
struc2vec: Learning Node Representations from Structural
Identity

Daniel R. Figueiredo
Federal University of Rio de Janeiro

Systems Eng. and Comp. Science Dep.
daniel@land.ufrj.br

Leonardo F. R. Ribeiro
Federal University of Rio de Janeiro

Systems Eng. and Comp. Science Dep.
leo@land.ufrj.br

Pedro H. P. Saverese
Federal University of Rio de Janeiro

Systems Eng. and Comp. Science Dep.
savarese@land.ufrj.br

ABSTRACT
Structural identity is a concept of symmetry in which network
nodes are identi�ed according to the network structure and their re-
lationship to other nodes. Structural identity has been studied in the-
ory and practice over the past decades, but has only recently been
addressed with techniques from representational learning. �is
work presents struc2vec, a novel and �exible framework for learn-
ing latent representations of node’s structural identity. struc2vec
assesses structural similarity without using node or edge a�ributes,
uses a hierarchy to measure similarity at di�erent scales, and con-
structs a multilayer graph to encode the structural similarities and
generate structural context for nodes. Numerical experiments indi-
cate that state-of-the-art techniques for learning node representa-
tions fail in capturing stronger notions of structural identity, while
struc2vec exhibits much superior performance in this task, as it
overcomes limitations of prior techniques.

CCS CONCEPTS
•Computingmethodologies→Unsupervised learning; Learn-
ing latent representations; •Arti�cial Intelligence→ Learning;

KEYWORDS
Feature learning, Node embeddings, Structural Identity
ACM Reference format:
Daniel R. Figueiredo, Leonardo F. R. Ribeiro, and Pedro H. P. Saverese.
2017. struc2vec: Learning Node Representations from Structural Identity. In
Proceedings of 23rd SIGKDD Conference on Knowledge Discovery and Data
Mining, Halifax, Nova Scotia, Canada, August 13 - 17, 2017 (KDD ’17), 9 pages.
DOI: 10.475/123 4

1 INTRODUCTION
In almost all networks, nodes tend to have one or more functions
that greatly determines their role in the system. For example,
individuals in a social network have a social role or social posi-
tion [9, 17], while proteins in a protein-protein interaction (PPI)
network exert speci�c functions [1, 20]. Intuitively, di�erent nodes
in such networks may perform similar functions, such as interns
in the social network of a corporation or catalysts in the PPI net-
work of a cell. �us, nodes can o�en be partitioned into equivalent
classes with respect to their function in the network.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD ’17, Halifax, Nova Scotia, Canada
© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123 4

u

d

e

b

a

c

network v

x

w

t

z

y

Figure 1: An example of two nodes (u and v) that are struc-
turally similar (degrees 5 and 4, connected to 3 and 2 trian-
gles, connected to the rest of the network by two nodes), but
very far apart in the network.

Although identi�cation of such functions o�en leverage node
and edge a�ributes, a more challenging and interesting scenario
emerges when node function is de�ned solely by the network struc-
ture. In this context, not even the labels of the nodes ma�er but
just their relationship to other nodes (edges). Indeed, mathematical
sociologists have worked on this problem since the 1970s, de�n-
ing and computing structural identity of individuals in social net-
works [9, 15, 17]. Beyond sociology, the role of webpages in the
webgraph is another example of identity (in this case, hubs and
authorities) emerging from the network structure, as de�ned by
the celebrated work of Kleinberg [6].

�e most common practical approaches to determine the struc-
tural identity of nodes are based on distances or recursions. In
the former, a distance function that leverages the neighborhood of
the nodes is used to measure the distance between all node pairs,
with clustering or matching then performed to place nodes into
equivalent classes [4, 7]. In the later, a recursion with respect to
neighboring nodes is constructed and then iteratively unfolded
until convergence, with �nal values used to determine the equiv-
alent classes [3, 6, 22]. While both approaches have advantages
and disadvantages, we provide an alternative methodology, one
based on unsupervised learning of representations that capture the
structural identity of nodes (to be presented).

Recent e�orts in learning latent representations for nodes in
networks have been quite successful in performing classi�cation
and prediction tasks [5, 12, 14]. In particular, these e�orts encode
nodes using as context a generalized notion of their neighborhood
(e.g., w steps of a random walk). In a nutshell, nodes that have
similar neighborhoods should have similar latent representations.
But in all such works, neighborhood is a local concept de�ned
by node labels! �us, two nodes with neighborhoods that are
structurally similar but that are far apart will not have similar
latent representations, a fundamental requirement for structural
equivalence. Figure 1 illustrates the problem, where nodes u and v
play similar roles (i.e., have similar local structures) but are very far

ar
X

iv
:1

70
4.

03
16

5v
1

 [
cs

.S
I]

 1
1

A
pr

 2
01

7

KDD ’17, August 13 - 17, 2017, Halifax, Nova Scotia, Canada Daniel R. Figueiredo, Leonardo F. R. Ribeiro, and Pedro H. P. Saverese

apart in the network. Indeed, the aforementioned recent works fail
to capture the notion of structural equivalence (as we soon show).

It is worth noting why recent approaches for learning node
representations such as DeepWalk [14] and node2vec [5] succeed in
classi�cation tasks but tend to fail in structural equivalence tasks.
�e key point is that many node features in most real networks
exhibit a strong homophily (e.g., two blogs with the same political
inclination are much more likely to be connected than at random).
Neighbors of nodes with a given feature are more likely to have
the same feature. �us, nodes that are “close” in the network and
in the latent representation will tend to share features. Likewise,
two nodes that are “far” in the network will tend to be separated
in the latent representation, independent of their local structure.
�us, structural equivalence will not properly be captured in the
latent representation.

�us, our main contribution is to provide a �exible framework
for learning latent representations for nodes’ structural identity,
called struc2vec. �is framework o�ers an alternative and powerful
tool to the study of structural identity through the latent space
representation. �e key ideas within this framework are:

• Assess structural similarity between nodes independently
of node and edge a�ributes, including node labels. �us,
two nodes that are structurally similar will be considered
so, independently of their position in the network and node
labels in their vicinity. Our approach also does not require
the network to be connected, and identi�es structurally
similar nodes in di�erent connected components.

• Establish a hierarchy to measure structural similarity, al-
lowing progressively more stringent notions of what it
means to be structurally similar. In particular, at the bot-
tom of the hierarchy, structural similarity between nodes
depend only on their degrees, while at the top of the hier-
archy similarity depends on the entire network (from the
viewpoint of the node).

• Generates random contexts for nodes, which are sequences
of structurally similar nodes as observed by a weighted ran-
dom walk (but not walking on the original network). �us,
two vertices that frequently appear in similar contexts will
likely have similar structure. Such context can be lever-
aged by language models to learn latent representation for
the nodes.

We implement an instance of our framework and show its potential
through numerical experiments on toy examples and real networks,
comparing its performance with DeepWalk [14] and node2vec [5] –
two state-of-the-art techniques for learning latent representations
of nodes in networks. Our results indicate that while both fail to
capture the notion of structural identity, struc2vec excels on this
task – even when the original network is subject to strong random
noise (random edge removal).

�e remainder of this paper is organized as follows. Section 2
brie�y overviews the recent related work on learning latent repre-
sentations of nodes in networks. Section 3 presents the struc2vec
framework in detail. Experimental evaluation and comparison to
other methods is shown in Section 4. Finally, we conclude the paper
in Section 5 with a brief discussion.

2 RELATEDWORK
Generating dense representations for sparse data has a long history
in Natural Language Processing [2]. Traditional encodings, such
as one-hot or bag of words, generate representations that have
the same size as the vocabulary, which is commonly in the order
of millions of words. �e resultant sparse high-dimensional data
pose an obstacle for many tasks, including text classi�cation and
clustering.

Recently, Skip-Gram [10, 11] was proposed as a technique to
learn dense representations for text data, and provides an easy
optimization problem where a word’s context should be predicted
given its latent features. Moreover, the embeddings capture word
meanings, placing semantically similar words near each other in
the latent space.

Due to the high-dimensional and o�en sparse nature of graph
representations (e.g. the adjacency matrix), learning node embed-
dings is equally important for Machine Learning applications on
network data. Since Skip-Gram (and most other language models)
require temporal sequences as input, adapting it to learn represen-
tations for graphs is non-trivial as graph data is not linear.

Learning a language model from a network was �rst proposed
by DeepWalk [14]. It uses random walks to generate sequences of
nodes from a graph, which are then treated as sentences by Skip-
Gram. Intuitively, since vertices in the same Skip-Gram window are
close in the network, the learned representations capture mostly
vertex homophily.

�e idea was later extended by node2vec [5]. By proposing a
biased 2nd order random walk model, it provides more �exibility
when generating the context of a vertex. In its framework, biased
random walks are designed to capture both vertex homophily and
structural equivalence.

Although ablation experiments suggest that node2vec can capture
structural equivalence, it is unclear how it would perform on larger
graphs. More speci�cally, structurally equivalent vertices will never
share the same context if their distance (hop count) is bigger than
the Skip-Gram window.

subgraph2vec [12] is another recent approach that aims to learn
latent features for rooted subgraphs, and unlike the previous tech-
niques it does not use random walks to generate context for nodes.
Alternatively, it proposes Radial Skip-Gram, a modi�cation of the
original Skip-Gram where the context of a node is simply de�ned
by its neighbors. Additionally, subgraph2vec properly captures
structural equivalence by anchoring equivalent vertices to the same
point in the latent space. Nonetheless, the notion of structural
equivalence is very rigid since it is de�ned as a binary property
dictated by the Weisfeiler-Lehman isomorphism test [19].

3 STRUC2VEC
Consider the problem of learning latent representations for nodes
that captures their structural identity in the network. A successful
approach should exhibit two desired properties:

• �e distance between the latent representation of nodes
should be strongly correlated to their structural similar-
ity. �us, two nodes that are identical from the network

struc2vec: Learning Node Representations from Structural Identity KDD ’17, August 13 - 17, 2017, Halifax, Nova Scotia, Canada

Figure 2: A warping between two ordered degree sequences
using the function 2 to calculate the distances between the
degrees. �e distance between the two sequences, that is the
sum of costs of matched elements, is 0.89.

structure point of view should have the same latent repre-
sentation, while nodes with di�erent structural identities
should be far apart.

• �e latent representation should not depend on any node or
edge a�ribute, including the node labels. �us, structurally
similar nodes should have close latent representation, inde-
pendent of node and edge a�ributes in their neighborhood.
�e structural identity of nodes must be independent of its
“position” in the network.

Given these two properties, we propose struct2vec, a general method-
ology for learning latent representations for nodes. �e methodol-
ogy is composed of four main steps, informally de�ned as follows:

(1) Determine the structural similarity between each vertex
pair in the graph considering di�erent neighborhood sizes.
�is induces a hierarchy in the measure for structural simi-
larity between nodes, providing more information to assess
structural similarity at each level of the hierarchy.

(2) Construct a multilayer graph where all nodes in the net-
work are present in every layer, and each layer corresponds
to a level of the hierarchy in measuring structural similar-
ity. Moreover, edge weights among every node pair within
each layer are inversely proportional to their structural
similarity.

(3) Use the multilayer graph to generate context for each
node. In particular, a weighted random walk on the mul-
tilayer graph is used to generate vertex sequences. �ese
sequences are likely to include nodes that have similar
structure, and thus determine its context.

(4) Apply a technique to learn latent representation from a
context given by sequences, for example, Skip-Gram.

Note that struct2vec is quite �exible as it does not determine any
particular structural similarity measure or representational learning
framework. In what follows, we explain in detail each step of
struct2vec and provide a rigorous approach to a hierarchical measure
of structural similarity.

3.1 Measuring structural similarity
�e �rst step of struct2vec is to determine the structural similarity of
node pairs without using any node or edge a�ributes. Moreover, we
need a measure that can cope with increasing neighborhood sizes.
While there are many ways to measure the structural similarity
between two vertices, we would like a metric with the following
property.

Let G = (V ,E) denote the network under consideration with
vertex set V and edge set E, where n = |V | denotes the number of
nodes in the network and k∗ its diameter. Let Nk (u) denote the set
of nodes with distance less than or equal to k ≥ 0 from u ∈ V (note
that N0(u) = u and N1(u) are the neighbors of u and u itself). Let
G[S] denote the induced subgraph ofG over the set of nodes S ⊂ V .
Note that G[N1(u)] is o�en referred to as the egonet of node u.

Let f (u,v) ≥ 0 denote a distance measure for the structural sim-
ilarity between u,v ∈ V . A suitable f should satisfy the following
property:

• f (u,v) = 0 if there exists an isomorphism betweenG[Nk (u)]
and G[Nk (v)] for any k > 0, mapping u onto v .

Under this property, two nodes that have locally isomorphic neigh-
borhoods should be considered identical to one another, and thus,
have a structural distance of zero. Clearly, property is desired when
considering the structural identity of nodes in networks.

However, isomorphisms cannot be used directly to measure
structural similarity. For one reason, there are no polynomial time
algorithm to determine if two arbitrary graphs are isomorphic, and
second, isomorphism is a binary property. �us, we consider the
following approach.

Let s(S) denote the ordered degree sequence of the set of vertices
S ⊂ V . Note that if G[Nk (u)] is isomorphic to G[Nk (v)] for any
k > 0, mapping u to v , then s(Nk−1(u)) = s(Nk−1(v)). Namely, the
ordered degree sequences of nodes in the (k −1)-hop neighborhood
ofu andv must be identical. �us, the ordered degree sequence can
lead to a distance metric that satis�es the desired property. More-
over, the degree sequence avoids any label information associated
to nodes or edges.

�e ordered degree sequence is also a natural choice for inducing
a hierarchy of distance functions. Let Rk (u) denote the set of nodes
at distance exactlyk ≥ 0 fromu inG . �us,Rk (u) = Nk (u)\Nk−1(u)
for k ≥ 0 (let N−1(u) = ∅). By comparing the ordered degree
sequences of the rings of nodes at distance k from both u and v we
can impose a hierarchy in assessing their structural similarity, that
becomes more stringent as k increases. In particular, let fk (u,v)
denote the structural distance between u and v when considering
their k-hop neighborhoods. In particular, we have:

fk (u,v) = fk−1(u,v) + д(s(Rk (u)), s(Rk (v))), k ≥ 0 (1)
where д(D1,D2) ≥ 0 measures the distance between the ordered
degree sequences D1 and D2 and f−1 = 0. Note that by de�nition,
fk (u,v) is non-decreasing in k . Moreover, using the ring at distance
k in the de�nition of fk (u,v) forces the comparison between the
degree sequences of nodes that are at the same distance from u and
v . Finally, note that if G[Nk (u)] and G[Nk (v)] are isomorphic for
some k > 0, mapping u onto v , then fk−1(u,v) = 0.

A �nal step is determining the function that compares two degree
sequences. Note that s(Rk (u)) and s(Rk (v)) can be of di�erent
sizes and its elements are arbitrary integers in the range [0,n − 1],
where n = |V | (i.e., any possible degree). We adopt Dynamic Time
Warping (DTW) to measure the distance between two ordered
degree sequences, a technique that can cope be�er with sequences
of di�erent sizes and loosely compares sequence pa�erns [16, 18].

Informally, DTW aims to �nd the optimal alignment between
two sequences A and B. Given a distance function d(a,b) for the
elements of the sequence, DTW matches each element a ∈ A to

KDD ’17, August 13 - 17, 2017, Halifax, Nova Scotia, Canada Daniel R. Figueiredo, Leonardo F. R. Ribeiro, and Pedro H. P. Saverese

b ∈ B, such that the sum of the distances between matched elements
is minimized. Note that each element in one sequence can be
matched to more than one element in the other, but crossings in
the matching are not allowed, and all elements must be matched.

Since elements of sequence A and B are degrees of nodes, we
adopt the following distance function:

d(a,b) = max(a,b)
min(a,b) − 1 (2)

Note that when a = b then d(a,b) = 0. �us, two identical ordered
degree sequences will have zero distance. Also note that by taking
the ratio between the maximum and the minimum, the degrees
1 and 2 are much more di�erent than degrees 101 and 102, a de-
sired property when measuring the distance between node degrees.
Figure 2 shows DTW applied to two ordered degree sequences.

Last, the function д in equation 1 is simply replaced by DTW.
Note that k plays a key role in determining the structural distance
between two nodes: f0(u,v) = 0 if degrees of u and v are identical,
while if fk∗ (u,v) = 0 then there is strong evidence that there exists
an automorphism in G that maps u to v , since the degree sequence
of all k-hop rings around u and v perfectly match. Note that if
indeed there exists an automorphism in G that maps u to v , then
fk (u,v) = 0, for all k . �us, structural similarity between u and v
becomes more rigid as k increases.

3.2 Constructing the context graph
We construct a multilayer weighted graph that encodes structural
similarity between nodes. Recall that G = (V ,E) denotes the orig-
inal network (possibly not connected) and k∗ its diameter. Let M
denote the multilayer graph, with layers going from 0 to k∗, corre-
sponding to neighborhood hierarchy de�ned above. In particular,
layer k will be de�ned using the k-hop neighborhoods of the nodes
in V .

Each layer k = 0, . . . ,k∗ is formed by a weighted undirected
complete graph with node set V , and thus,

(n
2
)

edges. �e edge
weight between two nodes in given layer is given by:

wk (u,v) = e−fk (u,v), k = 0, . . . ,k∗ (3)

Note that edge weights are inversely proportional to structural
distance, and assume values smaller than or equal to 1, being equal
to 1 only if fk (u,v) = 0.

We connect the layers using directed edges as follows. Each
vertex is connected to its corresponding vertex in the layer above
and below (layer permi�ing). �us, every vertex u ∈ V in layer k is
connected to the corresponding vertex u in layer k + 1 and k − 1.
�e edge weight between layers are as follows:

w(uk ,uk+1) = log(Γk (u) + e), k = 0, . . . ,k∗ − 1
w(uk ,uk−1) = 1, k = 1, . . . ,k∗

(4)

where Γk (u) is number of edges incident to u that have weight
larger than the average edge weight of the complete graph in layer
k . In particular:

Γk (u) =
∑
v ∈V

1(wk (u,v) > wk) (5)

where wk =
∑
(u,v)∈(V2)wk (u,v)/

(n
2
)
. �us, Γk (u) measures the

similarity of node u to other nodes in layer k . Note that if u has

many similar nodes in the current layer, then it should change
layers to obtain a more re�ned context. Note that by moving up
one layer the number of similar nodes can only decrease. Last, the
log function simply reduces the magnitude of the potentially large
number of nodes that are similar to u in a given layer.

Finally, note that M has nk∗ vertices and k∗
(n
2
)
+ 2n(k∗ − 1)

weighted edges.

3.3 Generating context for vertices
We will use the multilayer graph M to generate structural context
for each node u ∈ V . �e idea is that M captures the structure
of structural similarities between nodes in G using absolutely no
label information. As in previous works, struct2vec uses random
walks to generate sequence of nodes to determine the context of
a given node. In particular, we consider a weighted random walk
that moves around M making random choices according to the
weights of M . Before each step, the random walk �rst decides if it
will change layers or walk on the current layer. In particular, with
probability q > 0 the random walk decides to stay in the current
layer.

Given that it will stay in the current layer, the probability of
stepping from node u to node v in layer k is given by:

pk (u,v) =
e−fk (u,v)

Zk (u)
(6)

where Zk (u) is the normalization factor for vertex u in layer k ,
simply given by:

Zk (u) =
∑
v ∈V
v,u

e−fk (u,v) (7)

Note that the random walk will prefer to step onto vertices that are
structurally more similar to the current vertex, avoiding vertices
that have very li�le structural similarity with the current vertex.
�us, the context of a node u ∈ V is likely to have structurally sim-
ilar nodes, independent of their labels and position on the original
network G.

With probability 1−q, the random walk decides to change layers,
and moves to corresponding node either in layer k + 1 or layer k − 1
(layer permi�ing) with probability proportional to the edge weights.
In particular:

pk (uk ,uk+1) =
w(uk ,uk+1)

w(uk ,uk+1) +w(uk ,uk−1)
pk (uk ,uk−1) = 1 − pk (uk ,uk+1)

(8)

Also important, every time the walker steps within a layer it gener-
ates its current position as a vertex of V , independent of the layer.
�us, a vertexu may have a given context in layer k (determined by
the structural similarity of this layer), but have a subset of this con-
text at layer k + 1, as the structural similarity cannot increase as we
move to higher layers. �is notion of a hierarchical context across
the layers is a fundamental aspect of the proposed methodology.

Finally, for each node u ∈ V , we start a random walk in its
corresponding vertex in layer 0. Random walks have a �xed and
relatively short length (number of steps), and the process is repeated
a certain number of times, giving rise to multiple independent walks.
�ese node sequences generated by these walks form the context
of node u.

struc2vec: Learning Node Representations from Structural Identity KDD ’17, August 13 - 17, 2017, Halifax, Nova Scotia, Canada

3.4 Learning a language model
Recent language modeling techniques (CBOW, Skip-Gram, GloVe)
have been extensively used to learn word embeddings, and only
require sets of sentences in order to generate meaningful repre-
sentations. Informally, the task can be de�ned as learning word
probabilities given a context, which can be the n precedent words
or a centered window of size s , for example.

In particular, Skip-Gram has proven to be e�ective at learning
meaningful representations for a variety of data. In order to apply
it to networks, it su�ces to use the node sequences generated by
the random walk instead of word sentences. �is can be viewed
as adding an arti�cial ordering to the network, a property that is
required by most language models.

Given a node, Skip-Gram aims to maximize the likelihood of its
context in a sequence, where a node’s context is given by a window
of size s centered on it. �us, we have the following objective
function to be maximized:

P(vi−s , . . . ,vi−1,vi+1, . . . ,vi+s |vi)

=
∏

−s≤t ≤s,t,0
P(vi+t |vi) (9)

where for the last step we assume that conditional independence. In
the original formulation, P(vj |vi) is de�ned as being proportional
to the dot product of the latent features of vj and vi :

P(vj |vi) =
exp(〈Ω(vj),Φ(vi)〉)

Zi
(10)

Here, Φ and Ω map nodes to their correspondent latent features,
and Zi is the partition function for node vi . Due to the computa-
tional complexity to calculate Zi , alternative techniques such as
Hierarchical So�max and Negative Sampling have been proposed
and widely used to speed up training.

For this work we use Hierarchical So�max, where P(vj |vi) is
calculated using a tree of binary classi�ers. For each node vj ∈ V ,
Hierarchical So�max assigns a speci�c path in the classi�cation
tree, de�ned by a set of tree nodes n(vj , 1),n(vj , 2), . . . ,n(vj ,h),
where n(vj ,h) = vj . In this se�ing, we have:

P(vj |vi) =
h∏

k=1
C(n(vj ,k),vi) (11)

where C is a binary classi�er, commonly de�ned similarly to equa-
tion 10, with tree nodes having their own representations. Note
that since Hierarchical So�max operates on a binary tree, we have
that h = O(loд |V |).

We train Skip-Gram according to its optimization problem given
by equations 11 and 9, using node sequences generated by the ran-
dom walks as training data. Note that while we use Skip-Gram to
learn node embeddings, virtually any technique to learn represen-
tations for text data could be used in its place.

3.5 Computational complexity
In order to construct M , the structural distance between every node
pair for every layer must be computed, namely, fk (u,v) foru,v ∈ V ,
and 0 ≤ k ≤ k∗. However, each value of fk (u,v) is the result of
the DTW calculation between two degree sequences. While classic

implementation of DTW has complexityO(`2), fast techniques have
complexity O(`), where ` is the size of the largest sequence [18].
Let dmax denote the largest degree in the network. �en, the size of
the degree sequence |s(Rk (u))| ≤ min(dkmax,n), for any node u and
layer k . Since in each layer there are

(n
2
)

pairs, the complexity of
computing all distances for layer k is O(n2 min(dkmax,n)). �e �nal
complexity is then O(k∗n3).

A practical optimization in constructing M is to consider all the
edges in just the �rst few layers (e.g., 3 layers), but ignore some
of the edges in the higher layers. �e idea is that an edge with a
large distance in layer k will necessarily have an equal or larger
distance in layer k + 1 (by monotonicity of fk (u,v)). Note that
large distances give rise to edges in M with very small weights,
and thus are not very important to encode structural similarity.
�us, we compute fk (u,v) only if fk−1(u,v) ≤ τ , for some �xed τ ,
otherwise we set fk (u,v) = ∞. By controlling τ we can sparse out
the distance calculations in the higher layers without compromising
the framework.

Last, we make struc2vec available at: h�ps://github.com/leoribeiro/
struc2vec

4 EXPERIMENTAL EVALUATION
In what follows we evaluate struct2vec in di�erent scenarios in
order to illustrate its potential in capturing the structural identity
of nodes, also in light of state-of-the-art techniques.

4.1 Barbell graph
We denote B(h,k) as the (h,k)-barbell graph, which can be obtained
by connecting two complete graphsK1 andK2 (each havingh nodes)
through a path graph P of length k . We choose two random nodes
b1 ∈ V (K1) and b2 ∈ V (K2) to act as the bridges. Using {p1, . . . ,pk }
to denote V (P), we connect b1 to p1 and b2 to pk , thus joining the
three graphs.

We use this speci�c network to illustrate how struct2vec works,
since it has a signi�cant number of nodes with the same structural
identity. Let C1 = V (K1) \ {b1} and C2 = V (K2) \ {b2}. Note that
all nodes v ∈ {C1 ∪C2} are structurally equivalent, in the strong
sense that there exists an automorphism that maps one node to
the other. Additionally, we also have that all node pairs {pi ,pk−i },
for 1 ≤ i ≤ k − 1, along with the pair {b1,b2}, are structurally
equivalent in the same strong sense. Figure 4 illustrates a B(10, 10)
network, where structurally equivalent nodes have the same color.

�us, we expect struct2vec to learn vertex representations that
capture the structural equivalence mentioned above. Every node
pair that is structurally equivalent should be mapped to points that
are close in the latent space. Moreover, the learned representations
should also capture structural hierarchies: while the node p1 is not
equivalent to neither nodes p2 or b1, we can clearly see that from a
structural point of view it is more similar p2 (it su�ces to compare
their degrees).

Figure 3 shows the latent representations learned by DeepWalk,
node2vec and struct2vec for the graph B(10, 10). DeepWalk fails to
capture structural equivalences, which is expected since it was not
designed to consider structural identities. As illustrated, node2vec
does not capture structural identities even with di�erent variations
of its parameters p and q. In fact, it learns mostly graph distances,

https://github.com/leoribeiro/struc2vec
https://github.com/leoribeiro/struc2vec

KDD ’17, August 13 - 17, 2017, Halifax, Nova Scotia, Canada Daniel R. Figueiredo, Leonardo F. R. Ribeiro, and Pedro H. P. Saverese

Figure 3: Latent representations in R2, for the Barball graph B(10, 10), learned by (a) DeepWalk, (b) node2vec and (c) struc2vec.
Parameters used for all methods: number of walks for node: 20, walk length: 80, window size of skip-gram: 5. For node2vec:
p = 1 and q = 2.

Figure 4: Barbell Graph B(10, 10), composed of two complete
graphs K with 10 nodes each and a path graph P of length
10.

placing closer in the latent space nodes that are closer (in hops)
in the graph. Another limitation of node2vec is that Skip-Gram’s
window size makes it impossible for nodes fromK1 andK2 to appear
in the same context.

struct2vec, on the other hand, learns features that properly sep-
arate the equivalent classes, and also maps structurally equiva-
lent nodes (in the strong senses) to similar points in the latent
space. Note that nodes of the same color are grouped together, and
there is a clear distinction between two node groups: one com-
posed of nodes v ∈ V (P) (located to the le�), and another of nodes
u ∈ V (K1) ∪V (K2) (to the right), with a small distinction for the
endpoints of path P .

4.2 Karate network
�e Zachary’s Karate Club [21] is an unweighted undirected net-
work composed of 34 nodes and and 78 edges, where each node
represents a club member and edges denote if two members have
interacted outside the club. In this network, edges are commonly
treated as indications of friendship between members.

We construct a graph composed of two copies G1 and G2 of the
Karate Club network, where each node v ∈ V (G1) is a mirrored
version of a node u ∈ V (G2). We also connect the two networks by
adding an edge between mirrored node pairs 1 and 37. Although this

is not necessary for our framework, DeepWalk and node2vec cannot
place in the same context nodes in di�erent connected components
of the graph. �us, we add the edge for a more fair comparison
with the two baselines. Figure 6 shows the generated graph with
mirrored node pairs exhibiting the same color.

Figure 5 shows the representations learned byDeepWalk, node2vec
and struct2vec. Clearly, Deepwalk and node2vec fail to group in the
latent space structurally equivalent nodes, as was the case for the
Barbell graph, including mirrored nodes.

Once again, struct2vec manages to learn features that properly
capture the structural identity of nodes. Mirrored pairs – that
is, nodes with the same color – stay close together in the latent
space, and there is a complex structural hierarchy in the way the
representations are grouped together.

As an example, note that nodes 1, 34 and their correspondent
mirrors (37 and 42) are in a separate cluster in the latent space.
Interestingly, these are exactly the nodes that represent the club
instructor Mr. Hi and his administrator John A. �e network was
gathered a�er a con�ict between the two that split the members
of the club which formed two groups – each centered on either
Mr. Hi or John A. �erefore, nodes 1 and 34 have a truly speci�c
– although similar – social role in the original network: they both
act as leaders. Note that struct2vec captures this structural identity
even though there are no edges connecting the two.

Another visible cluster in the latent space is composed of nodes
2, 3, 4 and 33, also along with their mirrors. �ese nodes also have
a speci�c structural identity in the network: all of them have high
degrees and are also connected to at least one of the leaders. Lastly,
nodes 26 and 25 (far right in the latent space) have extremely close
representations, which agrees with their structural role: both have
low degree and are 2 hops away from leader 34.

struct2vec also captures non-trivial structural equivalences. Note
that nodes 7 and 50 (pink and yellow) are mapped to close points
in the latent space. Surprisingly, these two nodes are structurally
equivalent – there exists an automorphism in the graph that maps
one into the other. �is can be more easily seen once we note that
nodes 6 and 7 are also structurally equivalent, and 50 is the mirrored
version of node 6 (therefore also structurally equivalent).

struc2vec: Learning Node Representations from Structural Identity KDD ’17, August 13 - 17, 2017, Halifax, Nova Scotia, Canada

Figure 5: Mirrored Karate network representations created
by (a) DeepWalk, (b) node2vec and (c) struc2vec. Parameters
used for all methods: number of walks per node: 5, walk
length: 15, window size of skip-gram: 3. For node2vec were
used p=1 and q=2. struc2vec clearly identi�es structurally
equivalent nodes (mirrored nodes, with the same color) in
the latent space.

Figure 6: Mirrored Karate network. Colors correspond to
mirrored nodes.

Analyzing how linear transformations in the latent space impact
a node’s structural identity is fundamental to further understand the
learned manifold. Unlike DeepWalk and node2vec, our technique
generates a latent space with a strongly dominant component:
clearly, most nodes are spread among a line in the feature space.
Note that linearity in this manifold has a direct correspondence
to structural properties such as degree. For example, note that
ϕ(42) − ϕ(3) ≈ ϕ(3) − ϕ(56) (where ϕ(i) is the latent representation
of node i). �is suggests that there is a structural transformation
that maps node 56 to 3, and node 3 to 42. Indeed, it su�ces to
check each node’s degree: d(42) = 17,d(3) = 10, d(56) = 3, and
d(42) − d(3) = 7 = d(3) − d(56). �is is a strong indication that the
latent space learned by struc2vec has fundamental aspects of the
structural identity of nodes.

Table 1: Average and standard deviation for distances be-
tween node pairs in the latent space representation for the
mirrored Karate network (see corresponding distributions
in Figure 7).

Corresponding nodes All nodes
Algorithms avg (std) avg (std)
DeepWalk 0.377 (0.184) 0.356 (0.195)
node2vec 0.407 (0.199) 0.372 (0.206)
struc2vec 0.129 (0.109) 0.722 (0.694)

Consider the distance between pairs of vertices in the latent
representation. We measure the distance distribution between
pairs corresponding to mirrored nodes and the distance distribution
among all node pairs (using the representation shown in Figure 5).
Figure 7 shows the two distance distributions for the representa-
tions learned by node2vec and struc2vec, with corresponding av-
erages shown in Table 1. For node2vec the two distributions are
practically identical, indicating no di�erence between distances
among mirrored pairs and distances among all pairs. DeepWalk
shows similar behavior (curves omi�ed for clarity) with averages
shown in Table 1. In contrast, struc2vec exhibits two very di�erent
distributions: 94% of mirrored node pairs have distance smaller

KDD ’17, August 13 - 17, 2017, Halifax, Nova Scotia, Canada Daniel R. Figueiredo, Leonardo F. R. Ribeiro, and Pedro H. P. Saverese

Figure 7: Distance distributions between pairs of nodes (mir-
rored pairs and all pairs) in the latent space, for themirrored
Karate network learned bynode2vec and struc2vec (as shown
in Figure 5). Curves marked with × correspond to distances
between mirrored pairs while + corresponds to all pairs.

than 0.25 while 68% of all node pairs have distance larger than 0.25.
Moreover, the average distance between all node pairs is 5.6 times
larger than that of mirrored pairs, while this ratio is about slightly
smaller than 1 for DeepWalk and node2vec (see Table 1).

To be�er characterize the relationship between structural dis-
tance and distances in the latent representation learned by struc2vec,
we compute the correlation between the two distances for all node
pairs. In particular, for each layer k we compute the Spearman and
Pearson correlation coe�cients between fk (u,v), as given by equa-
tion (1), and the euclidean distance between u and v in the latent
representation. Results shown in Table 2 for the mirrored Karate
network indeed corroborate that there is a very strong correlation
between the two distances, for every layer, and captured by both
coe�cients. �is suggests that struc2vec indeed captures in the
latent space the measure for structural similarity adopted by the
methodology.

4.3 Robustness to edge removal
We consider another scenario to illustrate the potential of the frame-
work in e�ectively representing structural identity, even in the
presence of noise. In particular, we randomly remove edges from
the network, directly changing its structure. We adopt the parsimo-
nious edge sampling model to instantiate two structurally correlated
networks that were subjected to random edge removal [13].

�e model works as follows. Starting from a �xed graph G =
(V ,E), we generate a graph G1 by sampling each edge e ∈ E with
probability s , independently. �us, each edge of G is present in G1
with probability s . Repeat the process again using G to generate
another graph G2. �us, G1 and G2 are structurally correlated
through G, and s controls the amount of structural correlation.
Note that when s = 1, G1 and G2 are isomorphic, while when s = 0
all structural identity is lost.

Table 2: Pearson and Spearman correlation coe�cients be-
tween structural distance and euclidean distance in latent
space for all node pairs in the mirrored Karate network.

Layer Pearson correlation
(p-value)

Spearman correlation
(p-value)

0 0.83 (0.0) 0.74 (0.0)
1 0.72 (0.0) 0.66 (0.0)
2 0.71 (0.0) 0.65 (0.0)
3 0.70 (0.0) 0.59 (0.0)
4 0.70 (0.0) 0.57 (0.0)
5 0.62 (0.0) 0.47 (2.40)
6 0.74 (0.0) 0.57 (2.37)
7 0.91 (0.0) 0.89 (2.45)

Figure 8: Distribution for distances between node pairs in
latent space representation, under the edge sampling model
(di�erent values for s). Bottom curves (marked with ×)
are distances between corresponding node pairs; top curves
(marked with +) are distances between all node pairs.

We apply the edge sampling model to an egonet extracted from
Facebook (224 nodes, 3192 edges, max degree 99, min degree 1) [8]
to generate G1 and G2 with di�erent values for s . We relabel the
nodes inG2 (as with the previous example), and consider the union
of the two graphs as the input network to our framework. Note that
this graph has at least two connected components (corresponding
to G1 and G2) and every node in G1 has a corresponding node in
G2 (and vice-versa).

Figure 8 shows the distance distribution between node pairs in
the latent space under various values for s (corresponding averages
are shown in Table 3). In order to evaluate how well struct2vec cap-
tures structural identities in this se�ing, we compare the distance
distributions between all node pairs and between only correspon-
dent pairs.

struc2vec: Learning Node Representations from Structural Identity KDD ’17, August 13 - 17, 2017, Halifax, Nova Scotia, Canada

For s = 1 (thus, G1 is isomorphic to G2), the two distance distri-
butions are strikingly di�erent, with the average distance for all
pairs being 21 times larger than that for corresponding pairs (see
Table 3). More interestingly, when s = 0.9 the two distributions are
still very di�erent. Note that while further decreasing s does not
signi�cantly a�ect the distance distribution of all pairs, it slowly
increases the distribution of corresponding pairs. However, even
when s = 0.3 (which means that the probability that an original
edge appears both in G1 and G2 is 0.09, s2), the framework still
places together corresponding nodes in the latent space.

�is experiment indicates the robustness of the framework in
uncovering the structural identity of nodes even in the presence of
structural noise, modeled here through edge removals.

Table 3: Average and standard deviation for distances be-
tween node pairs in the latent space representation (see cor-
responding distributions in Figure 8).

Corresponding nodes All nodes
s avg (std) avg (std)

1.0 0.083 (0.05) 1.780 (1.354)
0.9 0.117 (0.142) 1.769 (1.395)
0.7 0.338 (0.374) 1.975 (1.438)
0.5 0.528 (0.588) 1.994 (1.480)
0.3 0.674 (0.662) 1.962 (1.445)

5 CONCLUSION
Structural identity is a concept of symmetry in networks in which
nodes are identi�ed using just the network structure, along with
their relationship to other vertices. �e concept is strongly related
to the notion of function, in which nodes tend to play particular
roles in the network. �us, identifying nodes with similar identity
has long been investigated, in social sciences and hard sciences.

We propose struc2vec, a novel and �exible framework to learn
representations that capture the structural identity of nodes in
a network. struc2vec assesses the structural similarity of node
pairs without leveraging node or edge a�ributes, including node
labels. It also uses a hierarchy to measure structural similarity at
di�erent scales, using ordered node degree sequence within the
k-hop neighborhood node pairs. �ese structural distances are used
to construct a multilayer weighted graph that encodes structural
similarities among all nodes in the network. Random walks on this
graph are used to generate the structural context for every node.

Learning representations for network nodes is a topic recently
explored, including representations that aim to capture homophily
and structural identity, such asDeepWalk and node2vec. However, as
we have shown, these state-of-the-art techniques fail to learn repre-
sentations that can e�ectively capture structural identity. struc2vec
overcomes their limitations and excels in this task, in comparison.
In contrast, struc2vec was not designed to capture node homophily,
a common property in networks that can be leveraged for solving
the (supervised) classi�cation task. �us, we do not a�empt to
classify nodes using struc2vec, a task that node2vec shows good
performance at.

Can structural identity and homophily of nodes be adequately
captured by a latent representations? On the one hand, structural
identity is a concept independent of network position, while on
the other hand, homophily is a concept tied to network proximity.
Reconciling these two fundamental aspects of network nodes is an
open and active research question.

REFERENCES
[1] Nir Atias and Roded Sharan. 2012. Comparative analysis of protein networks:

hard problems, practical solutions. Commun. ACM 55, 5 (2012), 88–97.
[2] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A

Neural Probabilistic Language Model. Journal of Machine Learning Research 3
(2003), 1137–1155.

[3] Vincent D Blondel, Anahı́ Gajardo, Maureen Heymans, Pierre Senellart, and Paul
Van Dooren. 2004. A measure of similarity between graph vertices: Applications
to synonym extraction and web searching. SIAM review 46, 4 (2004), 647–666.

[4] Francois Fouss, Alain Piro�e, Jean-Michel Renders, and Marco Saerens. 2007.
Random-walk computation of similarities between nodes of a graph with appli-
cation to collaborative recommendation. IEEE Transactions on knowledge and
data engineering 19, 3 (2007).

[5] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In ACM SIGKDD.

[6] Jon M Kleinberg. 1999. Authoritative sources in a hyperlinked environment.
Journal of the ACM (JACM) 46, 5 (1999), 604–632.

[7] Elizabeth A Leicht, Pe�er Holme, and Mark EJ Newman. 2006. Vertex similarity
in networks. Physical Review E 73, 2 (2006), 026120.

[8] Jure Leskovec and Julian J Mcauley. 2012. Learning to discover social circles in
ego networks. In Advances in neural information processing systems. 539–547.

[9] Francois Lorrain and Harrison C White. 1971. Structural equivalence of indi-
viduals in social networks. �e Journal of mathematical sociology 1, 1 (1971),
49–80.

[10] Tomas Mikolov, Kai Chen, Greg Corrado, and Je�rey Dean. 2013. E�cient
Estimation of Word Representations in Vector Space. In ICLR Workshop.

[11] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Je� Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality.
In Advances in Neural Information Processing Systems 26. 3111–3119.

[12] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and
Santhoshkumar Saminathan. 2016. subgraph2vec: Learning Distributed Repre-
sentations of Rooted Sub-graphs from Large Graphs. In International Workshop
on Mining and Learning with Graphs.

[13] Pedram Pedarsani and Ma�hias Grossglauser. 2011. On the privacy of
anonymized networks. In ACM SIGKDD.

[14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online
Learning of Social Representations. In ACM SIGKDD.

[15] Narciso Pizarro. 2007. Structural Identity and Equivalence of Individuals in Social
Networks Beyond Duality. International Sociology 22, 6 (2007), 767–792.

[16] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J.
Zakaria, and E. Keogh. 2013. Addressing big data time series: Mining trillions of
time series subsequences under dynamic time warping. ACM Transactions on
Knowledge Discovery from Data (TKDD) 7, 3 (2013).

[17] Lee Douglas Sailer. 1978. Structural equivalence: Meaning and de�nition, com-
putation and application. Social Networks 1, 1 (1978), 73–90.

[18] S Salvador and P Chan. 2004. FastDTW: Toward accurate dynamic time warping
in linear time and space. In Workshop on Mining Temporal and Sequential Data,
ACM SIGKDD.

[19] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
and Karsten M. Borgwardt. 2011. Weisfeiler-Lehman Graph Kernels. J. Mach.
Learn. Res. 12 (Nov. 2011), 2539–2561.

[20] Rohit Singh, Jinbo Xu, and Bonnie Berger. 2008. Global alignment of multiple
protein interaction networks with application to functional orthology detection.
Proceedings of the National Academy of Sciences 105, 35 (2008), 12763–12768.

[21] Wayne W Zachary. 1977. An information �ow model for con�ict and �ssion in
small groups. Journal of anthropological research 33, 4 (1977), 452–473.

[22] Laura A Zager and George C Verghese. 2008. Graph similarity scoring and
matching. Applied mathematics le�ers 21, 1 (2008), 86–94.

	Abstract
	1 Introduction
	2 Related work
	3 struc2vec
	3.1 Measuring structural similarity
	3.2 Constructing the context graph
	3.3 Generating context for vertices
	3.4 Learning a language model
	3.5 Computational complexity

	4 Experimental Evaluation
	4.1 Barbell graph
	4.2 Karate network
	4.3 Robustness to edge removal

	5 Conclusion
	References

