
The Spread of Physical Activity Through Social Networks

David Stück
Evidation Health, Inc.

510 State St, Suite 200
Santa Barbara, CA

dstuck@evidation.com

Haraldur Tómas
Hallgrímsson

∗

University of California
Santa Barbara, CA, USA

hth@cs.ucsb.edu

Greg Ver Steeg
University of Southern

California
Los Angeles, CA
gregv@isi.edu

Alessandro Epasto
†

Google
111 Eighth Avenue

New York, NY
aepasto@google.com

Luca Foschini
Evidation Health, Inc.

510 State St, Suite 200
Santa Barbara, CA

luca@evidation.com

ABSTRACT
Many behaviors that lead to worsened health outcomes are
modifiable, social, and visible. Social influence has thus the
potential to foster adoption of habits that promote health
and improve disease management. In this study, we consider
the evolution of the physical activity of 44.5 thousand Fitbit
users as they interact on the Fitbit social network, in rela-
tion to their health status. The users collectively recorded
9.3 million days of steps over the period of a year through a
Fitbit device. 7,515 of the users also self-reported whether
they were diagnosed with a major chronic condition. A time-
aggregated analysis shows that ego net size, average alter
physical activity, gender, and body mass index (BMI) are
significantly predictive of ego physical activity. For users
who self-reported chronic conditions, the direction and ef-
fect size of associations varied depending on the condition,
with diabetic users specifically showing almost a 6-fold in-
crease in additional daily steps for each additional social tie.
Subsequently, we consider the co-evolution of activity and
friendship longitudinally on a month by month basis. We
show that the fluctuations in average alter activity signif-
icantly predict fluctuations in ego activity. By leveraging
a class of novel non-parametric statistical tests we investi-
gate the causal factors in these fluctuations. We find that
under certain stationarity assumptions, non-null causal de-
pendence exists between ego and alter’s activity, even in the
presence of unobserved stationary individual traits. We be-
lieve that our findings provide evidence that the study of
online social networks have the potential to improve our un-
derstanding of factors affecting adoption of positive habits,
especially in the context of chronic condition management.

∗Work done while interning at Evidation Health
†Work partially done while at Brown University

c©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.

ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052688

Keywords
Digital Health; Wearables; Network Science; Dynamic Net-
works

1. INTRODUCTION
It is estimated that up to 40% of premature deaths in the

United States can be attributed to behavior and lifestyle [32],
such as level of physical activity and eating habits. Body
weight abnormalities alone are estimated to cost $190.2 bil-
lion, 21% of annual medical spending [7, 14].

Nevertheless, negative behaviors conducive of poor health
outcomes have been on the rise. Average daily occupation-
related energy expenditure has decreased by over 100 calo-
ries from 1960 to 2010 [10] and, even if new policies and cam-
paigns [1] have been successful in slowing down the preva-
lence of obesity in recent years [28], the overall picture is
still daunting. A recent study reported that the adult obe-
sity rate in the U.S. increased by more than two percentage
points from 25.5% to 27.7% in just six years [25].

Some of the behaviors leading to poor health outcomes are
modifiable and can be both social and visible. A large body
of research has shown that observing behavior in others has a
profound effect on one’s own behavior, highlighting that the
normative effects of one’s social circle can vary in polarity
depending on the outcomes under examination and how the
social interaction is designed [33]. For example, a random-
ized control trial on African-American veterans showed that
pairing a diabetic individual with a mentor significantly out-
performed usual care and even financial incentive to achieve
glucose control [20]. On the contrary, another randomized
field experiment in a large corporation showed that tread-
mill usage declined among employees when participants were
given information on coworkers’ usage levels, due to a ten-
dency to converge to their least-active coworkers [16].

The advent of online social networks has greatly advanced
our understanding of how to characterize and shape peo-
ple’s behavior in a social context [8, 17]; however, effects on
“offline” behavior, such as those on lifestyle and health out-
comes, have been hard to study due to lack of data. This has
changed very recently with the advent and rapid adoption
of mobile health (mHealth) enabled by wearable technolo-
gies, which has made continuous monitoring of environment
and lifestyle (“life logging” [18]) a concrete possibility. The
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ability to continuously collect data from very large cohorts
in addition to online interactions can finally facilitate our
understanding of how social network interactions affect the
user’s behavior in the real world.

Contribution
In this work we study the relationship between a social net-
work and physical activity in a population of 44.5 thousand
Fitbit users, 7,515 of which self-reported whether they had
been diagnosed with major chronic conditions. The users
interacted through the Fitbit social network over the course
of one year.

• We shed light on the health conditions that burden
the trackers and quantify how those factors affect the
interaction between the social network and physical
activity.

• We perform a between-subject analysis and show that
people who have more friends on the Fitbit social net-
work are more likely to have higher physical activity,
and provide evidence that other features of the social
network, such as average BMI, are also associated with
increased physical activity, sometimes in a counter-
intuitive way.

• To study how the social network and physical activity
evolve over time, we perform a within-subject analysis
confirming the direct association between fluctuations
in physical activity of a user and the average physical
activity of the user’s friends over time.

• We perform a causality test on the network over time
and we reject the hypothesis that the activity can be
explained exclusively by homophily (intrinsic or ex-
trinsic) under certain stationarity assumptions. We
also provide an in-depth discussion of the limitations
of our analysis in the case when non-stationary unob-
served external causes of correlation are present.

2. RELATED WORK
Several studies have looked at the influence of social net-

works on physical activity both in retrospective and prospec-
tive settings. Before the advent of widespread mHealth tech-
nologies, either the physical activity or the social structure
had to be self-reported, which significantly limited the stud-
ies in the size of the cohort studied, the longitude of the
study, or both. In a study [24] conducted on 310 primary
school students it was shown that the perceived activity lev-
els of self-reported friends were associated with outside-of-
school physical activity and sedentary time, as measured by
accelerometers. The friendship structure of the network was
self-reported and did not change over time. In a similar
setting, an insufficient level of physical activity was found
to be tied with lower social support, with a strong effect
due to gender, in a sample of 2,729 male and female college
students [19].

The availability of datasets including repeated measure-
ments for the same user over time has enabled the study of
the effect of network dynamics on health-related outcomes
longitudinally. A large body of work has studied the contri-
bution of social networks on physical health in the context
of the obesity epidemic [9, 35]. Christakis and Fowler [9]
studied the increased clustering of obese people over time in

a social network, considering homophily, confounding, and
inductive, or causative, effects over both geographical as well
as social distance, and found a significant social contagion
effect that was found to be stronger in friends of the same
sex. However, a later analysis by Russell Lyons [21] disputed
the causal implication derived from Christakis and Fowler’s
results.

More recently, the increased popularity of the Internet
of Things has made available datasets for large populations
where social interactions and health-related outcomes are
tracked electronically over time.

In the context of weight tracking, Ma et al. [22] analyzed
an online social network of 107 thousand users including
five months of self-reported weigh-ins. Users’ weight change
was found to correlate positively with number of friends and
friends’ weight change performance, with effects greater than
what was measured in a real-world social network. Physical
activity has been considered recently in [12] which studied
participants using weekly pedometer logs as well as a social
network associated with the pedometer device that provided
friendship and posting capabilities. They used sentiment
analysis to determine whether posts visible from friends had
a positive (e.g., walk, run) or negative (e.g., sick) connota-
tion. They examined the group-level influence these posts
had on other users who could read them and found that a
person’s positive post has a significantly higher probability
of propagating physical activity to other people in the net-
work than does a negative post. Despite the online nature
of social interaction and physical activity measurements, the
cohort considered only contained 254 users.

During the preparation of this article, a preprint of the
concurrent and independent work of Althoff et al. [3] was
made available to us by the authors. Althoff et al. study
how social networking features influences user behavior in
a physical activity tracking application. They consider the
evolution of a social network of 211,383 users over 3 years
for which friend requests and acceptances are observed. By
comparing activity increase over all friend requests accepted
either immediately (N=34,324) or after a week (N=3,146)
they estimate that edge formation is associated with an in-
crease of 328 daily steps in the sender of the request. The au-
thors perform a difference-in-difference analysis to conclude
that 55% of the total increase in activity post-tie forma-
tion can be attributed to social influence (sender becoming
aware of the receiver’s activity) and 45% is due to the user’s
elevated intrinsic motivation (which increases both the like-
lihood of sending friend requests and activity). In addition,
for 6,076 out of the 211,383 social network users matching
inclusion/exclusion criteria the authors show an increase of
7% in average daily steps in the first week after joining the
social network, as compared to a matched control group.
The activity spike diminishes slowly over the course of 20
weeks.

Our work departs from previous research in that i) it is
the first to consider the influence of social networks and
physical activities in relation to self-reported chronic health
conditions on a large cohort; ii) studies how average activity
of alters influences ego’s average activity, which takes into
account both the addition and removal of friends and change
of activity in current friends; and iii) it considers the causal-
ity implication of social network effects on physical activity
under the lens of graphical models.
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3. DATA

3.1 Data Collection
The dataset considered consists of 44,468 members of a

commercial reward platform for aggregating healthy activ-
ities (Achievemint, powered by Evidation Health, Menlo
Park, CA) observed in the period between 9/30/2015 and
9/30/2016. On the Achievemint platform, members link
their activity trackers (e.g., Fitbit pedometers and Wi-Fi
scales, Jawbone trackers, etc.) and mobile applications (e.g.,
MyFitnessPal, RunKeeper) by authorizing their data to be
relayed to their reward platform account. Members can
connect multiple applications and trackers to the platform.
For example, some members might have connected both a
Wi-Fi scale and a food journaling application, while others
may have connected a pedometer and a workout-tracking
application. For every new activity reported through their
third-party applications and devices, members earn points.
Points are redeemable for cash rewards: after a member has
achieved 1,000 points, they will earn $1.00. Members receive
a check for every $25.00 earned.

Consent for participation in this study was obtained elec-
tronically by accepting a terms of service contract for the
reward platform. The study was approved by Solutions
Institutional Review Board and determined to be exempt
from the OHRP’s Regulations for the Protection of Human
Subjects (45 CFR 46).1 Personally Identifiable Information
(PII) has been collected, processed, and stored by Evida-
tion Health. It has not been shared with any institutions
the authors are affiliated with, except Evidation Health.

Inclusion/Exclusion Criteria
Subjects included in the study are those who are Achievemint
members on 9/30/2016,2 have connected a Fitbit device (any
model) to the platform, and authorized access to their Fitbit
data, which includes their profile information. Their profile
contains information such as the user’s age, gender, height,
weight, Fitbit join date, and links to de-identified friends’
profiles.

For each Achievemint member we consider activity data
logged by their Fitbit devices that was synced with the
Achievemint platform. We include members with at least
7 days of recorded activity and daily average step counts on
the recorded days between 500 and 40,000.

Friendship on the Fitbit network is a symmetric rela-
tionship. Two Achievemint members listing each other as
friends on Fitbit would appear with consistent identifiers
in both members’ friends list and can be matched to each
other; however, many Fitbit users listed as friends in some
Achievemint member’s Fitbit profile may not be part of
Achievemint. For Fitbit users who were not Achievemint
members we can only observe age and gender (as publicly
shared by 70.1% of the users) but not activity or friendship
relations, except to Achievemint members.

1Under the following categories: Category 4–Research in-
volving the collection or study of existing data, documents,
records, pathological specimens, or diagnostic specimens, if
these sources are publicly available or if the information is
recorded by the investigator in such a manner that subjects
cannot be identified, directly or through identifiers linked to
the subjects.
2Members that unsubscribed had their data deleted and are
not included in the analysis.

Figure 1: Social Engagement component of the Fit-
bit mobile application, from [13].

3.2 Social Interactions
It is important to analyze the details of how interaction

with friends is presented to users in the Fitbit application,
as it is well known that subtle changes in presentation and
user interaction may be the true drivers of the effects under
examination [26]. At the time of writing, in the Fitbit mobile
application positive social influence is fostered by displaying
the user’s total step count over the last seven days ranked
with that of their friends, as seen in Fig. 1. Users are also
encouraged by being awarded trophies for achieving certain
physical milestones as measured by their Fitbit devices.

The social component of the Fitbit application is not par-
ticularly prominent, as it does not appear on the initial land-
ing page, or dashboard, of the application and it only dis-
plays the ego ranking seen in Fig. 1. The application allows
users to “cheer”, “taunt”, and send text messages to their
friends seen in their ego ranking.

3.3 Network Analysis Statistics
General statistics of the network and attributes of the

Achievemint members are reported in Table 1. The union
of all (partially observed) ego networks of the 44.5 thousand
fully observed Achievemint members consists of a total of
891 thousand edges of which 23.8 thousand are between A-
chievemint members in the last month of observation.

Observation Period 9/30/2015-9/30/2016
# Achievemint Members 44,468
# Edges total 891,578
# Edges between
Achievemint members

23,829

Average daily steps 8,498
Median age (IQR) 34 (28, 41) years
Female 82.8%
Underweight (BMI < 18.5) 1.1%
Overweight (25 <= BMI < 30) 29%
Obese (BMI >= 30) 42%

Table 1: Statistics of the dataset under analysis.
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Figure 2: Distribution of the date of birth of the
Achievemint members in the population considered.

More than 80% of Achievemint members are female; see
Fig. 2 for a breakdown of year of birth by gender. We ob-
serve a power-law distribution of friendship ties, but with a
marked difference by gender where female members tend to
have a larger number of friends, as seen in Fig. 3.

Gender Homophily
We observe in our dataset signs of gender homophily, by
which members tend to form ties with members of the same
gender more frequently than would be expected in a random
network with the same participants and characteristics. The
effect is well-known in social network literature [37]. As seen
in Fig. 4, we observe that the proportion of female ties for
female members is higher than that of male members for
most degree buckets.

To verify whether our observation of gender homophily is
statistically significant we perform a null-model test. Our
dataset presents various nuances that makes it difficult to
apply an off-the-shelf test of homophily in social networks.
In particular, we only observe edges from Achievemint mem-
bers to other Fitbit users (whether Achievemint members or
not). Achievemint membership status, gender and node de-
gree can interact in various ways. To take into account these
aspects we introduce a novel null-model and apply Monte
Carlo simulations to establish an empirical p-value for our
observation of same-gender preference in forming social ties.
We first introduce the null-model, then we describe how to
perform the simulations efficiently and finally we report our
results.

Let G = (V,E) be the graph representing our social net-
work. For a member u ∈ V , let a(u), s(u), da(u) and
dn(u) be the Achievemint membership status of the member,
the gender of the member, and the number of connections
with Achievemint members and non-Achievemint members
of member u in G. Notice that in G there are no edges be-
tween pairs of non-Achievemint members. Let H = (V,E′)
be a multigraph (henceforth a graph possibly with parallel
edges and allowing self-loops) over the same set of nodes
V and let dHa (u) and dHn (u) be the number of connections
of u in H to Achievemint members and non-Achievemint
members, respectively—notice that a(u) and s(u) are not
properties of the edge set E′, hence they are the same in H.

We assume a null-model distribution χ that is a uniform
distribution over all multigraphs H = (V,E′) respecting the

properties aforementioned and such that: ∀u ∈ V , dH(u) =
d(u), dHn (u) = dn(u), and such that in E′ there are no edges
between pairs of non-Achievemint members. First notice
that this distribution is well-defined (it includes at least the
graph G and many others in its support) and that it implies
|E′| = |E|. For a (multi)graph H = (V,E′) so defined, let
S(H) be the number of edges between same-gender edges
in E′ (i.e. the edges between pairs of users of the same-
gender counting parallel edges). Let χ′ be the distribution
of S(H) for H ∼ χ. Now that we have defined this null-
model, it is possible to compute a p-value for the probability
of observing s′ ∼ χ′ s.t. s′ ≥ S(G) (i.e. more same-gender
edges than observed in our dataset).

The distribution of χ′ is quite involved, however it is possi-
ble to sample a multigraph H ∼ χ from exactly the distribu-
tion χ (and hence compute S(H)) efficiently in O(|V |+ |E|)
time using a variation of the techiniques in Brach et al. [6] for
sampling multigraphs from the configuration model. This al-
gorithm is complicated by the presence of the Achievemint
membership status; a full discussion of the details is omitted
due to lack of space. Notice however that defining this null-
model to allow only simple graphs (instead of multigraphs)
would be computationally expensive, as efficiently sampling
simple graphs uniformly with a given arbitrary degree se-
quence is still an open research problem [15].

Using the null-model defined we observe that our dataset
has a statistically significant gender homophily. We observe
70.1% same-gender edges vs 66.4% expected by the null-
model with empirical p-value < 10−3.

3.4 Health Questionnaires
Of the 44.5K members on the social network, 7,515 filled

an online questionnaire asking the question “Have you been
diagnosed with any of the following health conditions at any
point in your life? Please select all that apply.” 32 common
conditions were included as multiple, non-exclusive choices,
in addition to “none of the above” and “other, specify”. In
our analysis we select the most common conditions that are
likely to have an impact on activity and social networks: hy-
pertension (N=786), type 2 diabetes (N=257), dyslipidemia
(N=229), and depression (N=1,665). General statistics of
the sub-population that reported conditions are reported in
Table 2.

4. STATIC ANALYSIS

4.1 Between-subject Analysis
In this section, we characterize the physical activity of

members as a function of several features of their ego net-
work. Both ego’s activity and alter’s features are computed
as averages over the period of 9/30/15 to 9/30/16. Mem-
bers have reported on average 209 days of activity during
this 366-day period. This kind of analysis examines differ-
ences among users without considering their variation over
time.

We regress average ego activity on age, BMI, and bina-
rized gender (female=1) of the ego and those same attributes
averaged across all alters in the ego network. We also include
the size of the ego network (number of alters) and average
activity for alters. Alter information is only available for
alters that are Achievemint members, with the exception of
age and gender for non-Achievemint members that shared
them publicly on their Fitbit profile (70.1% of the total).
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Figure 3: Complementary Cumulative Distribution Function (CCDF) of social network degree, measuring
how many members have more than a given number of alters in the network, broken down by gender. On
the left, only Achievemint members in each member’s ego net are considered. On the right, non-Achievemint
members are counted in the degree as well.

Group
Average

daily steps
Median age

(IQR)
% female % underweight % overweight % obese

Depression (N=1,665) 8,423 35 (30, 41) 91 0.5 27 48
Dyslipidemia (N=229) 8,720 43 (36, 52) 80 0.4 26 56
Hypertension (N=786) 8,609 42 (36, 50) 77 0.1 23 66
Diabetes (N=257) 7,934 43 (37, 51) 80 0.0 16 77
Completed survey (N=7,515) 9,231 34 (29, 41) 84 1.1 30 39

Table 2: Statistics of most four common self-reported diagnosed health conditions, as answered by 7,515
members out of 44.5 thousand surveyed.

Figure 4: Mean proportion of female friends of a
member given his/her total social ties. 95% con-
fidence intervals estimated by bootstrap sampling
40% of the population 10,000 times.

Table 3 shows the coefficients and associated p-values for
a linear regression. We see that all regressors are highly
significant except for alter’s average age. Some results are
expected, such as that lower BMI correlates to higher ac-
tivity and that men take more steps than women on av-
erage when controlling for everything else, an effect which
has been reported previously [4]. Additionally, we see that
users with highly active contacts tend to have higher activ-
ity themselves, consistent with [3]. Specifically, ego’s activ-
ity increases on average by 26 steps for each additional 100

steps of average alter’s activity. We also observe an average
increase of 6.5 daily steps for each additional social tie.

Less intuitively, the coefficients for the average alter’s BMI
and gender each have a positive sign, with an additional
alter average BMI point corresponding to an increase in ego’s
activity by 14.1 steps controlling for all other features. In
both cases, the unadjusted coefficients (the effect we’d see
without controlling for the other regressors) are the opposite
sign which signals that these effects are correlated to the
other regressors. Due to gender homophily, having more
female ties correlates with the ego being female and thus
lower average daily steps, but what these results tell us is
that if we control for ego gender and the other features,
having a higher rate of female ties is associated with higher
activity. We find the same set of significant predictors when
we repeat the analysis using logarithms of counts instead of
absolute numbers.

4.1.1 Interactions with Health Status
We now consider the effects of hypertension, dyslipidemia,

diabetes, and depression by including in the regression model
interaction terms of each regressor with each medical condi-
tion. We do not report the full set of coefficients due space
limitations, but we discuss significant coefficients of interac-
tion terms with the medical conditions, as compared to the
same coefficient for the no condition case.

Members with hypertension show a significant interaction
with their condition, with ego BMI having a coefficient of
-82.4 (p = 0.001). When compared to the BMI coefficient
of -69.1 (p < 10−10) for the no-condition case, the change
highlights that keeping all other factors constant, users with
hypertension see a decrease in activity per BMI point that
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Covariate Coefficient Unadjusted p-value

(Intercept) 8,762 8,895 < 10−10

Ego’s Gender -1,590 -1,527 < 10−10

Ego’s Age 7.02 1.73 < 10−6

Ego’s BMI -72.06 -70.21 < 10−10

Average Alter’s Daily Steps 0.26 0.28 < 10−10

Average Alter’s Age 0.07 1.03 0.9
Average Alter’s Gender 356 -201 0.0009
Average Alter’s BMI 14.1 -18.9 0.0001
Count of Alters 6.50 7.01 < 10−10

Table 3: Standard and unadjusted coefficients and p-values for linear regression on ego average daily steps.
Gender is defined as 1 for female members, 0 for male. Alter statistics are computed from an average over
all alters of the ego. All covariates are included in the table.

is significantly larger than those without the condition. In
the smaller dyslipidemia group, while the base correlation
of average alter activity is 0.32 (p < 10−10), the interac-
tion term with the condition (-0.23, p = 0.05) cancels out
71.8% of the association. This result implies that the mem-
ber’s social network is not predictive of physical activity
for users with dyslipidemia. A possible explanation could
be that users with high cholesterol are more sophisticated
about their activity level as they follow external guidelines,
and thus tend to be less engaged with the social network
and affected by its normative influence.

For users with diabetes and with depression, we see a large
effect in the interaction term of the size of the ego network
and the medical condition. The base effect of the size of the
ego network on average daily steps is 6.2 (p < 10−10) in the
case of no condition, but the interaction term with diabetes
and depression increases this effect by 31.1 steps (p < 10−4)
and 9.3 steps (p < 10−5) per new tie added for users with
these conditions, respectively. Given that users with di-
abetes have a similar number of social contacts as those
without, (mean=36.8, SD=51.5) (mean=39.3, SD=86.9) re-
spectively, this suggests that there is a stronger correlation
between activity and social network size in users with di-
abetes (and to a lesser extent, depression). One possible
explanation for the increased association observed may be
due to an overlap between the offline disease management
communities interacting with the member and the member’s
ego net.

5. NETWORK DYNAMICS

5.1 Within-subject Analysis
In this section, we model the association between a mem-

ber’s activity and several features of the ego network as they
vary over time. Changes in the member’s ego network are
driven by the addition or removal of social ties (structural
changes) and by the change in the observable characteristics
of the alters.

To capture changes in the ego nets over time, the Fit-
bit profile information of each member was downloaded ev-
ery three days between 2/3/2016 and 9/30/2016, as autho-
rized by the member. Fig. 5 shows the growth of the net-
work considered (when considering the graph induced on
the Achievemint members only) over the 8-month period
under analysis. The size of the network has significantly
increased due to the growth in number of members of the
Achievemint platform. When considering both Achievemint

and non-Achievemint members in ego nets, we observe a to-
tal of 479 thousand new edges being added to the network
in the eight-month period considered.

In the following analysis we use fixed-effects panel regres-
sion for controlling inter-user variability [11]. Panel regres-
sion removes all static confounders into a per-user fixed-
effect term. Additionally we run a two-ways effects model
by including a month-of-year indicator variable to account
for seasonality effects that are very prominent in activity
data [31].

We regress on ego BMI and average alter’s activity, BMI,
and membership (an indicator variable set to 1 if the alter is
an Achievemint member, 0 otherwise) as well as the differ-
ence between ego and average alter age and gender. We use
the difference between ego and average alter in lieu of demo-
graphic features of the ego, since time-invariant ego features
are incorporated into the per-user fixed effect.

5.2 Results
Table 4 shows the coefficients and associated p-values from

the panel regression. An immediate observation consistent
with previous research [31] is that when considering only
the ego’s BMI (i.e., keeping social network features con-
stant), fluctuations in BMI are significantly inversely corre-
lated with ego activity over time, with an increase in activity
corresponding to a decrease in BMI.

Next, we consider the effects of the social network itself by
looking at changes in the size of the ego net. We see a sig-
nificant impact of tie formation on ego activity. Consistent
with what is reported in recent research [3], this associa-
tion can be thought of as arising from a combination of a
selection effect where users who increase their activity are
more likely to add new friends (homophily), and causal ef-
fects where expanding one’s social network increases activity
due to social interactions (influence). The effect sizes of the
associations surfaced are not directly comparable with those
reported in [3] as in our case the effect of a tie formation is
spread across several independent variables related to alters’
features.

We also note that ego activity significantly increases when
average alter membership to Achievemint decreases, which
may suggest that adding “fresher” users (i.e., Fitbit users
who are not yet Achievemint members) has a more positive
association with ego activity. Finally, we consider the associ-
ation between ego and alter physical activity over time. We
see a significant, positive association between average friend
activity and ego activity; members whose friends increase
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Figure 5: Number of Achievemint members and
edges between them over the eight 30-day periods
between 2/3/2016 and 9/30/2016.

their steps or who add more active friends see an increase in
their own steps as well.

The fact that fluctuations in monthly steps are correlated
among friends may be due to social influence and/or time
varying confounders. Since seasonality has been removed at
the population level by incorporating month in the regres-
sion, time-varying (non-stationary) causes of confounding
may be ascribed to external phenomena selectively affecting
activity of a subset of the network, such as local weather af-
fecting friends in geographic proximity, or groups of friends
joining group“challenges”offered by Fitbit. An in-depth dis-
cussion of causality observed on the social network is carried
out in the following section.

Covariate Coefficient p-value

Ego’s BMI -39.5 < 10−10

Count of Alters 0.7535 0.02
Average Alter’s Daily Steps 0.065 < 10−10

Average Alter’s BMI 6.01 0.3
Average Alter’s Membership -1.66 < 10−5

Difference in Age -2.20 .7
Difference in Gender -52.3 .7

Table 4: Coefficients and p-values for fixed effects
panel regression on ego average daily steps. Alter
statistics are averaged across all alters for each ego.
Membership indicates if an alter is also a member of
Achievemint(1=Achievemint member). Differences
in age and gender are defined as the difference be-
tween the average alter’s age/gender and the ego’s
age/gender respectively. Fixed effects are included
on a per user and per month basis. All covariates
are included in the table.

6. CAUSAL INFLUENCE

6.1 Method
In this section, we continue the analysis of the network

over time to characterize the role of social influence (con-
tagion) vs. homophily in driving correlated fluctuations in
members’ behavior over time. The ability to make inferences
about causality relies heavily on what can be assumed at the

t

Figure 6: Solid lines reflect a graphical model of
latent homophily where Alice’s state At depends on
her previous state and unobserved latent traits, RA.
The formation of an edge, E, between Alice and Bob
depends on both of their latent traits. The dotted
line alters the model to include contagion.

outset. The modern approach to causal inference relies on
assumptions about conditional independence encoded in an
intuitive way using graphical models [30]. These assump-
tions can be used to construct powerful causal tests using
the d-separation criterion. D-separation essentially helps us
to determine the conditional independence relationships im-
plied by a set of graphical causal assumptions. Human be-
havior remains a challenging domain for causal inference,
due to the difficulty of specifying all the dependencies af-
fecting such a complex phenomenon. Especially challenging
is the fact that in any study we measure only a tiny fraction
of the variables that might be affecting human behavior.

The magnitude of the challenge posed by latent confound-
ers in observational social network studies should not be un-
derestimated. If there are any latent traits that affect the
variate and affect the formation of ties in the social network,
then this mechanism, which we will refer to as “latent ho-
mophily”, can lead to effects mimicking contagion (influence)
in the network [34]. The latent traits act as confounders for
identifying contagion and cannot be removed without mea-
suring all potentially relevant traits. Most studies attempt
to measure and control for confounders, but it is difficult to
be exhaustive when it comes to the intricacies of human be-
havior and this leaves many openings for latent homophily
to intrude.

In this work, we consider a recently introduced approach
to causal testing in the presence of unobserved confound-
ers [36]. We allow for an arbitrary set of latent traits for each
ego, and we allow that the effect of these traits on activity
or on tie formation can be arbitrary. The only assumption
we impose is that activity for each ego at time t is binary,
At ∈ {0, 1}, and obeys a stationary Markov assumption: the
probability of an action at time t depends only on the latent
traits of that ego, RA and actions at time t−1, At−1, and this
dependence does not change over time. This model is shown
in Fig. 6. While Shalizi & Thomas showed that this model
is unidentifiable, i.e., the relative strength of contagion or
latent homophily cannot be determined [34] (potential con-
tagion is represented with a dotted line in the figure), the
model is nevertheless partially identifiable. Partial identifi-
ability means that we cannot exactly determine how much
correlation is from homophily or influence, but in some cases
we can rule out the possibility of correlations arising solely
from latent homophily (with no contagion at all). Despite
the generality of the latent homophily model and the exis-
tence of possibly infinite latent traits affecting activity, the
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distribution of observations compatible with this model is
constrained. Using algebraic geometry, we can devise tests
that tell us whether an observed probability distribution vi-
olates these constraints. If the constraints are violated, we
can rule out the possibility that all observed correlations are
due to latent homophily alone. We now summarize the con-
siderations behind constructing these tests before applying
them to our physical activity data.

For a pair of users, A,B, whose activity over time t =
1, . . . , T , is captured by the latent homophily model de-
scribed above, we write the probability distribution over
their observed activity sequences, conditioned on the pres-
ence of a tie between them, as follows.

P (A1, . . . , AT , B1, . . . , BT |E) =∑
RA,RB

P (RA, RB |E)

T∏
t=1

P (At|At−1, RA)P (Bt|Bt−1, RB)

We sum over traits RA and RB for Alice and Bob respec-
tively since these traits may be hidden. The stationary
Markov assumption means that the transition probabilities,
such as P (At|At−1, RA), do not change over time. We can
represent the set of probability distributions that are com-
patible with this expression as vectors in a 22T dimensional
space. The structure of this space is like a convex mixture
(from the term P (RA, RB |E)) of points that are specified by
polynomials in the parameters that characterize the proba-
bility of a transition, like P (At = 1|At−1 = 0, RA). A con-
vex set can be represented as an intersection of half-spaces,
which are described by linear inequalities of the form,

〈c(A,B)〉LH ≡
∑
A,B

c(A,B)P (A,B|E) ≤ 0,∀P ∈ PLH , (1)

where PLH represents any distribution compatible with our
latent homophily model. We are now ready to devise sta-
tistical tests that indicate if the observed probability distri-
butions are compatible with the distributional constraints
developed. It has been shown that we can find tests that de-
scribe a sequence of convex relaxations to the space PLH by
solving linear programming (LP) problems [36]. The tight-
ness of these bounds is determined by the maximum degree
of the polynomial representations used in the LP construc-
tion, d. The LPs give us guarantees of the form in Eq. 1. If
we can find a test, 〈c(A,B)〉LH ≤ 0, while 〈c(A,B)〉P̂ > 0

for an observed distribution, P̂ , we can rule out any latent
homophily model as the sole mechanism generating this dis-
tribution. After putting our data into the appropriate form,
we consider various tests of this form below and their inter-
pretation.

6.2 Data Preparation
We use the framework described to model social influence

between Achievemint members connected on the Fitbit net-
work for activity level and BMI separately. To comply with
the limitations of the framework described, we convert our
dataset as follows. When looking at the possible influence
of activity among friends, we binarize monthly changes in
activity based on whether the change is greater or less than
a threshold. This threshold is chosen as the median change
for that month to remove global seasonality effects. We then
randomly impute missing values as 0 or 1 to allow the data
to be incorporated without bias.

For the BMI set, we take a similar approach by modeling
changes in BMI as an increase or decrease relative to the
median for that month. For this analysis we only consider
BMI values that have been frequently updated, as we are
interested in fluctuations over time and many BMI values
are statically set in a profile with self-reported weight rather
than by weight tracking over time.

In both the BMI and activity dataset we consider only the
last 5 months of the 8 one-month periods available due to
limitation in the computational feasibility of larger causality
tests. We use BMI and ACT to refer to the BMI datasets
and the activity datasets respectively.

6.3 Result
As a warm-up we consider the simplest tests that result

from setting d = 0 in the convex relaxation of Eq. 1, and re-
strict our attention further to a single test, cI(A,B) which
is optimized so it would be maximally violated by a sim-
ple synthetic model of contagion while 〈cI(A,B)〉LH = 0
for any latent homophily model. Code implementing this
test is provided [2]. When we input the empirical distri-
butions for BMI and ACT, we get 〈cI(A,B)〉BMI = 0.008
and 〈cI(A,B)〉ACT = 0.017. Although these both violate
the equality, a question remains as to whether this is due
to sampling error in estimating the empirical distribution.
To determine this, we estimate the probability to see a vi-
olation this large under the null hypothesis that the true
distribution satisfies the equality. This leads to p-values of
pACT = 0.0014, pBMI = 0.147. The first test gives evidence
to rule out the null model that all correlations come from
latent homophily. The second test should be regarded as
inconclusive. Even without any violation, contagion may or
may not be present. Also, it could be that this test was sim-
ply not powerful enough, and a different test will rule out
the null model.

For a stronger test, we can look for violations using a
tighter convex relaxation built from polynomials of maxi-
mum degree d = 10 in our LPs. For each dataset, we search
for the inequality that is maximally violated. We find lin-
ear tests that require 〈c(A,B)〉LH ≤ 0 for all latent ho-
mophily models, while for our data 〈cBMI(A,B)〉BMI = 0.179
and 〈cACT(A,B)〉ACT = 0.126. The p-values to achieve vio-
lations this large due to sampling error if the null hypoth-
esis is true are calculated via Hoeffding’s inequality giving
p < 10−10 in both cases (code available [2]). We conclude
from this test that we can rule out the hypothesis that the
dependence in our data was solely due to latent homophily,
even with an arbitrary number of unobserved latent traits
(under the assumptions of the model).

6.4 Limitations of the Analysis
Our result is the rejection of a null model. While the

model rejected allows arbitrarily many unobserved latent
traits, it still relies on assumptions, such as that of stationary
Markovian dynamics. While contagion would provide one
mechanism for violating the null model, we must consider
the alternatives, discussed below.

Data processing artifacts
Our method required activity levels to take binary values
over a fixed number of discrete time windows and does not
allow for missing values. We made processing choices that
are consistent with the Markovian assumptions of the null
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model, such as binarizing continuous data with respect to
the median change in the population, to reduce seasonality
effects. However, this may not be sufficient to account for all
forms of seasonality. Also, effects may reflect mechanisms in
the collection of data, rather than the underlying quantity
measured. For instance, BMI is updated infrequently by
users. We cannot exclude that it is our observation of the
updates that is affected by influence instead of the actual
BMI (e.g. a friend influences you to update your profile but
your weight is independent of your friend’s weight).

Markovian dynamics
The main assumption we relied on to derive these tests is
stationary Markovian dynamics. Essentially, the present has
to resemble the past for us to draw any meaningful conclu-
sions from observations of time series. There are several
plausible mechanisms for breaking this assumption includ-
ing intra-city seasonality correlating with friendship struc-
ture and news that increases social structure mediated by
the social network (i.e., Fitbit challenges). Using the same
methods described above, we devised a second set of tests
with the strengthened null hypothesis that data was gener-
ated according to the Markov model in Fig. 6 but this time
including latent homophily and contagion (the dotted lines).
Even in this case, we still see several significant violations,
implying that latent homophily and contagion together are
still insufficient to explain the data. This fact suggests that
the violation of the Markov assumption may be partly re-
sponsible for rejecting the null model that allows only for
latent homophily previously considered. In summary, our
findings suggest that non-Markovian dynamic effects may
constitute a barrier to parse out contagion from (latent) ho-
mophily in the network under analysis. The ability to break
the dependency of physical activity from time-varying ex-
ternal confounders correlating with the social network struc-
ture, either through direct manipulation or by using natural
experiments (e.g. [3]) is necessary to obtain a conclusive as-
sessment of the importance of contagion driving changes in
physical activity in the social network under analysis.

7. CONCLUSION
In this work we study the relationship between a social

network and physical activity on a population of 44.5 thou-
sand Fitbit users interacting through the Fitbit social net-
work. We find that each additional social tie corresponds
to an increase of 6.5 steps on average, and that users walk
26 additional steps per day for each additional 100 steps
of average alter’s daily activity. We confirm the directions
and significance of the associations between ego and alter’s
activity over time by modeling the fluctuations of ego’s ac-
tivity via a panel regression with per-user fixed effects. We
then qualify the strength of causal factors involved in the
network dynamics by testing for violations of null models
of increasing power. The causality analysis identified that,
albeit non-causal models do not explain the data, the possi-
bility that there exist external causes that drive correlated
changes in ego’s and alter’s activity cannot be ruled out,
even after correcting for global seasonality trends. Finally,
we provide the first analysis of how the impact of a social
network on physical activity interacts with the presence of
a (self-reported) chronic condition on the user, revealing an
enhanced positive association of alter’s and ego’s activity for

users with diabetes (5.8-fold increase) and depression (2.4-
fold increase).

Future work should focus on better understanding the
causal factors driving changes in physical activity, and on
quantifying how sustainable are such changes over time. En-
abling long-term engagement and habit formation remains
a challenge in the wearables space [27] and the sustained
formation of new positive habits has proven hard to attain,
even for widely adopted interventions [29]. From a data
perspective, including finer-grained time-aggregate features
(e.g., minute level step counts) could also be helpful to ex-
plain intra-day influence effects (e.g., by comparing counts
of bouts of sedentary times [5]).

The causal analysis highlighted difficulties and potential
pitfalls. Even when drivers of influence are identified, cau-
tion should be put in deriving general claims on how physi-
cal activity can be affected by manipulating the social net-
work without validating it with randomized controlled ex-
periments. A meta-study of 2040 studies found very modest
evidence for effectiveness of interventions in online social
networks [23], and an increasing amount of recent research
warns that effects observed should not be immediately gen-
eralized outside the specific context in which they are ob-
served [26].

We hope that the current study can inform comparative
effectiveness research with the goal to understand which fea-
tures and mechanisms of an online social network are the
most successful at promoting healthy habits among their
members, especially in the context of chronic disease man-
agement.
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