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Prediction and validation of disease genes using
HeteSim Scores
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Abstract—Deciphering the gene disease association is an important goal in biomedical research. In this paper, we use a novel
relevance measure, called HeteSim, to prioritize candidate disease genes. Two methods based on heterogeneous networks
constructed using protein-protein interaction, gene-phenotype associations, and phenotype-phenotype similarity, are presented. In
HeteSim MultiPath (HSMP), HeteSim scores of different paths are combined with a constant that dampens the contributions of longer
paths. In HeteSim SVM (HSSVM), HeteSim scores are combined with a machine learning method. The 3-fold experiments show that
our non-machine learning method HSMP performs better than the existing non-machine learning methods, our machine learning
method HSSVM obtains similar accuracy with the best existing machine learning method CATAPULT. From the analysis of the top 10
predicted genes for different diseases, we found that HSSVM avoid the disadvantage of the existing machine learning based methods,
which always predict similar genes for different diseases. The data sets and Matlab code for the two methods are freely available for
download at http://datamining.xmu.edu.cn/∼xzeng/dgassociations/klk/WebRoot/index.jsp.

Index Terms—disease gene prediction, HeteSim, multipath methods, HSMP, HSSVM.
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1 INTRODUCTION

THE recognition of disease genes has long been an impor-
tant goal of biomedical research, which may contribute

to the improvement of medical care and the understanding
of gene functions, interactions, and pathways. Traditional
gene-mapping approaches, such as linkage analysis and
association studies [1], have made a large contribution to
this, but these methods have some disadvantages. Linkage
analysis can associate disease traits with specific genomic
regions, but these regions often contain tens or even hun-
dreds of genes. Sequencing all the candidate genes in a
particular region is still a time-consuming and expensive
task. Although association studies work well when applied
to a set of carefully selected functional candidate genes, the
selection of functional candidates is not straightforward and
often limited by specialized knowledge.

With the understanding that phenotypically similar
diseases are often caused by functionally related genes,
network-based approaches were proposed for prioritizing
gene-disease associations [2]. More recently, Wu et al. [3]
construct a gene-phenotype heterogeneous network, which
is composed of a PPI network from HPRD, a disease gene-
phenotype associations network obtained from the Online
Mendelian Inheritance in Man (OMIM) database [4], [5], [6],
and a phenotype-phenotype similarity dataset calculated
through text mining [7], to infer human disease genes.
Various computational methods based on networks have
been proposed for prioritizing gene-disease associations, for
example, CIPHER [3], Random Walk [8], Diffusion Kernel
[8], PRINCE [9], and RWRH [10]. Inspired by social network
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analyses, Singh-Blom et al. [11] introduce the Katz method,
which has been successfully applied for link prediction
in social networks [12], into the disease genes prediction
problem. When the gene-disease association problem is
viewed as a supervised learning problem, machine learning
methods such as ProDiGe [13] and CATAPULT [11] are
proposed to prioritize candidate disease genes.

Although many fruitful network-based algorithmic ap-
proaches have been developed for prioritizing gene-disease
associations, most of these methods simply view objects in
gene-phenotype heterogeneous networks as the same type
and do not consider the different semantic meanings behind
the paths. For example, Katz and CATAPULT use only walk
count to find the similarity between objects. This approach
tends to cause gene objects that have higher number of the
associated phenotypes always to be identified as disease
genes.

The HeteSim [14] is a path-based measure to calculate
relevance between objects in heterogeneous network. It can
capture effectively the subtle semantics of paths, which is
meaningful for calculating the relevance between nodes in
heterogeneous networks. In addition, the pair-wise random
walk used in this method can be used to calculate the
relatedness of different-typed nodes as well as same-typed
nodes. An example of comparing walk count and HeteSim
is illustrated in Fig. 1. The example shows that the walk
count between a and c more than the walk count between b
and c. The walk count tends to evaluate nodes with higher
degree have higher similarity than others. Thus, Katz and
CATAPULT measure that a − c has a higher similar score
than b− c. However, we found that each of the connections
starting from a possess less meaning than the connections
starting from b. We believe that the connections between b
and c stronger than the connections between a and c. The
similarity calculated by the HeteSim measure seems to be a
more reasonable result.

http://datamining.xmu.edu.cn/~xzeng/dgassociations/klk/WebRoot/index.jsp
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Walk Count:

S(a, c) = 3

S(b, c) = 2
a

b
c

A B C

HeteSim:

HeteSim(a, c) = 0.5 
HeteSim(b, c) = 0.707

Fig. 1. Example of heterogeneous network for comparing walk count and
HeteSim measure. Circles, squares, and sexangle denote three different
types A, B, and C, respectively.

Here we propose two novel multipath methods, HeteS-
im MultiPath (HSMP) and HeteSim SVM (HSSVM), based
on the HeteSim measure. HSMP uses the HeteSim measure
to calculate the similarity between nodes in heterogeneous
networks. Then, the HeteSim scores of different paths are
combined with a constant that dampens contributions from
longer paths. HSSVM also uses the HeteSim measure to cal-
culate similarity. However, HSSVM uses a machine learning
method instead of a constant to combine HeteSim scores.
A Positive Unlabeled (PU) learning method was chosen to
learn the different weights of the different paths because
only positive and unlabeled examples were considered here.

A cross-validation method was introduced to evaluate
the performance of the two proposed methods, two recently
proposed methods (Katz and CATAPULT), and two state-
of-the-art methods (PRINCE and ProDiGe). We found that
HSMP and HSSVM not only outperformed PRINCE and
ProDiGe, they were also slightly better than Katz and CATA-
PULT in terms of the top predictions. We also evaluated the
average overlap ratio and average number of the associated
phenotypes with phenotype of the predicted top 10 genes
and compared them with other methods. We found that the
top 10 disease genes predicted by HSMP and HSSVM had
lower overlap ratios and lower number of the associated
phenotypes than the top 10 disease genes predicted by the
other methods, showing that the two new methods are
reasonable and credible.

2 METHODS

2.1 Datasets

In the subsection, we briefly introduce the three networks
are employed to construct heterogeneous network in our
experiments.

Gene-gene interaction network: Two different networks
HumanNet [15] and HPRD network [16] are used. The
HumanNet is a functional gene network for human genes
and others orthologous genes of yeast, worm, and fly. It was
constructed by Lee et al. in 2011, and contains a variety of
sources of information such as diverse expression, protein
interaction, and gene co-expression. There are 16, 243 genes
and 476, 399 non-zero functional linkages in HumanNet.
HPRD network is a much sparser protein-protein interac-
tion network. There are 41, 327 protein-protein interactions

among 30, 047 protein entries. For any two distinct proteins,
their corresponding protein-coding genes are connected if
their interact with each other in the HPRD network. The
two networks are also used to identify associations of genes
with diseases in [11].

Gene-phenotype association network: The gene-phenotype
associations were collected from 9 different species: Human
(Hs), Plant (At), Worm (Ce), Fruit fly (Dm), Mice (Mm),
Yeast (Sc), Escherichia coli (Ec), Zebrafish (Dr), and Chicken
(Gg). The data set were collected by Singh-Blom et al. from
different literature and public databases. It was downloaded
from literature [11]. The network contains 16, 153 pheno-
types, and 362, 987 gene-phenotype associations.

Phenotype similarity network: The phenotype similarities
for human were derived solely from the MimMiner [7],
which is a text-mining approach to evaluate the similarities
between human phenotypes from the OMIM database [6].
According to the analysis of Vanunu et al. [17], a logistic
transformation L(x) = 1

1+exp(cx+d) was applied to adopt
to the process, where x represents the weights between
phenotypes, c is the parameter tuned by cross validation,
and d = log(9999). The phenotype similarities for the other
species are simply set to zero.

2.2 Construction of the heterogeneous network
We construct the heterogeneous network by connecting the
gene interaction network and phenotype similarity network
utilizing the bipartite graph of the gene-phenotype associa-
tion network. The schema of the heterogeneous network is
illustrated in Fig. 2. The network then contains 10 types of
objects. As an abbreviation, we use Ge to denote the type of
gene, and corresponding binomial name to denote different
species, e.g., Hs for human and Dm for fruit fly. A path P is
defined at the object type level, and is denoted in the form
of A1 → · · · → Ai → · · · → Al+1, where Ai represent the
object type. We list two examples of path in Figs. 3(a) and
3(b).

Human 

phenotype 

3,209

Gene

12,331

Plant 

phenotype 

1,137

3,954

3,165,225

12,010
HumanNet (733,836)

HPRD (56,661)

Worm 

phenotype 

744

Fruit fly 

phenotype 

2,503
Zebrafish 

phenotype 

1,143

E. coil 
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342
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1,188

Yeast 

phenotype 

1,243

Mouse 

phenotype 

4,662

30,519

68,525
4,50072,8461,188

73,284

75,199

Fig. 2. Illustration of the heterogeneous network schema. Squares
represent object types and the dash lines represent the associations.
The numbers in the square represent the total number of entity in
corresponding object types. The numbers on the dash lines are the
number of associations between entities of two different object types.

Suppose that matrixes G, Q and P are adjacency matrix
for gene-gene interaction network, phenotype similarity



1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2520947, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, OCTOBER 2014 3

Hs

HsGe

(a)

Ec

GeGe

(b)

Fig. 3. The path examples: (a) GeHsHs; (b) GeEcGe.

network and gene-phenotype association network, respec-
tively. Therefore, the adjacency matrix of the heterogeneous
network can be expressed as

H =

[
G P
PT Q

]
,

where PT is the transpose of P. Let QHs and Qs denote the
adjacency matrix of phenotype similarity network of Hs and
other species, respectively. There is no phenotype similarity
for other species. Thus, we can obtained Qs =

[
0
]

and

Q =

[
QHs 0

0 Qs

]
=

[
QHs 0

0 0

]
.

2.3 Model description

2.3.1 HeteSim measure
The HeteSim measure is a path-constrained measure that
can be used to calculate the relatedness of heterogeneous
objects with same or different types in a uniform frame-
work. It has been proven that HeteSim has some good
properties [14], such as self-maximum and symmetric, and
has shown its potential to mining valuable information in
heterogeneous network. Therefore, the HeteSim measure
was used to calculate the relatedness between genes and
human phenotypes.
Definition 1 (Transition probability matrix). [14] A and

B are two object types in a heterogeneous network,
(WAB)n×m is an adjacent matrix between type A and
B. The transition probability matrix of A → B can be
expressed as

TAB(i, j) =
WAB(i, j)∑m

k=1 WAB(k, j)
.

In other word, TAB is a normalized matrix of WAB

along the row vector.

Definition 2 (Reachable probability matrix). [14] Given a
heterogeneous network, a reachable probability matrix
for path P = (A1A2 · · ·Al+1) is defined as

RP = TA1A2
TA2A3

· · ·TAlAl+1
.

Given a path P = (A1A2 · · ·Al+1) and two entities a ∈
A1 and b ∈ Al+1. The HeteSim score between a and b mea-
sures the cosine of the probability distributions of a and b
will meet at the middle type node when a follows along the
path and b goes against the path. When the length l of path
P is even, a and b will meet at the middle type node A l

2 +1.
The path P can be divided into two equal-length parts as
P = (PLPR), where PL = A1A2 · · ·Amid−1Amid and PR =

AmidAmid+1 · · ·Al+1,mid = l
2 +1. However, in the case of l

is odd, a and b will never meet at the same objects. Path de-
composition approach, which add a middle type object be-
tween A l+1

2
and A l+1

2 +1, are adopted by Shi et al. [14]. This
method will further increase complexity of calculation. To
overcome this disadvantages, we consider the following two
splitting cases: (1) PL = A1A2 · · ·Amid−1Amid and PR =
AmidAmid+1 · · ·Al+1; (2) PL = A1A2 · · ·AmidAmid+1 and
PR = Amid+1Amid+2 · · ·Al+1; where mid = l+1

2 . The final
HeteSim value is the average of two HeteSim values, which
is generate by the above two different cases. Finally, the
HeteSim score between a and b based on the path P is
calculated as follow:

HeteSim(a, b|P) =
RPL

(a, :)(RP−1
R

(b, :))T

‖RPL
(a, :)‖2 × ‖RP−1

R
(b, :)‖2

,

where P−1
R is the reverse path of PR.

s1

S

s2

s3

t1

t2

t3

t4

d1

d2

T D

Fig. 4. Illustration for computing HeteSim.

Assume we are given a heterogeneous network as shown
in Fig. 4 composing three object types. We simply show the
procedure of the calculation of HeteSim scores between s3

and d1, d2 under the path P = (STD). We can obtain the
adjacency matrix WST and WDT are:


WST t1 t2 t3 t4

s1 1 0 0 1
s2 0 1 0 0
s3 0 1 1 1

 [WDT t1 t2 t3 t4

d1 0 1 0 0
d2 1 1 1 0

]
After normalized the above two matrixes along the row
vector, the transition probability matrix of S → T and
D → T are

TST =

0.5 0 0 0.5
0 1 0 0
0 0.3333 0.3333 0.3333

 ,
and

TDT =

[
0 1 0 0

0.3333 0.3333 0.3333 0

]
,

respectively. In this instance, we divide P = (STD) as two
parts PL = (ST ) and PR = (TD). The reachable proba-
bility matrix for path PL and P−1

R are equivalent their cor-
responding transition probability matrix, i.e., RPL

= TST
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and RP−1
R

= TDT . Finally, we can obtain two HeteSim
scores

HeteSim(s3, d1|P) =
TST (3, :)(TDT (1, :))T

‖TST (3, :)‖2 × ‖TDT (1, :)‖2
= 0.5774,

and

HeteSim(s3, d2|P) =
TST (3, :)(TDT (2, :))T

‖TST (3, :)‖2 × ‖TDT (2, :)‖2
= 0.3849.

2.3.2 HeteSim MultiPath (HSMP) method
In a heterogeneous network, there are different paths con-
nect two objects. For example, a gene and a human pheno-
type can be connected via “gene - human phenotype” path,
“gene - gene - human phenotype” path, and so on. Different
paths have different semantic meanings, e.g., “gene - gene -
human phenotype” path shows that if a gene is associated
with a human phenotype, then other genes similar to the
gene will be potential associated with the human pheno-
type; “gene - human phenotype - human phenotype” path
shows that if a human phenotype associated with a gene,
then other human phenotypes similar to the human pheno-
type will be potential associated with the gene. Therefore, it
is significant to consider different paths in the procedure
of similarity calculation. We then introduce a systematic
approach to measure the similarity between objects in the
biological heterogeneous network.

The HSMP method uses the HeteSim measure to cal-
culate the similarity between objects in heterogeneous net-
works. The HeteSim scores of different paths are combined
with a constant that dampens contributions from longer
paths. Because of the HeteSim measure is based on the
path-based relevance framework, it can capture effectively
the subtle semantics of search paths. Consequently, we com-
bined the HeteSim score of different paths with a constant
β to dampen the contributions from longer paths. After
a comprehensive searching, we found that the parameter
β = 1 achieves best performance. Thus, β = 1 are selected
for further association prediction in our experiments. Con-
sequently, the HSMP score S(a, b) measures the similarity
between object is defined as

S(a, b) =
∞∑
l=2

(
βl−1 ×

∑
Pi∈Ψl

HeteSim(a, b|Pi)

)
,

where a and b are entities of object type A and B, re-
spectively, Ψl is the set of path from object type A to B
with path length l. Usually, a short path may contribute
more than a long path. Therefore, only paths with length-
s less than five are considered in our experiments. Let
Sp ∈ {Hs,At,Ce,Dm,Mm, Sc,Ec,Dr,Gg}. All paths, which
are used to measure the similarity between gene and phe-
notype, are list in Tab. 1. There are total 43 paths. Given a
gene g and a human phenotype p (p isn’t associated with g),
the similarity score is

S(g, p) =β ∗
(
HeteSim(g, p|GeGeHs)

+HeteSim(g, p|GeHsHs)
)

+ β2 ∗
(
HeteSim(g, p|GeGeGeHs)

+HeteSim(g, p|GeGeHsHs)
+HeteSim(g, p|GeHsHsHs)

+HeteSim(g, p|GeSpGeHS)
)

+ · · ·

2.3.3 HeteSim SVM (HSSVM) method
The HSSVM method also uses the HeteSim measure to
calculate the similarity between objects in heterogeneous
networks. However, unlike HSMP, it uses a machine learn-
ing method to combine the HeteSim scores instead of a
constant. Different paths make different contributions to the
relevance score; therefore, the weight of the contribution of
each path to the score is determined through a machine
learning method.

A PU learning method was used to determine the dif-
ferent weights of different paths. The association between
genes and human phenotypes in heterogeneous networks
implies that the relation has been verified previously. How-
ever, if gene g and human phenotype p are not associated in
the network, it cannot be assumed that g is not the disease
gene of p. In other words, only partial positive associations
are recorded in a network, not negative associations. Fur-
ther, although a large numbers of gene-human phenotype
pairs are unlabeled, most of them are negative associations.

In the HSSVM method, the associations between genes
and human phenotypes were used as the positive set, and
gene-phenotype pairs for which no associations existed
were used as the unlabeled set. The HeteSim scores were
used for each feature based on 66 constrained paths that
were used to construct 66 features for each gene-phenotype
pair. The 66 paths are listed in Table 2.

TABLE 1
Paths with length less than five.

Path scheme Pathway Number

GeGeHs gene→ gene→ human phenotype 1
GeHsHs gene→ human phenotype→ human phenotype 1

GeGeGeHs gene→ gene→ gene→ human phenotype 1
GeGeHsHs gene→ gene→ human phenotype→ human phenotype 1
GeHsHsHs gene→ human phenotype→ human phenotype→ human phenotype 1
GeSpGeHs gene→ all phenotypes→ gene→ human phenotype 9

GeGeGeGeHs gene→ gene→ gene→ gene→ human phenotype 1
GeHsHsHsHs gene→ human phenotype→ human phenotype→ human phenotype→ human phenotype 1
GeSpGeHsHs gene→ all phenotypes→ gene→ human phenotype→ human phenotype 9
GeGeSpGeHs gene→ gene→ all phenotypes→ gene→ human phenotype 9
GeSpSpGeHs gene→ all phenotypes→ all phenotypes→ gene→ human phenotype 9
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TABLE 2
Constrained paths and the corresponding features

Feature id Paths Numbers

1− 4 GeGeHs, GeGeGeHs, GeGeGeGeHs, GeGeGeGeGeHs 4

5− 11
GeHsHs, GeHsGeHsHs, GeHsGeGeHsHs, GeGeHsGeHsHs,
GeHsGeGeGeHsHs, GeGeHsGeGeHsHs, GeGeGeHsGeHsHs 7

12− 65
GeSpGeHs, GeSpGeGeHs, GeGeSpGeHs, GeSpGeGeGeHs,

GeGeSpGeGeHs, GeGeGeSpGeHs 6× 9 = 54

66 No use, ones vector 1

Negative datas are not exist in the datasets. Therefore,
a set of examples from an unlabeled set should be selected
randomly and the random sample should be used as the
negative data set. The negative and positive sets are then
used to train a supervised classifier, in this paper, we trained
a biased support vector machine (biased SVM) model. Be-
cause the true negatives are unknown, using the biased
SVM, which penalizes the mistakes on positives heavier
than negatives, is reasonable. Then we use the trained
biased SVM model to predict all other data, and output a
score for each gene-phenotype pair, where the score reflect
confidence that the gene-phenotype is a positive pair.

To improve the stability and accuracy of the method, a
bootstrap procedure [18], [19] was adopted. The selection
of an unlabeled set and training of the supervised classifier
are repeated 30 times in our study. The average score of
each repetition is used as the final HSSVM score. Each gene-
phenotype pair score reflects the confidence of whether
a pair should be connected. All obtained scores are then
ranked in descending order and the final ranking is used
for prioritization.

3 RESULTS AND DISCUSSION

3.1 Comparison of HSMP and HSSVM with other meth-
ods
To demonstrate the effectiveness of HSMP and HSSVM, we
compared our methods with four other methods: PRINCE,
ProDiGe, Katz, and CATAPULT. PRINCE is a state-of-the-
art method that was designed to share information across
diseases. It was first proposed by [9] and is often used
as a reference for comparisons with other novel methods.
ProDiGe is a SVM-based method that uses a large number
of information sources to calculate the relevance score of
each gene-phenotype pair. The Matlab code of this method
was obtained from [13]. Katz is a recently proposed method
inspired by social network analyses. This method uses the
number of walks of different lengths between two objects as
the similarity of these objects. CATAPULT, another recently
proposed method, uses the PU learning method to learn
the contribution of each path to the similarities of objects
in heterogeneous networks and combines them with the
learned contribution weight.

3.2 Effectiveness measure using cross-validation
In this study, we used the 3-fold cross-validation method
used previously by [13] and [11]. First all known gene-
human phenotype associations were split into three sets of
the same size randomly. In the disease gene prioritization

experiment, one set was set aside as the test set and the
other two were used as known information. In each exper-
iment, we hide the test set and use the known information
as the training data. The experiment was repeated three
times so that each set was hidden once and each hidden
gene-phenotype pair obtained a predict relevance score.
According to the predict relevance scores of hidden pair
(g, p), we obtain the rank of the gene g in the list associated
with phenotype p. The cumulative distribution function
(CDF) of the rank scores of genes in hidden gene-phenotype
pairs were used to evaluate the effectiveness of HSMP and
HSSVM. The CDF represents the number of hidden pairs
that were ranked in the top k. Because 12, 331 genes were
used, the rank(k) will always be between 1 and 12, 331.

Gene associations from HumanNet were used first to
construct the gene-phenotype heterogeneous network. The
results are shown in Fig. 5(a). Because only the top ranked
genes are meaningful and can be used for further analysis,
only the top 100 results are shown. The results show that the
HSMP and HSSVM methods performed better than other
methods, except CATAPULT. For HSMP, 13.38% hidden
genes were ranked in the top 100, while for Katz, only
12.09% were in the top 100. The HSSVM results were
similar to those of CATAPULT. For HSSVM, 15.20% hidden
genes were ranked in the top 100, which was better than
the performance of the methods that do not use machine
learning. Both our methods performed much better than
PRINCE and ProDiGe.

In experiment above, PRINCE method use HPRD gene
network only and ProDiGe method can only use part of
datasets. To further test the effectiveness of HSMP and
HSSVM in predicting disease genes, an additional gene-
phenotype heterogeneous network was constructed using
HPRD. The prediction results, which are shown in Fig. 5(b),
are similar to the results based on the gene-phenotype
heterogeneous network (Fig. 5(a)). The results of the HSSVM
method were again similar to the CATAPULT results and
HSMP method better than the Katz results for genes below
the top 60.

3.3 Performance of the methods on phenotype sets
with a single known gene and phenotype sets with many
known genes

The results of the comparisons between the performances
of the different methods on phenotype sets with a single
known gene and phenotype sets with many known genes
are shown in Fig. 6. The performance of HSSVM was worse
than that of CATAPULT for phenotypes with a single known
gene; i.e., only 5.26% of the genes in the test set were in the
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top 100, whereas 6.8% of the genes predicted by CATAPULT
were in the top 100. The performance of HSMP was better
than that of Katz, although only 0.52% more of the genes
in the test data set were in the top 100 compared with
the percentage of genes in the top 100 of Katz. As for the
result on phenotype sets with many known genes (Fig. 6(b)),
HSMP predicted 37.74% of the genes and HSSVM predicted
43.48% of the genes in the top 100, while Katz predicted
only 34.14% and CATAPULT predicted 39.59%.

3.4 Analyses of the top 10 predicted genes
The top predictions have been reported to contain a very
high degree of overlap [11]; therefore, we compared the top
10 predicted genes of the disease phenotypes. It must be
said, though, this experiment use all known gene-phenotype
association as the training data and use for predict unknown

associations. The top 10 genes of 8 important diseases
predicted by of HSMP and HSSVM are listed in Table 3
and 4. MYH11, for example, has been reported to be
associated with leukemia through the inversion of a region
on chromosome 16 and the formation of a CBFB-MYH11
chimera [20], and BRCA1 are known to be responsible for a
large proportion of inherited predispositions to breast and
ovarian cancer [21].

HSMP predicted that the DRD2 gene was associated
with schizophrenia, which have been validated by [22],
[23], [24]. Fan [25] also study the association of DRD2
gene polymorphisms with schizophrenia in a Chinese Han
population. As for the Alzheimer’s disease top ranked
genes, there are many genes related to amyloid precursor
protein, APP, in many ways, such as APLP2 and APLP1,
which are homologs of APP, CTSB, also known as amyloid

(a) (b)

Fig. 5. Cumulative distribution function for the rank scores of genes in the test data sets under cross-validation. The ranks less than 100 are shown
using HumanNet (Fig. 5(a)) and HPRD (Fig. 5(b)). The horizontal axis is the threshold k and the vertical axis is the ratio of true predictions in the
top k.

(a) (b)

Fig. 6. Cumulative distribution function for the rank scores of genes in the test data sets under cross-validation: (a) phenotype sets with a single
known gene; (b) phenotype sets with many known genes.



1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2520947, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, OCTOBER 2014 7

TABLE 3
Top 10 genes predicted by HSMP

Leukemia Alzheimer disease Insulin resistance Prostate cancer Schizpophrenia Breast cancer Gastric cancer Colorectal cancer

MIM: 601626 MIM: 104300 MIM: 125853 MIM: 176807 MIM: 181500 MIM: 114480 MIM: 137215 MIM: 114500

MYH11 (4629) APLP2(334) INS (3630) RAD51 (5888) DRD2 (1813) BRCA1 (672) NRAS (4893) CTNNB1 (1499)
RUNX3 (864) APLP1 (333) AKT1 (207) BRCA1 (672) LINGO1 (84894) RAD50 (10111) EGFR (1956) RAD51 (5888)
IMPDH2 (3615) LRP1 (4035) INSR (3643) TP53 (7157) RTN4 (57142) MRE11A (4361) HRAS (3265) CCNA2 (890)
EP300 (2033) APBB1 (322) SLC2A2 (6514) AKT2 (208) CBS (875) TOP3A (7156) ERBB3 (2065) MYBL2 (4065)
YBX3 (8531) EPX (8288) CREBBP (1387) ATM (472) SYN1 (6853) DMC1 (11144) COL4A5 (1287) GSK3B (2932)
DKC1 (1736) CTSB (1508) IGF1R (3480) MYC (4609) AK2 (204) BLM (641) FGFR1 (2260) TSG101 (7251)
KRAS (3845) PXDN (7837) EP300 (2033) SIN3B (23309) DDC (1644) ATR (545) BRAF (673) CDK1 (983)
MLLT6 (4302) APBA3 (9546) MAFA (389692) SIN3A (25942) LMX1B (4010) RAD52 (5893) FGFR3 (2261) AURKB (9212)
MYC (4609) ABCB11 (8647) GSK3B (2932) TSG101 (7251) HTR1B (3351) SPO11 (23626) RAF1 (5894) KRAS (3845)
CBFA2T3 (863) CALR (811) AQP3 (360) MXD1 (4084) MTR (4548) MUS81 (80198) IRS1 (3667) MAD2L1 (4085)

precursor protein secretase and LRP1, which is necessary for
clearance of APP plaques. Associations between APP and
Alzheimer can be found in [26]. A well-known fact, while
HSSVM predicted that the ALOX5AP gene was associated
with Alzheimer disease, which is similar to results reported
previously by [27]. Many of the genes predicted by HSMP
and HSSVM to be associated with various cancers (e.g
TP53, RUNX3, KRAS, RAD50, RAD51, and RAD52) were
identified among the top 10 predicted genes.

From the analysis of top ten prediction of the 8 diseases
predicted by PRODIGE and CATAPULT, we found that
these methods based on machine learning show a very
high degree of overlap, for example, ProDiGe ranks EXT1
in the top ten for six out of the eight diseases studied, and
CATAPULT ranks TP53 in the top ten for five of the diseases
[11]. Also, similarity methods based on path count like
always view gene with higher associations as the disease
gene, just as the example showed in Fig. 1, for example,
the number of associated phenotypes by TP53 (CATAPULT
predict) is 9.

For further evaluation, we propose Average Overlap
Ratio of the Predicted Top 10 genes, AOR-T10 and Average
Number of Associated Phenotypes of the Predicted Top
10 genes, ANAP-T10. The AOR-T10 were measured by
calculating the number of genes predicted more than twice
to be in the top 10, and the ANAP-T10 was calculated
based on the number of the associated phenotypes of all the
predicted top 10 genes. In each experiment, eight diseases
were chosen randomly and then the methods were used
to predict the top 10 genes associated with these diseases.

These two experiments were repeated 100 times and we
calculate the average of each result as the final AOR-T10
and ANAP-T10. The AOR-T10 result is shown in Table 5,
and the ANAP-T10 result is shown in Table 6.

TABLE 5
AOR-T10 result of different methods

Katz HSMP CATAPULT HSSVM

1.58% 1.14% 8.41% 1.86%

TABLE 6
ANAP-T10 result of different methods

Katz HSMP CATAPULT HSSVM

0.8421 0.9639 3.3458 1.6330

Table 5 shows that, although the SVM method is used in
HSSVM, the overlap ratio was similar to the overlap found
by Katz, perhaps because HeteSim accurately evaluates the
relevance between nodes, thereby ensuring that HSSVM do
not always find nodes with higher associations. This result
is also verified by the average degree results in Table 6.

Overall the accuracy of HSSVM was found to be similar
to that of CATAPULT, while the AOR-T10 and ANAP-T10
result of HSSVM was much better than that of CATAPULT
(Figs. 5 and 6, and Tabs. 5 and 6).

TABLE 4
Top 10 genes predicted by HSSVM

Leukemia Alzheimer disease Insulin resistance Prostate cancer Schizpophrenia Breast cancer Gastric cancer Colorectal cancer

MIM: 601626 MIM: 104300 MIM: 125853 MIM: 176807 MIM: 181500 MIM: 114480 MIM: 137215 MIM: 114500

EGR2 (1959) UROD (7389) SHOX (6473) PHOX2A (401) MTHFD1 (4522) LCA5 (167691) EGFR (1956) RAD51 (5888)
KRAS (3845) PPOX (5498) ADAR (103) RAD51 (5888) EFNB1 (1947) PDGFRL (5157) CTNNB1 (1499) BARD1 (580)
DKC1 (1736) BMP2 (650) INS (3630) BARD1 (580) LMX1B (4010) AURKA (6790) MAP3K8 (1326) HMMR (3161)
MYH11 (4629) AGTR1 (185) TERC (7012) TSG101 (7251) MTR (4548) ODC1 (4953) PPP2R1B (5519) TSG101 (7251)
PDGFRA (5156) AGT (183) TRPV4 (59341) PHB (5245) FKBP5 (2289) BRCA1 (672) ARHGEF6 (9459) PHB (5245)
EPOR (2057) EPX (8288) STAR (6770) PPM1D (8493) CBS (875) PTPRJ (5795) CASP8 (841) PPM1D (8493)
RUNX3 (864) ALOX5AP (241) DHCR24 (1718) HMMR (3161) RTN4 (57142) KLF6 (1316) SLC26A4 (5172) CTNNB1 (9821)
KITLG (4254) CYP3A5 (1577) INSR (3643) RB1CC1 (9821) KLHDC8B (200942) CTNNB1 (1499) COL4A5 (1287) RB1CC1 (9821)
THPO (7066) PRKCH (5583) EFEMP1 (2202) CYP2D6 (1565) HABP2 (3206) PLA2G2A (5320) RAD51 (5888) CDH1 (999)
NSD (64324) PTGIS (5740) ERBB2 (2064) IL1B (3553) MATR3 (9782) EP300 (2033) BRAF (673) CASP8 (841)
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4 CONCLUSION

Here, we used the HeteSim measure to calculate the rel-
evance of different or same nodes types in a heteroge-
neous network. Two novel methods, HSMP and HSSVM
that use the HeteSim measure, were developed. In HSMP,
the HeteSim measure was used to calculate the similarity
between nodes, after which the HeteSim scores of different
paths were combined with a constant that dampens the
contributions of longer paths. In HSSVM, instead of using
a constant, the HeteSim measure and a machine learning
method were combined to calculate the similarity between
nodes. We evaluated various methods with cross-validation
and found that HSMP and HSSVM were better than the
state-of-the-art methods, PRINCE and ProDiGe. Our non-
machine learning method HSMP performs better than the
existing non-machine learning methods and our machine
learning method HSSVM obtains similar accuracy with the
best existing machine learning method CATAPULT. When
compare with the AOR-T10 and ANAP-T10, we found
HSSVM method obtain lower overlap ratios and lower
associations than other machine learning methods. These
results indicated that our two methods were reasonable and
credible.

HSMP and HSSVM can be extended easily to other
species when the necessary data become available. Recently,
genome-wide association studies (GWAS) have been used
to detect allelic variations that may affect susceptibility to
complex diseases. We consider that HSMP and HSSVM have
greet potential to identify disease-related single nucleotide
polymorphisms (SNPs) from GWAS data. Further, the iden-
tification of microRNAs associated with diseases is known
to very important for understanding the pathogenesis of
diseases at the molecular level. The methods described
here may provide the basis for designing specialized tools
for disease prevention, diagnosis, and treatment. It may
therefore be meaningful to extend HSMP and HSSVM to
predict microRNA-disease associations.

The data sets and the Matlab code for the
two methods described here are freely available at
http://datamining.xmu.edu.cn/∼xzeng/dgassociations/
klk/WebRoot/index.jsp.
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