ormance effects from using more texts. 

Next, Fig. 8 compares the performance of different models to

etermine the extent to which incorporating the semantic and

opic modeling components influences the performance of our

ethod. The results suggest that, on both DFORS and MM datasets,

etter performance can be achieved by the HBIN-LBD models with-

ut requiring the semantic components of the HBIN-LBD-Semantic

odels. Our finding stands in contrast with most of the NLP-based

BD methods which benefit from the incorporating semantic com-

onents into their models [20] . 

Fig. 9 shows that models that incorporated topic nodes outper-

ormed the other models with up to 6% performance gain com-

ared to models which do not incorporate topic modeling com-

onents. This result suggests that the latent topic modeling is a

romising approach to enhancing the accuracy of an LBD method.

bserve that the better performance is generally achieved when

he semantic components and the topic modeling were used to-

ether. 

. Discussions 

The results from our experiments suggest the efficacy of the

BIN-LBD method for performing LBD tasks. This is demonstrated

y its good performance in predicting future co-citation links

etween previously disjoint papers in two real historical scien-

ific discoveries. The good results underline the usefulness bibli-
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Fig. 8. Effects of incorporating the semantic components of HBIN-LBD-Semantic models on the DFORS and MM datasets. 
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graphic metadata for literature-based discovery. The good per-

ormance of such metapath features as three _ term _ cite _ max and

f our _ v enue _ re f _ max suggests that combinations of lexical and ci-

ation features in the HBIN graphs form good link predictors be-

ween disjoint research papers. 

To our knowledge, our method is the first that demonstrates

n effective way of using bibliographic metadata for performing

iterature-based discovery. As mentioned previously, this is the first

ain contribution of this paper. HBIN-LBD uses simple statistics

hat are easy to compute from HBIN graphs without the need for

ophisticated and domain-specific NLP tools and ontologies. As a

esult, our method can be easily extended to mining literatures in

arious research domains. This overcomes the limitations of many

xisting LBD methods whose applications are largely limited to

ining biomedical literatures. 

As the second research contribution, we have demonstrated

he effectiveness of a hybrid approach that employs lexical and

on-lexical information objects through metapaths. The result is

upported by prior research. For example, hybrid information re-

rieval methods have been shown to mitigate the performance

rade-off normally suffered by the exclusive use of either text-

ased or citation-based features [7,16] . Similarly, Bassecoulard and

itt [2] found that a combination of lexical and non-lexical fea-

ures could overcome the imbalance between precision and recall

n many information retrieval systems. This could explain why our

etapath features have yielded good accuracies. 
Our methodology may complement the existing methods in

echnology roadmapping (TRM) [54,58] . TRM predicts the future

hanges in technology topics by analyzing the existing research

iterature. It aims at generating useful insights to help in strate-

ic R&D planning. Our innovation comes in the form of using the

nterlinking of various bibliographic metadata objects in order to

redict the future convergence between previously independent

esearch fields. As such, in addition to the existing term-oriented

RM methods [58] and citation-oriented TRM methods [54] , our

ethod provides an alternative vantage point that may help better

nderstand the future technological topic evolutions. 

There are several limitations of our work. We have not applied

uthor name disambiguation techniques during the construction of

BIN graphs, resulting in the possible duplication of author names.

t will be useful to explore some existing name disambiguation

echniques for addressing this limitation. Since the current focus

f our work is on the effectiveness of the proposed models, we

ave not fully addressed their algorithmic efficiency and scalability

o very large graphs. This is also another limitation of this paper. 

. Conclusion and future work 

In this paper, we have presented a novel literature-based dis-

overy method that exploits the latent information retrieved from

eterogeneous bibliographic information networks or HBIN. Our

esults show that, with the help of word sense disambiguation
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Fig. 9. Effects of incorporating the topic modeling components of HBIN-LBD-Topic models on the DFORS and MM datasets. 
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and topic modeling components, the combined use of lexical and

non-lexical information between various bibliographic metadata in

HBIN graphs yields good performance in predicting novel associ-

ations between previously disconnected research papers. Experi-

ments showed our models outperforming other baseline link pre-

diction algorithms in predicting the future co-citation links be-

tween research papers in the Fish Oil and Raynaud’s Syndrome lit-

eratures as well as in the Migraine and Magnesium literatures. 

For future work, we plan to explore an efficient graph algorithm

that scales well against large HBIN graphs. We are interested in ap-

plying our models to mining the literature in other domains such

as climatology [32] . Further studies of the contribution of different

metapath features in our models may also shed further light on

the process behind the formation of new co-citation link between

disjoint research fields. Finally, future work can be directed at ex-

ploring new metapath structures that would harness other types

of lexico-citation information in HBIN graphs. 
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