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ABSTRACT
Recent years have seen a surge of research on social recommen-
dation techniques for improving recommender systems due to the
growing influence of social networks to our daily life. The intu-
ition of social recommendation is that users tend to show affinities
with items favored by their social ties due to social influence. De-
spite the extensive studies, no existing work has attempted to dis-
tinguish and learn the personalized preferences between strong and
weak ties, two important terms widely used in social sciences, for
each individual in social recommendation. In this paper, we first
highlight the importance of different types of ties in social rela-
tions originated from social sciences, and then propose a novel so-
cial recommendation method based on a new Probabilistic Matrix
Factorization model that incorporates the distinction of strong and
weak ties for improving recommendation performance. The pro-
posed method is capable of simultaneously classifying different
types of social ties in a social network w.r.t. optimal recommen-
dation accuracy, and learning a personalized tie type preference for
each user in addition to other parameters. We conduct extensive
experiments on four real-world datasets by comparing our method
with state-of-the-art approaches, and find encouraging results that
validate the efficacy of the proposed method in exploiting the per-
sonalized preferences of strong and weak ties for social recommen-
dation.
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1. INTRODUCTION
Recommender systems have saturated into our daily life — we

experience recommendations when we see “More Items to Con-
sider” or “Inspired by Your Shopping Trends” on Amazon and
“People You May Know” on Facebook (i.e., friend recommenda-
tion [45]) — other popular online web services such as eBay, Net-
flix and LinkedIn etc. also provide users with the recommendation
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features. Thus algorithmic recommendation [25, 37] has become a
necessary mechanism for many online web services which recom-
mend items such as music, movies or books to users. These online
web services normally make recommendations based on collabora-
tive filtering which suggests items favored by similar users. Repre-
sentative collaborative filtering algorithms include low-rank matrix
factorization. However, most recommender systems suffer from the
data sparsity problem, where the number of items consumed by a
user (e.g., giving a rating) is often very small compared to the total
number of items (usually hundreds of thousands to millions or even
billions in web-scale applications).

The data sparsity issue can significantly affect the performance
of model-based collaborative filtering methods such as low-rank
matrix factorization mainly because of two reasons: the “overfit-
ting” problem where insufficient data is available for training mod-
els, and the “cold start” problem in which recommender systems
fail to make recommendations for new users when there is no his-
torical behavior data to be collected. To resolve the data sparsity
challenge, one promising direction is resorting to social recommen-
dation where the data sparsity is tackled by utilizing the rapidly
growing social network information in recommender systems [44,
14, 15, 26, 29, 28, 43, 46, 39].

On the other hand, despite quite a lot of literature studies at-
tempting to explore tie strength prediction in demographic data [34]
and social media [33, 8, 40, 3, 7, 32, 2, 23, 16, 41], all but one of
the existing social recommendation methods fail to distinguish dif-
ferent types of social ties for pairs of connected users. In social
sciences, Granovetter [10] introduces different types of social ties
(strong, weak, and absent), and concludes that weak ties are actu-
ally the most important reason for new information or innovations
to spread over social networks. Based on Granovetter’s statement,
the model proposed by Wang et al. [39] is the only one among those
existing social recommendation approaches that pays attention to
the important distinctions between strong and weak ties. Neverthe-
less, Wang et al. simply assume every individual has the same pref-
erence for strong and weak ties — either everyone prefers strong
ties to weak ties or everyone prefers weak ties to strong ties. In
practice, different users may have different preferences for strong
and weak ties, e.g., one may trust strong ties more than weak ties
and others may behave opposite. Thus Wang’s model suffers from
the limitation that no personalized preferences of strong and weak
ties can be learned. As such, although Wang’s model addresses the
concern that lacking the distinctions for different social ties may
significantly limit the potential of social recommendation, we ar-
gue that ignoring the personalized tie type preference for each in-
dividual tends to result in sub-optimal solutions as well.
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Therefore, inspired by the claims in social sciences and the
promising results in Wang’s work [39], we investigate whether dis-
tinguishing and learning the personalized tie type preference for
each individual would improve the prediction accuracy of social
recommendation. However, there exist several challenges for the
combination of personalized tie type preferences and social recom-
mendation. First, how to effectively identify each type of social tie
(“strong” or “weak”) in a given social network? Sociologists [10,
9] typically assume the dyadic hypothesis: the strength of a tie is
determined solely by the interpersonal relationship between two in-
dividuals, irrespective of the rest of the network. For example, Gra-
novetter uses the frequency of interactions to classify strong and
weak ties [9], that is, if two persons meet each other at least once
a week, then their tie is deemed strong; if the frequency is more
than once a year but less than once a week, then the tie is weak.
This is simple and intuitive, but requires user activity data which
is not publicly available in modern online social networks because
of security and privacy concerns1. Second, assuming there is a reli-
able method for differentiating between strong and weak ties, how
can we efficaciously combine it with existing social recommenda-
tion approaches such as Social Matrix Factorization (SMF) [15] to
improve the accuracy? Third, different people may have different
preferences for strong and weak ties, and thus how do we learn a
personalized tie type preference for each of them?

To handle these challenges, we first adopt Jaccard’s coeffi-
cient [13] to compute the social tie strength [24, 31]. Naturally, Jac-
card’s coefficient captures the extent to which those users’ friend-
ship circles overlap, making itself a feature intrinsic to the network
topology, and requiring no additional data to compute. Our choice
is supported by the studies on a large-scale mobile call graph by
Onnela et al. [31], which show that (i) tie strength is partially de-
termined by the network structure relatively local to the tie and (ii)
the stronger the tie between two users, the more their friends over-
lap. We define ties as strong if their Jaccard’s coefficient is above
some threshold, and weak otherwise. We would like to point out
that the optimal threshold (w.r.t. recommendation accuracy) will be
learnt from the data. Furthermore, we exclude absent ties in our
model because they do not play an important role as indicated in
Granovetter’s work. We distinguish strong and weak ties by thresh-
olding Jaccard’s coefficient between two users, while Granovetter
thresholds the number of interactions between two users.

We then propose the Personalized Social Tie Preference Matrix
Factorization (PTPMF) method, a novel probabilistic matrix fac-
torization based model that simultaneously (i) classifies strong and
weak ties w.r.t. optimal recommendation accuracy and (ii) learns a
personalized preference between strong and weak ties for each user
in addition to other parameters. More precisely, we employ gradient
descent to learn the best (w.r.t. recommendation accuracy) thresh-
old of tie strength (above which a tie is strong; otherwise weak) and
the personalized tie type preference for each user as well as other
parameters such as the latent feature vectors for users and items.

This work makes the following three contributions:

• We recognize the importance of strong and weak ties in so-
cial relations as motivated by the sociology literature, and in-
corporate the notion of strong and weak ties into probabilistic
matrix factorization for social recommendation.

• We present a novel algorithm to simultaneously learn user-
specific preferences for strong and weak ties, the optimal
(w.r.t. recommendation accuracy) threshold for classifying
strong and weak ties, as well as other model parameters.

1https://en.wikipedia.org/wiki/Privacy_
concerns_with_social_networking_services

• We conduct extensive experiments on four real-world pub-
lic datasets and show that our proposed method significantly
outperforms the existing methods in various evaluation met-
rics such as RMSE, MAE etc.

The remainder of this paper is organized as follows: we review
related work in Section 2. Section 3 discusses the effects of strong
and weak social ties that are evident in the sociology literature, and
proposes to incorporate these notions into social recommendation.
Section 4 gives a detailed formation of our proposed Personalized
Social Tie Preference Matrix Factorization (PTPMF) model, fol-
lowed by a description of model inferences for PTPMF in Sec-
tion 5. Section 6 presents our experiments, compares our approach
with baseline recommendation methods and comments on their per-
formances for both all users and cold-start users in terms of various
evaluation metrics. Finally, we conclude our work and point out
some potential future work for further investigation in Section 7.

2. RELATED WORK
In this section, we review three major categories of related work

in recommender systems and social ties studies.
Collaborative Filtering. When it comes to recommender systems,
collaborative filtering is one of the most popular algorithmic solu-
tions so far, which makes recommendations based on users’ past
behaviors such as ratings, clicks, purchases and favorites etc. Fur-
ther, low rank matrix factorization is among the most effective
methods for collaborative filtering, and there is a large body of
work on using matrix factorization for collaborative filtering [30,
36, 21, 12, 20, 38]. As a general treatment, Koren [22] gives a sys-
tematic introduction to the application of matrix factorization to
recommender systems. Among the literature of matrix factoriza-
tion, Salakhutdinov and Mnih [30] propose a probabilistic version
of matrix factorization (PMF) which assumes a Gaussian distri-
bution on the initializations of latent feature vectors, making the
model more robust towards the problem of overfitting and linearly
scalable with the number of observations at the same time. How-
ever, these matrix factorization based models still suffer from the
data sparsity and cold start problems, which gives rise to social
recommendation.
Social Recommendation. The fact that cold start problem has al-
ways been an important factor to deteriorate the performance of
collaborative filtering motivates the advent of work on social rec-
ommendation, which utilizes social information among users to
improve the performances of recommender systems. Indeed, so-
cial influence tends to have strong effects in changing human be-
haviours [19, 4], such as adopting new opinions, technologies, and
products. This has stimulated the study of social recommendation,
which aims to leverage social network information to help mitigate
the “cold-start” problem in collaborative filtering [43, 44, 46, 42,
15, 28, 29, 26, 27, 14, 39], in the hope that the resulting recommen-
dations will have better quality and higher relevance to users who
have given little feedback to the system. In particular, Ma et al. [28]
propose a probabilistic matrix factorization model which factor-
izes user-item rating matrix and user-user linkage matrix simultane-
ously. They later present another probabilistic matrix factorization
model which aggregates a user’s own rating and her friends’ rat-
ings to predict the target user’s final rating on an item. In [15], Ja-
mali and Ester introduce a novel probabilistic matrix factorization
model based on the assumption that users’ latent feature vectors are
dependent on their social ties’. Wang et al. [39] are the first to try
integrating the concepts of strong and weak ties into social recom-
mendation through presenting a more fine-grained categorization of
user-item feedback for Bayesian Personalized Ranking (BPR) [35]
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by leveraging the knowledge of tie strength and tie types. How-
ever, they assume a global rather than personalized preference be-
tween strong and weak ties. In other words, their proposed model
assumes either all individuals prefer strong ties to weak ties or all
individuals prefer weak ties to strong ties, which ignores the fact
that different people may have different preferences for strong and
weak ties (i.e., some prefer strong ties over weak ties while some
others prefer weak ties over strong ties). Our proposed method ad-
dresses the limitation in Wang et al.’s work by learning a personal-
ized tie type preference for each individual. In general, the model
introduced in [39] conceptually becomes a special case of our pro-
posed method when we assume everyone has the same preference
for strong and weak ties.

Social Ties in Social Media. Different types of social ties have at-
tracted lots of interests from researchers in social sciences [9, 10,
5, 18], followed by some recent work which pays attention to tie
strength in demographic data [34] and social media [33, 8, 40, 3,
7, 32, 47, 2, 16, 41]. In particular, Gilbert et al. [8] bridge the gap
between social theory and social practice through predicting inter-
personal tie strength with social media and conducting user-study
based experiments over 2000 social media ties. Wu et al. [40] pro-
pose a regression analysis to discover two different types of close-
ness (i.e., professional and personal) for employees in an IBM en-
terprise social network. Panovich et al. [32] later carry out an in-
vestigation related to different roles of tie strength in question and
answer online networks by taking advantage of Wu’s approach.

In summary, no work so far brings the learning of personalized
tie type preference to social recommendation. This is no surprise,
since the combination is very specific.

3. STRONG AND WEAK TIES
Speaking of interpersonal ties, Granovetter may probably be the

first one who comes into our mind. Granovetter, in his book Get-
ting a job: A study of contacts and careers [9], conducts a sur-
vey among 282 professional, technical, and managerial workers in
Newton, Massachusetts and reports that personal contact is the pre-
dominant method of finding out about jobs. The result of his survey
shows that nearly 56% of his respondents used personal contacts to
find a job while 18.8% used formal means and 18.8% used direct
applications instead. Besides, Granovetter’s research also demon-
strates that most respondents prefer the use of personal contacts to
other means and that using personal contacts can lead to a higher
level of job satisfaction and income. Thus it will be interesting to
explore the important role social influence plays in people’s deci-
sion making process which does not necessarily need to be limited
to an employee’s decision about changing a job.

Social influence takes effect through a social network which con-
sists of people and interpersonal ties connecting these people in the
network. Granovetter, in his other work [10], introduces different
types of interpersonal ties (e.g. strong tie, weak tie and absent tie)
and concludes that weak ties are the most important source for new
information or innovations to reach distant parts of the network.
Again, different ties between the job changer and the contact per-
son who provided the necessary information are analyzed and the
strength and importance of weak ties in occupational mobility are
shown in [9]. In the late 1960’s and early 1970’s when the Internet
had not come into existence, tie strength was measured in terms of
how often they saw the contact person during the period of the job
transition, using the following measurement:
• Often: at least once a week
• Occasionally: more than once a year but less than twice a

week

• Rarely: once a year or less
In the age of information, social media and online social net-

works are playing crucial roles in the establishment of social net-
works. We are able to know new friends and form new relation-
ships/ties through the Internet without necessarily meeting them
face to face. Just as Kavanaugh et al. [18] state, the appearance of
the Internet has helped to strengthen weak ties and increase their
numbers across social groups. Though the importance of weak ties
has been exposed to us by sociologists, it is not wise to ignore the
roles strong ties play in our lives because strong ties should intu-
itively be more trustworthy than weak ties. On the other side, differ-
ent individuals may have different relative degree of trust for their
strong and weak ties — one may trust his/her strong ties (or weak
ties) more than one another. Thus an interesting and challenging
question is that how to learn these user-specific (and perhaps dif-
ferent) preferences for different types of ties. This being the case,
considering both strong and weak ties in social recommendation,
then optimally distinguishing them w.r.t recommendation accuracy
and finally learning a user-specific personalized tie type preference
become three key parts of an appropriate solution to improve social
recommendation.

In this section we will present how the notion of strong/weak
ties and the thresholding strategy are incorporated into social rec-
ommendation. We leave the remaining two parts to section 4 for
more concrete descriptions. In order that the distinction between
strong and weak ties can be incorporated into social recommenda-
tion, we will need to be able to define and compute tie strength,
and then classify ties. Several potential options seem to serve as
adequate candidates. First, as mentioned in Section 1, sociologists
use dyadic measures such as frequency of interactions [9]. How-
ever, this method is not generally applicable due to lack of neces-
sary data. An alternative approach relies on community detection.
Specifically, it first runs a community detection algorithm to par-
tition the network G = (U,E) into several subgraphs. Then, for
each edge (u, v) ∈ E , if u and v belong to the same subgraph, then
it is classified as a strong tie; otherwise a weak tie. However, a key
issue is that although numerous community detection algorithms
exist [6], they tend to produce (very) different clusterings, and it is
unclear how to decide which one to use. Furthermore, if a “bad”
partitioning (w.r.t. prediction accuracy) is produced and given to
the recommender system as input, it would be very difficult for the
recommender system to recover. In other words, the quality of rec-
ommendation would depend on an exogenous community detection
algorithm that the recommender system has no control over. Hence,
this approach is undesirable.

In light of the above, we resort to node-similarly metrics that
measure neighborhood overlap of two nodes in the network. The
study of Onnela et al. [31] provides empirical confirmation of this
intuition: they find that (i) tie strength is in part determined by the
local network structure and (ii) the stronger the tie between two
users, the more their friends overlap. In addition, unlike frequency
of interactions, node-similarity metrics are intrinsic to the network,
requiring no additional data to compute. Also, unlike the commu-
nity detection based approach, we still get to choose a tie classi-
fication method that best serves the interest of the recommender
system.

More specifically, we use Jaccard’s coefficient [13], a sim-
ple measure that effectively captures neighborhood overlap. Let
strength(u, v) denote the tie strength for any (u, v) ∈ E . We have:

strength(u, v) =def
|Nu ∩Nv|
|Nu ∪Nv|

(Jaccard), (1)
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where Nu ⊆ U (resp. Nv ⊆ U) denotes the set of ties of u (resp.
v). If Nu = Nv = ∅ (i.e., both u and v are singleton nodes), then
simply define strength(u, v) = 0. By definition, all strengths as
defined in Equation (1) fall into the interval [0, 1]. This definition
has natural probabilistic interpretations: Given two arbitrary users
u and v, their Jaccard’s coefficient is equal to the probability that a
randomly chosen tie of u (resp. v) is also a tie of v (resp. u) [24].

Thresholding. To distinguish between strong and weak ties, we
adopt a simple thresholding method. For a given social network
graph G, let θG ∈ [0, 1) denote the threshold of tie strength such
that

(u, v) is

{
strong, if strength(u, v) > θG ;

weak, if strength(u, v) ≤ θG .
(2)

Let Wu =def {v ∈ U : (u, v) ∈ E ∧ strength(u, v) ≤ θG}
denote the set of all weak ties of u. Similarly, Su =def {v ∈ U :
(u, v) ∈ E ∧strength(u, v) > θG} denotes the set of all strong ties
of u. Clearly,Wu ∩ Su = ∅ andWu ∪ Su = Nu.

The value of θG in our proposed approach is not hardwired, but
rather is left for our model to learn (Section 4), such that the re-
sulting classification of strong and weak ties in G, together with
other learned parameters of the model, leads to the best accuracy
of recommendations. We conclude this section by pointing out that
Granovetter and we both threshold strong and weak ties, we utilize
Jaccard’s coefficient (degree of connectivity between users) to do
the thresholding while Granovetter resorts to the number of inter-
actions between users instead.

4. PERSONALIZED TIE PREFERENCE
MATRIX FACTORIZATION FOR SO-
CIAL RECOMMENDATION

In this section, we present the proposed new model of Personal-
ized Tie Preference Matrix Factorization (PTPMF) for social rec-
ommendation in detail. Before introducing PTPMF, we will first
briefly explain some background knowledge of the classical Prob-
abilistic Matrix Factorization (PMF) and of another popular so-
cial recommendation model known as Social Matrix Factorization
(SMF).

4.1 Probabilistic Matrix Factorization
In recommender systems, we are given a set of users U and a

set of items I, as well as a |U| × |I| rating matrix R whose non-
empty (observed) entriesRui represent the feedbacks (e.g., ratings,
clicks etc.) of user u ∈ U for item i ∈ I. When it comes to social
recommendation, another |U| × |U| social tie matrix T whose non-
empty entries Tuv denote u ∈ U and v ∈ U are ties, may also be
necessary. The task is to predict the missing values in R, i.e., given
a user v ∈ U and an item j ∈ I for which Rvj is unknown, we
predict the rating of v for j using observed values in R and T (if
available).

A matrix factorization model assumes the rating matrixR can be
approximated by a multiplication of d-rank factors,

R ≈ UTV, (3)

where U ∈ Rd×|U| and V ∈ Rd×|I|. Normally d is far less than
both |U| and |I|. Thus given a user u and an item i, the rating Rui
of u for i can be approximated by the dot product of user latent
feature vector Uu and item latent feature Vi,

Rui ≈ UTu Vi, (4)

𝑉𝑖 𝑈𝑢

𝑅𝑢𝑖

u ∈ 𝕌
i ∈ 𝕀

𝜎𝑅

𝜎𝑈𝜎𝑉

(a) PMF

𝑈𝑛1

𝑈𝑛2

𝑈𝑛𝑝

n ∈ 𝑁𝑢
p = |𝑁𝑢|

𝑉𝑖 𝑈𝑢

𝑅𝑢𝑖

u ∈ 𝕌
i ∈ 𝕀

𝜎𝑅

𝜎𝑈

𝜎𝑈

𝜎𝑉

𝑇𝑢,𝑛2

𝑇𝑢,𝑛1

𝑇𝑢,𝑛𝑝

(b) SMF

Figure 1: Graphical models of PMF and SMF

where Uu ∈ Rd×1 is the uth column of U and Vi ∈ Rd×1 is the ith
column of V . For ease of notation, we let |U| = N and |I| =M in
the remaining of the paper.

Later, the probabilistic version of matrix factorization, i.e., Prob-
abilistic Matrix Factorization (PMF), is introduced in [30], based
on the assumption that the rating Rui follows a normal distribution
whose mean is some function of UTu Vi. The conditional probability
of the observed ratings is:

p(R|U, V, σ2
R) =

N∏
u=1

M∏
i=1

[
N
(
Rui|g(UTu Vi), σ2

R

)]IRui
, (5)

whereN (x|µ, σ2) is the normal distribution with mean µ and vari-
ance σ2. If u has rated i, then the indicator function IRui equals
to 1, otherwise equals to 0. g(·) is the sigmoid function, i.e.,
g(x) = 1

1+e−x , which bounds the range of UTu Vi within [0, 1].
Moreover, Uu and Vi are both subject to a zero mean normal dis-
tribution. Thus the conditional probabilities of user and item latent
feature vectors are:

p(U |σ2
U ) =

N∏
u=1

N
(
Uu|0, σ2

UI
)

p(V |σ2
V ) =

M∏
i=1

N
(
Vi|0, σ2

V I
)
, (6)

where I is the identity matrix. Therefore, the posterior probabil-
ity of the latent variables U and V can be calculated through a
Bayesian inference,

p(U, V |R, σ2
R, σ

2
U , σ

2
V )

∝ p(R|U, V, σ2
R)p(U |σ2

U )p(V |σ2
V )

=

N∏
u=1

M∏
i=1

[
N
(
Rui|g(UTu Vi), σ2

R

)]IRui

×
N∏
u=1

N (Uu|0, σ2
UI)×

M∏
i=1

N (Vi|0, σ2
V I). (7)

The graphical model of PMF is demonstrated in Figure 1(a) and
readers may refer to [30] for more details.

4.2 Social Matrix Factorization
There has been some work on social recommendation, among

which Jamali and Ester [15] present a well-known social recom-
mendation model called Social Matrix Factorization (SMF) that
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incorporates trust propagation into probabilistic matrix factoriza-
tion, assuming that the rating behaviour of a user u will be affected
by his social ties Nu through social influence. In SMF, the latent
feature vector of user u depends on the latent feature vectors of u’s
social ties n, i.e., n ∈ Nu. As is shown by the graphical model of
SMF in Figure 1(b),

Uu =

∑
n∈Nu

TunUn

|Nu|
,

where Uu is u’s latent feature vector andNu is the set of social ties
of user u. Tun is either 1 or 0, indicating u and n are “ties” or “not
ties”.

The posterior probability of user and item latent feature vectors
in SMF, given the observed ratings and social ties as well as the
hyperparameters, is shown in (8).

p(U, V |R, T, σ2
R, σ

2
T , σ

2
U , σ

2
V )

∝ p(R|U, V, σ2
R)p(U |T, σ2

T , σ
2
U )p(V |σ2

V )

=

N∏
u=1

M∏
i=1

[
N
(
Rui|g(UTu Vi), σ2

R

)]IRui

×
N∏
u=1

N
(
Uu|

∑
k∈Nu

TukUk, σ
2
T I
)

×
N∏
u=1

N (Uu|0, σ2
UI)×

M∏
i=1

N (Vi|0, σ2
V I). (8)

The main idea in (8) and Figure 1(b) is that the latent feature vec-
tors of users should be similar to the latent feature vectors of their
social ties. We refer readers to [15] for more details.

4.3 The PTPMF Model
We divide social ties into two groups: strong ties and weak ties.

People usually tend to share more common intrinsic properties with
their strong ties while they are more likely to be exposed to new
information through their weak ties. Both strong ties and weak ties
are important in terms of social influence while they play different
roles in affecting people. For an individual user, strong ties tend to
be more similar to her, on the other hand, weak ties may provide
her with more valuable information which can not be obtained from
strong ties. Based on this assumption, we propose our approach,
PTPMF, to utilize the different roles of strong and weak ties when
making recommendations. Besides, by introducing two additional
parameters, θG and Bu, PTPMF is capable of learning the optimal
(w.r.t. recommendation accuracy) threshold for classifying strong
and weak ties, user-specific preferences between strong and weak
ties as well as other parameters at the same time.

Figure 2 presents the graphical model of PTPMF. We introduce
a random variable θG for the threshold classifying strong and weak
ties. Su and Wu are the sets of strong and weak ties of user u
respectively, classified according to (2). Due to different roles of
strong and weak ties in affecting users’ rating behaviors, we in-
troduce two new random variables, Usu and Uwu , as strong-tie and
weak-tie latent feature vectors for each user u. The strong-tie (resp.
weak-tie) latent feature vector of u is dependent on the latent fea-
ture vectors of all u’s strong ties (resp. weak-ties). This influence is
modeled as follows:

Usu =

∑
s∈Su

TusUs∑
s∈Su

Tus
and Uwu =

∑
w∈Wu

TuwUw∑
w∈Wu

Tuw
,

where Tuv = strength(u, v) is the tie strength between u and v
defined in (1), different from SMF in which T is a Boolean vari-
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Figure 2: Graphical model of the proposed PTPMF

able. We normalize the tie strength of u and her social ties so that∑
s∈Su

Tus = 1 and
∑
w∈Wu

Tuw = 1. Now the conditional
probability of weak-tie and strong-tie latent feature vectors, Uwu
and Usu, becomes:

p(Uw, Us|T,U, σ2
T )

=

N∏
u=1

N
(
Uwu |

∑
k∈Wu

TukUk, σ
2
T I
)

×
N∏
u=1

N
(
Usu|

∑
k∈Su

TukUk, σ
2
T I
)
. (9)

The dot product of Uwu (resp. Usu) and item latent feature vector
Vi then determines u’s weak-tie generated rating on item i (resp.
u’s strong-tie generated rating on item i), denoted by Rwui (resp.
Rsui). Different from SMF, PTPMF further enables the learning of
a personalized preference between strong and weak ties for each
user through introducing another new variable, Bu, as the prob-
ability that u prefers weak ties to strong ties. Hence, 1 − Bu is
the probability that u prefers strong ties instead. To generate u’s
final rating for item i, PTPMF puts more emphasis on her weak-
tie generated rating Rwui with probability Bu, and on her strong-tie
generated rating Rsui with probability 1 − Bu (more details to be
discussed below). Thus the conditional probability of the observed
ratings can be expressed as:

p(R|Uw, Us, V, B, θG , T, σ2
R)

=
N∏
u=1

M∏
i=1

[
N
(
Rui|g

(
Bu
[
f(θG)U

w
u
TVi +

(
1− f(θG)

)
Usu

TVi

]

+
(
1−Bu

)[(
1− f(θG)

)
Uwu

TVi + f(θG)U
s
u
TVi

])
, σ2
R

)]IRui

,

(10)

where g(·) is the sigmoid function, i.e., g(x) = 1
1+e−x , and

f(θG) = g
(
(ts−θG)(θG− tw)

)
≥ 0.5, given ts, tw as the average

tie strength of strong ties and weak ties respectively. The under-
lying intuition is that when a threshold θG gives a small degree of
separation, ts and tw will be close to θG , f(θG) will then be close to
0.5, indicating very few distinctions between strong and weak ties.
Similarly, a larger degree of separation results in more distinctions
between strong and weak ties in our model. When u prefers weak
ties, more weight (i.e., f(θG) ≥ 0.5) will be given to her weak-tie
generated rating (i.e., Uwu

TVi), less weight (i.e., 1− f(θG) ≤ 0.5)
will be given to her strong-tie generated rating (i.e., Usu

TVi) and
vice versa. Moreover, how much weight to give is dependent upon
how well the current threshold, θG , classifies strong and weak ties –
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a larger degree of separation given by θG will result in more weight
being given to the preferred tie type.

We assume θG and B follow a Beta distribution so that both of
them lie in [0, 1]. Also, U and V follow the same zero mean nor-
mal distribution in (6). Through a Bayesian inference, the posterior
probability of all model parameters, given the observed ratings and
social ties as well as the hyperparameters, is shown in (11).

p(Uw, Us, U, V,B, θG |R, T, σ2
R, σ

2
T , σ

2
U , σ

2
V )

∝ p(R|Uw, Us, V, B, θG , T, σ2
R)p(U

w, Us|T,U, σ2
T )

p(U |σ2
U )p(V |σ2

V )p(θG |αθG , βθG )p(B|αB , βB)

=

N∏
u=1

M∏
i=1[

N

(
Rui|g

(
Bu
[
f(θG)U

w
u
TVi +

(
1− f(θG)

)
Usu

TVi
]

+
(
1−Bu

)[(
1− f(θG)

)
Uwu

TVi + f(θG)U
s
u
TVi
])
, σ2
R

)]IRui

×
N∏
u=1

N
(
Uwu |

∑
k∈Wu

TukUk, σ
2
T I
)

×
N∏
u=1

N
(
Usu|

∑
k∈Su

TukUk, σ
2
T I
)

×
N∏
u=1

N (Uu|0, σ2
UI)×

M∏
i=1

N (Vi|0, σ2
V I)

×Beta(θG |αθG , βθG )×
N∏
u=1

Beta(Bu|αB , βB). (11)

Compared to SMF, our PTPMF model shown in (11) and Fig-
ure 2 treats strong and weak ties separately, learns the opti-
mal (w.r.t. recommendation accuracy) threshold for distinguishing
strong and weak ties. In addition, our PTPMF is able to learn a
personalized tie preference (denoted as Bu) for each user u. Our
goal is to learn U,Uw, Us, V, B, θG which maximize the posterior
probability shown in (11).

5. PARAMETER LEARNING
We learn the parameters of PTPMF using maximum a posteri-

ori (MAP) inference. Taking the ln on both sides of (11), we are
maximizing the following objective function:

ln p(Uw, Us, U, V,B, θG |R, T, σ2
R, σ

2
T , σ

2
U , σ

2
V )

= −
1

2δ2R

N∑
u=1

M∑
i=1

IRui

(
Rui − g(µRui

)
)2

−
1

2δ2U

N∑
u=1

UTu Uu −
1

δ2V

M∑
i=1

V Ti Vi

−
1

δ2T

N∑
u=1

(
(Uwu −

∑
k∈Wu

TukUk)
T (Uwu −

∑
k∈Wu

TukUk)
)

−
1

δ2T

N∑
u=1

(
(Usu −

∑
k∈Su

TukUk)
T (Usu −

∑
k∈Su

TukUk)
)

+
N∑
u=1

(
(αB − 1) lnBu + (βB − 1) ln(1−Bu)

)
+ (αθG − 1) ln θG + (βθG − 1) ln(1− θG)

−
1

2

(
(N ·K) ln δ2U + (M ·K) ln δ2V + (2N ·K) ln δ2T

)
−

1

2
(

N∑
u=1

M∑
i=1

IRui) ln δ
2
R −N lnB(αB , βB)− lnB(αθG , βθG )

+ Constant, (12)

where

µRui
= Bu

(
f(θG)U

w
u
T +

(
1− f(θG)

)
Usu

T
)
Vi

+ (1−Bu)
((

1− f(θG)
)
Uwu

T + f(θG)U
s
u
T
)
Vi, (13)

and B(·, ·) is the beta function:

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt. (14)

Fixing the Gaussian noise variance and beta shape parameters,
maximizing the log-posterior in (12) over Uw, Us, U, V,B, θG is
equivalent to minimizing the following objective function:

L(R, T, Uw, Us, U, V,B, θG)

=
1

2

N∑
u=1

M∑
i=1

IRui

(
Rui − g(µRui

)
)2

+
λU

2

N∑
u=1

UTu Uu +
λV

2

M∑
i=1

V Ti Vi

+
λT

2

N∑
u=1

(
(Uwu −

∑
k∈Wu

TukUk)
T (Uwu −

∑
k∈Wu

TukUk)
)

+
λT

2

N∑
u=1

(
(Usu −

∑
k∈Su

TukUk)
T (Usu −

∑
k∈Su

TukUk)
)

− λB
N∑
u=1

(
(αB − 1) lnBu + (βB − 1) ln(1−Bu)

)
− λθG

(
(αθG − 1) ln θG + (βθG − 1) ln(1− θG)

)
, (15)

where λU =
δ2R
δ2
U

, λV =
δ2R
δ2
V

, λT =
δ2R
δ2
T

and λB = λθG = δ2R.
A local minimum of (15) can be found by taking the deriva-

tive and performing gradient descent on Uw, Us, U, V,B, θG sep-
arately. The corresponding partial derivative with respect to each
model parameter is shown as follows:

∂L
∂Usu

=

M∑
i=1

IRui

(
g(µRui

)−Rui
)
g
′
(µRui

)

(
Bu + f(θG)− 2Buf(θG)

)
Vi

+ λT

(
Usu −

∑
k∈Su

TukUk

)
, (16)

∂L
∂Uwu

=

M∑
i=1

IRui

(
g(µRui

)−Rui
)
g
′
(µRui

)

(
1− f(θG)−Bu + 2Buf(θG)

)
Vi

+ λT

(
Uwu −

∑
k∈Wu

TukUk

)
, (17)

∂L
∂Uu

= λUUu − λT
∑

v|u∈Wv

Tvu(U
w
v −

∑
k∈Wv

TvkUk)

− λT
∑

v|u∈Sv

Tvu(U
s
v −

∑
k∈Sv

TvkUk), (18)
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∂L
∂Vi

=

N∑
u=1

IRui

(
g(µRui

)−Rui
)
g
′
(µRui

)

((
Bu + f(θG)− 2Buf(θG)

)
Usu

+
(
1− f(θG)−Bu + 2Buf(θG)

)
Uwu

)
+ λV Vi, (19)

∂L
∂Bu

=

M∑
i=1

IRui

(
g(µRui

)−Rui
)
g
′
(µRui

)

((
2f(θG)− 1

)
Uwu

T +
(
1− 2f(θG)

)
Usu

T

)
Vi

− λB
(αB − 1

Bu
−
βB − 1

1−Bu

)
, (20)

∂L
∂θG

= (ts + tw − 2)g
′(

(ts − θG)(θG − tw)
)

N∑
u=1

M∑
i=1

IRui

(
g(µRui

)−Rui
)
g
′
(µRui

)

(
(2Bu − 1)Uwu

T + (1− 2Bu)U
s
u
T
)
Vi

− λθG
(αθG − 1

θG
−
βθG − 1

1− θG

)
. (21)

The update is done using standard gradient descent:

x(t+1) = x(t) + η(t) ·
∂L
∂x

(x(t)), (22)

where η is the learning rate and x ∈ {Uw, Us, U, V,B, θG} de-
notes any model parameter. Finally, the algorithm terminates when
the absolute difference between the losses in two consecutive iter-
ations is less than 10−5.

We note that in order to avoid overfitting, our proposed model
has the standard regularization terms (L2 norm) for user latent fea-
ture vectors (

∑
UTu Uu) and item latent feature vectors (

∑
V Ti Vi)

in the third line of (15). Since the weak tie and strong tie latent
feature vectors depend on the user latent feature vectors, these ad-
ditional parameters in our model are also indirectly regularized.

6. EMPIRICAL EVALUATION
In this section, we report the results of our experiments on four

real-world public datasets and compare the performance of our
PTPMF model with different baseline methods in terms of various
evaluation metrics. Our experiments aim to examine if incorporat-
ing the new concepts of distinguishing strong and weak ties is able
to improve the recommendation accuracy as measured by MAE /
RMSE (how close the predicted ratings are to the real ones) and
Precision@K / Recall@K (accuracy for top-K recommendations),
and how significant are the improvements achieved if any.

6.1 Experimental Settings
Datasets. We use the following four real-world datasets.

• Flixster. The Flixster dataset 2 containing information of
user-movie ratings and user-user friendships from Flixster,
an American social movie site for discovering new movies
(http://www.flixster.com/).

• CiaoDVD. This public dataset contains trust relationships
among users as well as their ratings on DVDs and was
crawled from the entire category of DVDs of a UK DVD
community website (http://dvd.ciao.co.uk) in De-
cember, 2013 [11].

2http://www.cs.ubc.ca/~jamalim/datasets/

• Douban. This public dataset3 is extracted from the Chinese
Douban movie forum (http://movie.douban.com/),
which contains user-user friendships and user-movie ratings.

• Epinions. This is the Epinions dataset4 which consists of
user-user trust relationships and user-item ratings from Epin-
ions (http://www.epinions.com/).

The statistics of these data sets are summarized in Table 1.

Flixster CiaoDVD Douban Epinions
#users 76013 1881 64642 31117
#items 48516 12900 56005 139057

#non-zeros 7350235 33510 9133529 654103
#ties (edges) 1209962 15155 1390960 410570

Table 1: Overview of datasets (#non-zeros means the number
of user-item pairs that have feedback)

For all the datasets, we randomly choose 80% of each user’s
ratings for training, leaving the remainder for testing. We split the
portion of the 80% of the dataset (i.e., the training set) into five
equal sub-datasets for 5-fold cross validation. During the training
and validation phase, each time we use one of the five sub-datasets
for validation and the remaining for training. We repeat this pro-
cedure five times so that all five sub-datasets can be used for vali-
dation. And we pick the parameter values having the best average
performance. Then we evaluate different models on the 20% of the
dataset left for testing (i.e., the test set).

Methods Compared. In order to show the performance improve-
ment of our PTPMF method, we will compare our method with
some state-of-art approaches which consist of non-personalized
non-social methods, personalized non-social methods and person-
alized social methods. Thus, the following nine recommendation
methods, including eight baselines, are tested.
• PTPMF. Our proposed PTPMF model, which is a personalized

social recommendation approach by exploiting social ties.
• TrustMF. A personalized social method originally proposed by

Yang et al. [42], which is capable of handling trust propaga-
tion among users.
• SMF. This is a personalized social approach [15] which as-

sumes that users’ latent feature vectors are dependent on those
of their ties.
• SoReg.The individual-based regularization model with Pear-

son Correlation Coefficient (PCC) which outperforms its other
variants, as indicated in [29]. This is a personalized social
method.
• STE. Another personalized social method proposed by

Ma et al. [26] which aggregates a user’s own rating and her
friends’ ratings to predict the target user’s final rating on an
item.
• SoRec. The probabilistic matrix factorization model proposed

by Ma et al. [28] which factorizes user-item rating matrix and
user-user linkage matrix simultaneously. This is also a person-
alized social method.
• PMF. The classic personalized non-social probabilistic matrix

factorization model first introduced in [30].

3https://www.cse.cuhk.edu.hk/irwin.king.new/
pub/data/douban
4http://www.trustlet.org/wiki/Epinions_
dataset
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UserMean ItemMean PMF SoRec STE SMF SoReg TrustMF PTPMF

Flixster

MAE 0.840127 0.853447 0.801346 0.795724 0.770012 0.749708 0.758309 0.792434 0.715910
Impv 14.7% 16.1% 10.7% 10.0% 7.03% 4.51% 5.59% 9.66% –

RMSE 1.061324 1.074465 1.012973 1.008995 0.974290 0.952560 0.960418 1.001670 0.914541
Impv 13.8% 14.9% 9.72% 9.36% 6.13% 3.99% 4.78% 8.70% –

CiaoDVD

MAE 0.904175 0.894703 0.876668 0.830892 0.834754 0.829287 0.865684 0.828039 0.789901
Impv 12.6% 11.7% 9.90% 4.93% 5.37% 4.75% 8.75% 4.61% –

RMSE 1.133421 1.195009 1.106291 1.088455 1.088869 1.109867 1.124882 1.087434 1.019105
Impv 10.1% 14.7% 7.88% 6.37% 6.41% 8.18% 9.40% 6.28% –

Douban

MAE 0.685375 0.627068 0.569055 0.568788 0.554951 0.554731 0.554378 0.569364 0.542439
Impv 20.9% 13.5% 4.68% 4.63% 2.25% 2.22% 2.15% 4.73% –

RMSE 0.852284 0.783605 0.720964 0.719435 0.716873 0.717495 0.700033 0.720403 0.686182
Impv 19.5% 12.4% 4.82% 4.62% 4.28% 4.36% 1.98% 4.75% –

Epinions

MAE 0.969965 0.988781 0.916315 0.900854 0.882172 0.870062 0.897915 0.864209 0.822009
Impv 15.2% 16.9% 10.3% 8.75% 6.82% 5.52% 8.45% 4.88% –

RMSE 1.170197 1.189446 1.137936 1.127590 1.120252 1.119862 1.121258 1.107024 1.060537
Impv 9.37% 10.8% 6.80% 5.95% 5.33% 5.30% 5.42% 4.20% –

Table 2: MAE and RMSE on all users (boldface font denotes the winner in that row)

• UserMean. A non-personalized non-social baseline, which
makes use of the average ratings of users to predict missing
values.
• ItemMean. Another non-personalized non-social baseline, uti-

lizing the average ratings of each items to make predictions.
All experiments are conducted on a platform with 2.3 GHz Intel

Core i7 CPU and 16 GB 1600 MHz DDR3 memory. We use grid
search and 5-fold cross validation to find the best parameters. For
example, we set λU = λV = 0.001 after exploring each value in
(0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1) with
cross validation and set λB = λθ = 0.00001 in a similar way.
The latent factor dimension is set to 10 for all models (if applica-
ble). The learning rate of gradient descent (i.e., η ) is set to 0.05 for
θG and 0.001 for other parameters. For baselines, we adopt either
the optimal parameters reported in the original paper or the best we
can obtain in our experiments.

Evaluation Metrics. We use four metrics, i.e., Mean Absolute Er-
ror (MAE), Root Mean Square Error (RMSE), Recall and Pre-
cision, to measure the recommendation accuracy of our PTPMF
model in comparison with other recommendation approaches.
• Mean Absolute Error.

MAE =

∑
i,j |Rij − R̂ij |

N
.

• Root Mean Square Error.

RMSE =

√∑
i,j(Rij − R̂ij)2

N
.

where Rij is the rating that user i gives to item j (original
rating) and R̂ij is the predicted rating of user i for item j. N
is the number of ratings in test set.
• Recall@K.

This metric quantifies the fraction of consumed items that are
in the top-K ranking list sorted by their estimated rankings.
For each user u we define S(K;u) as the set of already-
consumed items in the test set that appear in the top-K list
and S(u) as the set of all items consumed by this user in the
test set. Then, we have

Recall@K(u) =
|S(K;u)|
|S(u)| .

• Precision@K.
This measures the fraction of the top-K items that are indeed

consumed by the user in the test set:

Precision@K(u) =
|S(K;u)|

K
.

6.2 Experimental Results
Table 2 presents the performances of all nine recommendation

methods on all four datasets, in terms of MAE and RMSE. We also
present the percentage increase of PTPMF over each baseline right
under its corresponding MAE and RMSE values and boldface font
denotes the winner in each row. We would like to point out that,
due to the randomness in data splitting and model initialization
as well as differences in data preprocessing, our results for some
baselines are slightly different from the results reported in the orig-
inal papers. Among the eight baselines, UserMean and ItemMean
are non-personalized methods which do not take social information
into account; PMF is a personalized non-social model; the remain-
der are personalized approaches which also take social information
into consideration. We observe from Table 2 that the personalized
non-social method (PMF) outperforms the non-personalized non-
social methods (UserMean and ItemMean), which shows the ad-
vantage of a personalized strategy. Moreover, through taking extra
social network information into consideration, personalized social
methods (SoRec, STE, SMF, SoReg and TrustMF) achieve a per-
formance boost over the personalized non-social method (PMF),
consistent with the assumption in the social recommendation liter-
ature that social information can help improve recommender sys-
tems. Finally, we observe that PTPMF consistently outperforms all
eight baselines on all datasets for both metrics, demonstrating the
benefit of the distinction and thresholding of different tie types, as
well as learning a personalized tie preference for each user. Due to
the randomness in data splitting, model initialization and even data
preprocessing, our results for some baselines may not be exactly
the same as reported in the original work, though given our best
efforts to diminish the variances.

Recall and Precision. Figure 3 depicts Recall (X-axis) vs. Preci-
sion (Y -axis) of the seven recommendation methods. We exclude
the two naive methods (UserMean and ItemMean) for the sake of
clarity of the figures. Data points from left to right on each line were
calculated at different values of K, ranging from 5 to 50. Clearly,
the closer the line is to the top right corner, the better the algorithm
is, indicating that both recall and precision are high. We observe
that PTPMF again clearly outperforms all baselines. Besides, Fig-
ure 3 also demonstrates the trade-off between recall and precision,
i.e., as K increases, recall will go up while precision will go down.
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Figure 3: Precision@K vs Recall@K on all users, where K ranges from 5 to 50
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Figure 4: MAE and RMSE on cold-start users
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Figure 5: MAE and RMSE for several pre-fixed thresholds and our learned thresholds, with the numbers (and the corresponding
points below them) denoting our learned threshold values

Comparisons on Cold-Start Users. We further drill down to the
cold-start users. As is common practice, we define users that rated
less than five items as cold-start. Figure 4 shows the performances
of various methods on cold start users. It is well known that the
social recommendation methods are superior to their non-social
competitors particularly for cold-start users. The results in Figure 4
verify this – all social recommendation methods significantly out-
perform PMF in terms of both MAE and RMSE. Furthermore, our
PTPMF model again beats other social recommendation baselines.

Learned threshold vs. Fixed threshold. Last but not least, we
compare the results from our learned thresholds with those from
several pre-fixed thresholds in Figure 5 in order to prove that the
threshold learning does contribute to the accuracy of the recom-
mendations. For each dataset, we set θG to be four fixed values, i.e.,
0.2, 0.4, 0.6, 0.8. We then compare the results obtained through
fixing θG with that obtained from dynamically learning the thresh-
old. Figure 5 demonstrates that the best results are achieved by the
dynamically learned thresholds in terms of both MAE and RMSE.
We remark that the thresholds learned from different datasets vary
greatly, which is another supporting argument for learning the
thresholds from the data.

In summary, we compare PTPMF with various kinds of base-
lines including non-personalized non-social methods, personalized
non-social methods and personalized social methods in terms of
both rating prediction and top-K ranking evaluation metrics. We
conclude from the above extensive experiments that our proposed
model, PTPMF, is an effective social recommendation method
given its better performance over other baselines on both all users
and cold-start users.

7. CONCLUSIONS
In this paper, inspired by the seminal work in social science [10,

9], we start from recognizing the important roles of different tie
types in social relations and present a novel social recommenda-
tion model, a non-trivial extension to probabilistic matrix factoriza-
tion, to incorporate the personalized preference of strong and weak
ties into social recommendation. Our proposed method, PTPMF,
is capable of simultaneously classifying strong and weak ties w.r.t.
recommendation accuracy in a social network, and learning a per-
sonalized tie type preference for each individual as well as other
model parameters.

We carry out thorough experiments on four real-world datasets
to demonstrate the gains of our proposed method. The experimen-
tal results show that PTPMF provides the best accuracy in various
metrics, demonstrating that learning user-specific preferences for
different types of ties in social recommendation does help to im-
prove the performance.

One interesting direction for future work is to find a personalized
threshold of classifying strong and weak ties for each user, though
it can be challenging due to the sparsity of data. Further, we did not
examine other node similarity metrics such as Adamic-Adar [1] or
Katz [17] in this work and it is also interesting to explore different
node similarity metrics.

ACKNOWLEDGMENTS
This research is supported by the National Research Foundation,
Prime Minister’s Office, Singapore under its International Research
Centres in Singapore Funding Initiative, and also supported by the
National Science Foundation of China (Grant Number: 61173186).

1609



8. REFERENCES
[1] L. A. Adamic and E. Adar. Friends and neighbors on the web. Social networks,

25(3):211–230, 2003.
[2] V. Arnaboldi, A. Guazzini, and A. Passarella. Egocentric online social

networks: Analysis of key features and prediction of tie strength in facebook.
Computer Communications, 36(10):1130–1144, 2013.

[3] S. Berkovsky, J. Freyne, and G. Smith. Personalized network updates:
increasing social interactions and contributions in social networks. In User
Modeling, Adaptation, and Personalization, pages 1–13. Springer, 2012.

[4] R. M. Bond, C. J. Fariss, J. J. Jones, A. D. I. Kramer, C. Marlow, J. E. Settle,
and J. H. Fowler. A 61-million-person experiment in social influence and
political mobilization. Nature, 489(7415):295–298, 09 2012.

[5] N. A. Christakis and J. H. Fowler. Connected: how your friends’ friends’
friends affect everything you feel, think, and do. New York, NY: Little, Brown,
and Company, 2009.

[6] S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174,
2010.

[7] E. Gilbert. Predicting tie strength in a new medium. In Proceedings of the ACM
2012 conference on Computer Supported Cooperative Work, pages 1047–1056.
ACM, 2012.

[8] E. Gilbert and K. Karahalios. Predicting tie strength with social media. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 211–220. ACM, 2009.

[9] M. Granovetter. Getting a job: A study of contacts and careers. University of
Chicago Press, 1995.

[10] M. S. Granovetter. The strength of weak ties. American journal of sociology,
pages 1360–1380, 1973.

[11] G. Guo, J. Zhang, and N. Yorke-Smith. A novel bayesian similarity measure for
recommender systems. In Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI), pages 2619–2625, 2013.

[12] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback
datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on, pages 263–272. Ieee, 2008.

[13] P. Jaccard. Distribution de la Flore Alpine: dans le Bassin des dranses et dans
quelques régions voisines. Rouge, 1901.

[14] M. Jamali and M. Ester. Trustwalker: a random walk model for combining
trust-based and item-based recommendation. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 397–406. ACM, 2009.

[15] M. Jamali and M. Ester. A matrix factorization technique with trust propagation
for recommendation in social networks. In Proceedings of the fourth ACM
conference on Recommender systems, pages 135–142. ACM, 2010.

[16] I. Kahanda and J. Neville. Using transactional information to predict link
strength in online social networks. ICWSM, 9:74–81, 2009.

[17] L. Katz. A new status index derived from sociometric analysis. Psychometrika,
18(1):39–43, 1953.

[18] A. L. Kavanaugh, D. D. Reese, J. M. Carroll, and M. B. Rosson. Weak ties in
networked communities. The Information Society, 21(2):119–131, 2005.

[19] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the spread of influence
through a social network. In KDD, pages 137–146, 2003.

[20] Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 426–434. ACM,
2008.

[21] Y. Koren. Collaborative filtering with temporal dynamics. Communications of
the ACM, 53(4):89–97, 2010.

[22] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for
recommender systems. Computer, (8):30–37, 2009.

[23] J. Li, X. Hu, J. Tang, and H. Liu. Unsupervised streaming feature selection in
social media. In Proceedings of the 24th ACM International Conference on
Conference on Information and Knowledge Management, pages 1041–1050.
ACM, 2015.

[24] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social
networks. Journal of the American society for information science and
technology, 58(7):1019–1031, 2007.

[25] C. Liu, T. Jin, S. C. Hoi, P. Zhao, and J. Sun. Collaborative topic regression for
online recommender systems: an online and bayesian approach. Machine
Learning, 2017.

[26] H. Ma, I. King, and M. R. Lyu. Learning to recommend with social trust
ensemble. In Proceedings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval, pages 203–210. ACM,
2009.

[27] H. Ma, I. King, and M. R. Lyu. Learning to recommend with explicit and
implicit social relations. ACM TIST, 2(3):29, 2011.

[28] H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: social recommendation using
probabilistic matrix factorization. In Proceedings of the 17th ACM conference
on Information and knowledge management, pages 931–940. ACM, 2008.

[29] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender systems with
social regularization. In Proceedings of the fourth ACM international
conference on Web search and data mining, pages 287–296. ACM, 2011.

[30] A. Mnih and R. Salakhutdinov. Probabilistic matrix factorization. In Advances
in neural information processing systems, pages 1257–1264, 2007.

[31] J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski, J. Kertész,
and A.-L. Barabási. Structure and tie strengths in mobile communication
networks. Proceedings of the National Academy of Sciences,
104(18):7332–7336, 2007.

[32] K. Panovich, R. Miller, and D. Karger. Tie strength in question & answer on
social network sites. In Proceedings of the ACM 2012 conference on computer
supported cooperative work, pages 1057–1066. ACM, 2012.

[33] A. Petróczi, T. Nepusz, and F. Bazsó. Measuring tie-strength in virtual social
networks. Connections, 27(2):39–52, 2007.

[34] R. Reagans. Preferences, identity, and competition: Predicting tie strength from
demographic data. Management Science, 51(9):1374–1383, 2005.

[35] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback. In Proceedings of the
twenty-fifth conference on uncertainty in artificial intelligence, pages 452–461.
AUAI Press, 2009.

[36] R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization
using markov chain monte carlo. In Proceedings of the 25th international
conference on Machine learning, pages 880–887. ACM, 2008.

[37] J. Wang, S. C. Hoi, P. Zhao, and Z.-Y. Liu. Online multi-task collaborative
filtering for on-the-fly recommender systems. In Proceedings of the 7th ACM
conference on Recommender systems, pages 237–244. ACM, 2013.

[38] X. Wang, R. Donaldson, C. Nell, P. Gorniak, M. Ester, and J. Bu.
Recommending groups to users using user-group engagement and
time-dependent matrix factorization. In Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[39] X. Wang, W. Lu, M. Ester, C. Wang, and C. Chen. Social recommendation with
strong and weak ties. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management, pages 5–14. ACM,
2016.

[40] A. Wu, J. M. DiMicco, and D. R. Millen. Detecting professional versus
personal closeness using an enterprise social network site. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages
1955–1964. ACM, 2010.

[41] R. Xiang, J. Neville, and M. Rogati. Modeling relationship strength in online
social networks. In Proceedings of the 19th international conference on World
wide web, pages 981–990. ACM, 2010.

[42] B. Yang, Y. Lei, D. Liu, and J. Liu. Social collaborative filtering by trust. In
Proceedings of the Twenty-Third international joint conference on Artificial
Intelligence, pages 2747–2753. AAAI Press, 2013.

[43] S.-H. Yang, B. Long, A. Smola, N. Sadagopan, Z. Zheng, and H. Zha. Like like
alike: joint friendship and interest propagation in social networks. In
Proceedings of the 20th international conference on World wide web, pages
537–546. ACM, 2011.

[44] M. Ye, X. Liu, and W.-C. Lee. Exploring social influence for recommendation:
a generative model approach. In Proceedings of the 35th international ACM
SIGIR conference on Research and development in information retrieval, pages
671–680. ACM, 2012.

[45] Z. Yu, C. Wang, J. Bu, X. Wang, Y. Wu, and C. Chen. Friend recommendation
with content spread enhancement in social networks. Information Sciences,
309:102–118, 2015.

[46] T. Zhao, J. McAuley, and I. King. Leveraging social connections to improve
personalized ranking for collaborative filtering. In Proceedings of the 23rd
ACM International Conference on Conference on Information and Knowledge
Management, pages 261–270. ACM, 2014.

[47] J. Zhuang, T. Mei, S. C. Hoi, X.-S. Hua, and S. Li. Modeling social strength in
social media community via kernel-based learning. In Proceedings of the 19th
ACM international conference on Multimedia, pages 113–122. ACM, 2011.

1610




