
Are Meta-Paths Necessary? Revisiting Heterogeneous Graph
Embeddings

Rana Hussein
eXascale Infolab, University of

Fribourg, Switzerland

Dingqi Yang∗
eXascale Infolab, University of

Fribourg, Switzerland
{firstname.lastname}@unifr.ch

Philippe Cudré-Mauroux
eXascale Infolab, University of

Fribourg, Switzerland

ABSTRACT
The graph embedding paradigm projects nodes of a graph into a
vector space, which can facilitate various downstream graph analy-
sis tasks such as node classification and clustering. To efficiently
learn node embeddings from a graph, graph embedding techniques
usually preserve the proximity between node pairs sampled from
the graph using random walks. In the context of a heterogeneous
graph, which contains nodes from different domains, classical ran-
dom walks are biased towards highly visible domains where nodes
are associated with a dominant number of paths. To overcome this
bias, existing heterogeneous graph embedding techniques typically
rely on meta-paths (i.e., fixed sequences of node types) to guide
random walks. However, using these meta-paths either requires
prior knowledge from domain experts for optimal meta-path selec-
tion, or requires extended computations to combine all meta-paths
shorter than a predefined length. In this paper, we propose an alter-
native solution that does not involve any meta-path. Specifically,
we propose JUST, a heterogeneous graph embedding technique us-
ing random walks with JUmp and STay strategies to overcome the
aforementioned bias in an more efficient manner. JUST can not only
gracefully balance between homogeneous and heterogeneous edges,
it can also balance the node distribution over different domains
(i.e., node types). By conducting a thorough empirical evaluation
of our method on three heterogeneous graph datasets, we show
the superiority of our proposed technique. In particular, compared
to a state-of-the-art heterogeneous graph embedding technique
Hin2vec, which tries to optimally combine all meta-paths shorter
than a predefined length, our technique yields better results in most
experiments, with a dramatically reduced embedding learning time
(about 3x speedup).
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1 INTRODUCTION
With the proliferation of Social Networks and graph data on the
Web, graph embeddings (a.k.a. network embeddings or network
representation learning) [2] have gained increasing popularity in
recent years. The key idea is to represent nodes in a graph using a
continuous low-dimensional vector space (i.e., node embeddings),
while preserving key structural properties (e.g., node proximity)
of the graph. These node embeddings can then be effectively used
in various supervised/unsupervised graph analysis tasks, such as
node classification or clustering.

Existing graph embedding techniques can be classified into two
categories depending on the types of input graphs, i.e., homoge-
neous or heterogeneous graph embeddings [6]. On one hand, for a
homogeneous graph containing nodes from a single domain only
(e.g., a social network of users), graph embedding techniques try
to preserve the proximity between node pairs randomly sampled
from the graph (using random walks over the graph [9, 18], for
example). On the other hand, a heterogeneous graph has a more
complex structure containing multiple node domains, with both ho-
mogeneous edges linking nodes from the same domain and hetero-
geneous edges linking nodes across different domains [22, 23]. For
example, a bibliographic graph with author (A), paper (P), topic (T)
and venue (V) domains contains not only the homogeneous edges
between papers (paper citation), but also heterogeneous edges link-
ing authors and papers (authorship) or linking papers and venues
(publication). Consequently, the corresponding graph embedding
techniques usually give a particular consideration to the structure
of an heterogeneous graph when sampling node pairs from it.

In the current literature, heterogeneous graph embedding tech-
niques mostly rely on meta-paths [23] to sample node pairs for
learning node embeddings. Specifically, a meta-path is defined as a
sequence of node types encoding key composite relations among
the involved node types [23]. Different meta-paths express different
semantic meaning. Taking a bibliographic graph as an example,
a meta-path “A-P-A” represents a co-authorship relationship on
a paper between two authors, while “A-P-V-P-A” represents pa-
pers published by two authors in the same venue. To incorporate
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such meta-paths in graph embeddings, existing techniques usu-
ally perform meta-path-guided random walks to sample node pairs
for learning node embeddings [5, 7, 8, 11, 21]. However, despite
the wide adoption of meta-paths in heterogeneous graph embed-
dings, how to select meta-paths from a given heterogeneous graph
remains unclear. Even more critically, the existing literature has
shown that the choice of meta-paths highly affect the quality of
the learnt node embeddings, which makes them a double-edged
sword. Taking the same example of a bibliographic graph, using the
meta-path “A-P-T-P-A” results in 11% and 21% performance drop
in node classification and clustering tasks, respectively, compared
to the meta-path “A-P-V-P-A” (the optimal meta-path suggested by
[7]). To overcome this issue, existing techniques either manually
select a dataset-specific meta-path based on prior knowledge from
domain experts [7], or propose (general or task-specific) strategies
to combine a set of predefined meta-paths (e.g., meta-paths shorter
than a predefined length) [5, 8, 11, 21]. However, as the number of
possible meta-paths can be large (exponentially growing with their
length [11]) even for a heterogeneous graph with a few domains
[5], finding an optimal combination of shorter meta-paths is quite
problematic in practice.

In this paper, by revisiting existing meta-path-based heteroge-
neous graph embedding methods, we tackle the following question:
“Are meta-paths really necessary for heterogeneous graph embed-
dings?”

To answer this question, we start by reviewing the motivation
for using meta-paths in heterogeneous graph embeddings. More
precisely, the initial motivation of using meta-paths in heteroge-
neous graph embeddings lies in the fact that random walks on
heterogeneous graphs are biased to highly visible types (domains)
of nodes, where nodes are associated with a dominant number of
paths [7]. In other words, the node distribution from the random
walk sequences are skewed towards these highly visible domains.
Subsequently, the learnt node embeddings are also biased to these
domains in the sense that they mostly preserve the node proximity
in these domains. In such a context, meta-paths are introduced to
guide random walks to overcome this problem [7]. However, we
argue that this issue can also be solved without using cumbersome
meta-paths. Specifically, when performing random walks over a
heterogeneous graph, we choose the next node either by jumping to
one of the other data domains, or staying in the same data domain.
The key idea of our solution is to probabilistically balance these
two options, in order to avoid the above-mentioned bias.

Based on the above intuition, we propose in this paper JUST, a
heterogeneous graph embedding technique using random walks
with JUmp and STay strategies, rather than involving meta-paths.
More precisely, when performing random walks in a heterogeneous
graph, our method chooses the next node by probabilistically con-
sidering the following two steps: 1) jump or stay, 2) if jump, decide
where to jump. First, by controlling the probability of staying using
an exponential decay function, we are able to not only balance
the number of heterogeneous and homogeneous edges in random
walks, but to also effectively avoid staying for too long in one
domain. Second, when choosing where to jump, our method mem-
orizes the lastm visited domains and tries to jump to a different
one; by tuning the number of memorized domainsm, we are then
able to balance the node distribution over different domains.

Using three different heterogeneous graph datasets, we conduct
a thorough empirical evaluation of our method on both node classi-
fication (supervised) and clustering (unsupervised) tasks. Empirical
results show the superiority of our technique compared to state-
of-the-art heterogeneous graph embedding methods. In particular,
compared to a state-of-the-art heterogeneous graph embedding
technique Hin2vec [8], which tries to optimally combine all meta-
paths shorter than a predefined length, our technique yields higher
results in most experiments, with a dramatically reduced embed-
ding learning time (about 3x speedup).

2 RELATEDWORK
Existing graph embedding methods can be classified into two broad
categories according to the types of input graphs, i.e., homogeneous
or heterogeneous graphs. On one hand, for a homogeneous graph
where all nodes are from a single domain only (e.g., a social net-
work of users), the corresponding graph embedding techniques
try to either factorize a node proximity matrix obtained from the
adjacency matrix of the input graph using singular vector decom-
position [3, 17], or perform random walks [16] over the input graph
which are then fed into a SkipGram model [14] to output the node
embeddings [9, 18]. The SkipGram model learns node embeddings
by maximizing the co-occurrence probability of nodes appearing
within a certain context window in a randomwalk sequence. Due to
the intrinsic scalability limitation of matrix factorization techniques,
random walks combined with a SkipGram-like model are widely
adopted in practice. On the other hand, heterogeneous graphs ex-
hibit a more complex structure, with nodes coming from different
domains and heterogeneous as well as homogeneous edges. Recent
work [5, 7, 8, 11, 21] has shown that ignoring such structures usu-
ally results in low-quality node embeddings, leading to degraded
performance in downstream graph analysis tasks. Therefore, con-
sidering the structure of a heterogeneous graph is suggested to
learn the corresponding node embeddings.

To incorporate key structural properties of a heterogeneous
graph into graph embeddings, existing techniques mostly rely on
meta-paths. Specifically, these techniques first use meta-paths to
guide random walks over an input heterogeneous graph, and then
feed these guided randomwalks to a SkipGram-like model to output
node embeddings. The meta-paths redefine the neighborhood of a
node as a random sequence. To select appropriate meta-paths from
an input graph, prior knowledge or heuristics are often required.
For example, Metapath2vec [7] manually selects “A-P-A” (represent-
ing co-authorship relationship) and “A-P-V-P-A” (representing two
papers published by two authors in the same venue) as meta-paths
for a bibliographic graph, based on the suggestion from previous
work using the same dataset. However, such a meta-path selection
method is usually graph-specific (i.e., the selected meta-paths are
only suitable for the bibliographic graph in that case) and highly
rely on knowledge from domain experts (requiring empirical results
from previous work on the same graph). More important, existing
work has also shown that the choice of meta-paths highly affect the
quality of the learnt node embeddings for different graph analysis
tasks [21], which makes the meta-path selection process even more
critical.
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In order to improve the robustness of graph embedding meth-
ods, some techniques combine a set of predefined meta-paths to
take advantages of different meta-paths. In the current literature,
a set of predefined meta-paths are either task-specific [5, 20, 21],
or selected according to a predefined criterion. First, task-specific
meta-paths are often selected based on heuristics for performing a
specific graph analysis task. For example, Shi et al. [21] proposed
the heterogeneous graph embedding approach HERec for learning
user/item embeddings for a recommendation task, where a set of
predefined meta-paths are used to guide random walks to gener-
ate node embeddings, which are then merged together for item
recommendation. Chen et al. [5] proposed a path-augmented het-
erogeneous graph embedding method for an author identification
task under blind review settings; it relies on task guidance to select
the meta-paths, and incrementally combines them in the learning
process. However, these techniques still require prior knowledge on
the targeted task to select meta-paths. Second, a set of predefined
meta-paths can also be selected according to a certain criterion.
Most of the techniques following this idea consider the length of
meta-paths as a criterion and set a threshold to keep only short
meta-paths. For example, HIN2Vec [8] exploits different types of
relationships among nodes by combining meta-paths shorter than
a certain length to guide random walks. HINE [11] learns node
embeddings in a heterogeneous graph to preserve node proximity
from random walks guided by meta-paths shorter than a certain
length. Although these techniques are designed to optimally com-
bine the advantages of different meta-paths, they still require setting
a meta-path length as a parameter. The quality of the learnt node
embeddings have been shown to be sensitive to this parameter
[11]. In this paper, by revisiting existing meta-path based graph
embedding techniques for heterogeneous graphs, we propose an
alternative solution that does not use any meta-path. Our tech-
nique can not only balance between homogeneous edges (linking
nodes in the same domain) and heterogeneous edges (linking nodes
across different domain), it also balances the random walk node
distribution over different domains.

Finally, we note that there are other techniques for heteroge-
neous graph embeddings that do not use meta-paths, such as tech-
niques using deep architecture [4], hyperedges [10] or techniques
designed for a specific heterogeneous graphs (e.g., coupled hetero-
geneous graphs [26]). These techniques do not use random walks
to sample an input graph, which differs from the focus of this paper
(we advocate random-walk based techniques due to their intrinsic
scalability advantages). Embedding learning time of random walk
based approaches linearly increases w.r.t. number of nodes in the
input graph [9].

3 PRELIMINARIES
In this section, we introduce the key concepts and notations fre-
quently used in this paper.

Definition 3.1. (Heterogeneous Graph) A heterogeneous graph
is denoted as G = (V ,E), where V and E refer to the set of nodes
and edges (either directed or undirected), respectively. Each node
v ∈ V is mapped to a specific data domain using a mapping function
ϕ (·), i.e., ϕ (v ) = q, where q ∈ Q and Q denotes the set of domains

(a) (b)

(c)

Figure 1: Structures of three heterogeneous graphs: a) a
DBLP graph with four data domains: Author (A), Paper (P),
Venue (V) and Topic (T); b) a movie graph with four data
domains: Director (D), Movie (M), Actor (A) and Composer
(C); c) a Foursquare graph with four data domains: User (U),
Point of interest (P), Check-in (C) and Time slot (T).

in graph G. For a heterogeneous graph G, we always have |Q | > 1
as it contains more than one node domains.

Figure 1 shows the structures of three heterogeneous graphs, i.e.,
DBLP1, Movie and Foursquare2. In the following, we further define
both heterogeneous and homogeneous edges:

Definition 3.2. (Heterogeneous Edge) An edge ehe = (vs ,vt ) ∈
E is a heterogeneous edge i.i.f. the two nodes it is connected to
are from two different domains, i.e., ϕ (vs ) , ϕ (vt ). We use Ehe to
denote the set of heterogeneous edges in G.

Definition 3.3. (Homogeneous Edge)An edge eho = (vs ,vt ) ∈ E
is a homogeneous edge i.i.f. the two nodes connected to it are from
the same domain, i.e., ϕ (vs ) = ϕ (vt ). We use Eho to denote the set
of homogeneous edges in G.

Taking the DBLP graph as an example, edges linking authors and
papers (A-P) are heterogeneous edges, while edges linking pairs of
papers (P-P) are homogeneous edges.

4 HETEROGENEOUS GRAPH EMBEDDING
WITH JUMP & STAY

In this section, we introduce our method JUST, a heterogeneous
graph embedding method using random walks with JUmp and
STay on a heterogeneous graph rather than involving meta-paths.
Specifically, we advocate the graph embedding paradigm combin-
ing random walks with a SkipGram-like model, which has been
widely adopted by existing work and shows state-of-the-art perfor-
mance on different tasks [5, 7, 8, 11, 21]. Our proposed method first
performs a random walk over an input heterogeneous graph by
probabilistically balancing the jump and stay options when picking
its next node, and then feeds these random walks into a SkipGram
model for outputting the node embeddings. In the following, we

1https://dblp.uni-trier.de/
2https://foursquare.com/
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first present our proposed random walk strategy, followed by the
node embedding learning process using SkipGram.

4.1 RandomWalk with Jump & Stay
When performing a randomwalk on a homogeneous graph, the next
node is selected by uniformly sampling a node from the neighbors
of the current node. In contrast, for a heterogeneous graph, there
are two options to select the next node; from the current node vi ,
the next node vi+1 is selected by one of the following options:
• Jump to a target domain q: uniformly sampling one node
from those in a target domain q connected to vi via het-
erogeneous edges. The candidate set of nodes for jumping
from vi to the target domain q is denoted as V q

jump (vi ) =

{v |(vi ,v ) ∈ Ehe ∨ (v,vi ) ∈ Ehe ,ϕ (v ) = q}.
• Stay in the current domain: uniformly sampling one node
from those connected tovi via homogeneous edges. The cor-
responding candidate set of nodes is denoted as Vstay (vi ) =
{v |(vi ,v ) ∈ Eho ∨ (v,vi ) ∈ Eho }.

We highlight here that in heterogeneous graph embedding prob-
lems, the direction of edges is kept only for keeping their semantic
meaning, but not used for constraining the random walks. In other
words, a random walk can either follow the direction of a directed
edge, or follow the edge in the opposite direction [5, 7, 8, 11, 21].

Based on these two options, we probabilistically control the
random walk using two steps: 1) we decide whether to jump or
stay; 2) in case of a jump decision, we then decide where to jump.

4.1.1 Jump or Stay? Based on the current node vi , we choose
to stay with the following probability (and we jump otherwise):

Prstay (vi ) =




0, if Vstay (vi ) = ∅
1, if {V q

jump (vi ) |q ∈ Q,q , ϕ (vi )} = ∅

α l , otherwise

(1)

where α ∈ [0, 1] is an initial stay probability, and l refers to the
number of nodes consecutively visited in the same domain of the
current node vi . First, in case no homogeneous edge is connecting
to vi , i.e., Vstay (vi ) = ∅, we can only jump to another domain.
Second, in case no heterogeneous edge is connecting to vi , i.e.,
{V

q
jump (vi ) |q ∈ Q,q , ϕ (vi )} = ∅, we can only stay in the same do-

main. Finally, in case both heterogeneous and homogeneous edges
are connecting tovi , we probabilistically control jump/stay options
by choosing to stay with a probability α l , and jump otherwise. Here,
we adopt an exponential decay function on this probability to pe-
nalize the cases were the walk stays in one domain for too long, as
the stay probability Prstay decreases exponentially with l . Figure 2
shows an example on the DBLP graph where l = 3. Moreover, the
initial stay probability α controls how fast Prstay decreases with l .

In summary, by tuning α , we are able to not only balance the
number of heterogeneous and homogeneous edges we follow during
random walks, but also to effectively avoid staying too long in one
domain. A smaller value of α implies less homogeneous edges (stay-
ing less) and more heterogeneous edges (jumping more) in the
resulting random walks.

4.1.2 Where to Jump? In case of a jump, given the current node
vi , a target domain q needs to be selected before performing the
jump. Specifically, we try to select q by uniformly and randomly

Figure 2:An example of a jump/stay probability on theDBLP
graph.As the current node is from thePdomain, the number
of nodes consecutively visited in P domain is l = 3.

Figure 3: An example of selecting where to jump on the
DBLP graph consideringm = 2 previous visited domains. As
Qhist = {P ,A}, we then randomly sample one domain from
{TandV } as a target domain, where the next node is sampled.

sampling one domain from those differing from the lastm visited
domains in a random walk, in order to balance the node distri-
bution over different domains. To achieve this goal, we define a
fixed-length queueQhist of sizem to memorize up-to-m previously
visited domains (including the current domain ϕ (vi )) in a random
walk. Figure 3 illustrates an example withm = 2. When selecting a
target domain to jump, we uniformly sample one domain from the
following set:

Q Jump (vi ) =



{q |q ∈ Q ∧ q < Qhist ,V
q
jump (vi ) , ∅}, if not empty

{q |q ∈ Q,q , ϕ (vi ),V
q
jump (vi ) , ∅}, otherwise

(2)
First, we try to uniformly sample a target domain from a set of
candidates satisfying the following three conditions: 1) q ∈ Q ; 2)
q is not one of the last m visited domains, i.e., q < Qhist and 3)
there exists heterogeneous edges connecting nodes from q to vi ,
i.e., V q

jump (vi ) , ∅. If the candidate set is empty, we still need to
choose one target domain to continue a random walk. Therefore,
we relax the second condition by simply choosing a target domain
which is different from the current domain, i.e., q , ϕ (vi ).

After selecting a target domain q, we continue the random walk
with a jump, i.e, by uniformly sampling one node as vi+1 from
V
q
jump (vi ). Afterwards,Qhist is updated to keep only the lastm vis-

ited domains. Specifically, as a fixed-length queue,Qhist is updated
in a first-in-first-out manner by first adding q, and then dropping
the oldest domain if |Qhist | > m.

In summary, by tuning the number of memorized domains m,
we are able to balance the node distribution over different domains.
A small value ofm introduces more “randomness” in choosing a
target domain to jump into. Larger values ofm, however, might
lead to cases where we cannot find any candidate domain satisfying
the aforementioned three conditions, such as we have to relax the
second condition. For example, in the extreme casem ≥ |Q | where
we never find any such candidate domain, we always sample a
target domain differing from the current one, which is equivalent
to the casem = 1. Therefore,m should be set to an integer in the
range [1, |Q | − 1].
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Algorithm 1 Truncated Random Walk with Jump & Stay

Require: A heterogeneous graph G = (V ,E), initial stay probabil-
ity α , number of memorized domainsm, number of random
walks per node r , maximum walk length Lmax

1: Initialize an empty set of walksW = ∅

2: for i = 1 to r do
3: for each v ∈ V do
4: Initialize a random walk by adding v ;
5: Initialize Qhist by adding ϕ (v );
6: while |W | < Lmax do
7: Pick a Jump or Stay decision according to Eq. 1;
8: if Stay then
9: ContinueW by staying;
10: else if Jump then
11: Sample a target domain q from Eq. 2;
12: ContinueW by jumping to domain q;
13: Update Qhist by keeping only lastm domains;
14: end if
15: end while
16: AddW toW
17: end for
18: end for
19: return The set of random walksW

4.1.3 Truncated Random Walk with Jump & Stay. We perform
truncated random walks with the above-mentioned jump and stay
strategies to sample from an input heterogeneous graph. More
precisely, for each node v ∈ V , we initialize a random walkW
starting fromvi , until the maximum length Lmax is reached. Similar
to existing random walk based graph embedding techniques [7–
9, 11, 18, 21], we generate a set of random walksW by performing
r random walks rooted on each node v ∈ V . Algorithm 1 illustrates
our random walk process to generateW .

4.2 Node Embedding Learning with SkipGram
Based on the generated set of random walksW , we adopt a Skip-
Gram model to learn the node embeddings [14]. Specifically, the
SkipGram model maximizes the co-occurrence probability of two
nodes appearing within a context window of length k in a random
walk. Formally, for a pair of nodes vi and vj appearing in the con-
text window in the set of random walksW , this co-occurrence
probability is defined as:

Pr ((vi ,vj ) ∈ W ) = σ (v⃗i · v⃗j ) (3)

where σ (·) is the sigmoid function, and v⃗i and v⃗j refer to the embed-
dings (vectors) of vi and vj , respectively. Moreover, the SkipGram
model usually adopts negative sampling techniques [15] to also
maximize the probability of node vi and a randomly sampled nega-
tive node vN not appearing in the set of random walksW :

Pr ((vi ,vN ) <W ) = 1 − Pr ((vi ,vN ) ∈ W ) = σ (−v⃗i · v⃗N ) (4)

where negative samples (nodes) are often uniformly drawn accord-
ing to the empirical node distribution in the random walksW .
In summary, for the pair of nodes (vi ,vj ), the SkipGram model
maximize the following objective function:

logσ (v⃗i · v⃗j ) + γ · EvN [logσ (−v⃗i · v⃗N )] (5)

whereγ ∈ Z+ refers to the number of negative samples. By iterating
over all node pairs appearing within a context window of length k
in each random walk inW , the node embeddings can be efficiently
learnt by using Asynchronous Stochastic Gradient Descent (ASGD)
[19] in parallel.

5 EXPERIMENTAL EVALUATION
In this section, we conduct a thorough empirical evaluation of our
method. We first present our experiment setup below, before evalu-
ating our technique on both node classification (supervised) and
clustering (unsupervised) tasks. Then, we investigate the impact
of two key parameters (the initial stay probability α and the num-
ber of memorized domains m) on the quality of the learnt node
embeddings, followed by a parameter sensitivity study on other
parameters and a study on runtime performance.

5.1 Experiment Setup
We present our experiment setup including datasets, baseline meth-
ods and settings for our proposed method.

5.1.1 Datasets. We use three real world heterogeneous graphs
for evaluation. Table 1 summarizes the main statistics of the three
graphs.

• DBLP: We use a DBLP graph provided by [11]. It contains
nodes in four domains, including 5,915 authors (A), 5,237
papers (P), 18 venues (V) and 4,479 topics (T), where hetero-
geneous edges (A-P, P-V and P-T) and homogeneous edges
(P-P) are available. In addition, each author is associated
with one of the following four labels “database”, “data min-
ing”,“machine learning” and “information retrieval”. An il-
lustration of DBLP’s schema is available above in Figure
1(a).
• Movie: We use an augmented version of the MOVIE graph
provided by [11]. It contains nodes in four domains, includ-
ing 10,789 actors (A), 7,332 movies (M), 1,741 directors (D)
and 1,483 composers (C), where heterogeneous edges (includ-
ing A-M, D-M and C-M) and homogeneous edges (A-A and
M-M) are available. As the original dataset does not contain
homogeneous edges, we enrich this graph by adding homo-
geneous edges between actors. More precisely, by crawling
the social relationships of the involved actors on Twitter, we
add homogeneous edges (friendships) between actors if they
follow each other on Twitter. Meanwhile, pairs of movies
are also connected by homogeneous edges if they share the
same producer. In addition, each movie is associated with
one or more of the following five labels (genres) “action”,
“horror”, “adventure”, “scifi” and “crime”. An illustration of
this schema is given in Figure 1(b).
• Foursquare:We use a check-in graph collected from Foursquare
in NewYork City provided by [27, 28], which has beenwidely
used in enabling location based services [29, 30]. It contains
nodes from four domains, including 2,449 users (U), 25,904
check-ins (C), 1,250 points of interest (P) and 168 time stamps
(T), where heterogeneous edges (U-C, P-C and T-C) and ho-
mogeneous edges (U-U) are available. In addition, each point
of interest is associated with one of ten categories (e.g., “bar”).

Session 3C: Graphs CIKM’18, October 22-26, 2018, Torino, Italy

441



Table 1: Characteristics of the experimental graphs

Dataset DBLP Movie Foursquare
|V | 15,649 21,345 29,771
|E | 51,377 89,038 83,407
|Ehe | 44,379 34,354 77,712
|Eho | 6,998 54,684 5,695

#Labels 4 5 10

The schema of the Foursquare graph is previously shown in
Figure 1(c).

5.1.2 Baselines. We compare our technique with the following
state-of-the-art heterogeneous graph embedding methods.

• DeepWalk [18] learns node embeddings by first performing
classical random walks on an input graph, and then feeding
the generated random walks to a SkipGram model. We set
the number of walks per node r = 10, the maximum walk
length Lmax = 100, and the window size for the SkipGram
model k = 10.
• LINE [25] directly samples node pairs from an input graph to
learn node embeddings by explicitly preserving the 1st- and
2nd-order node proximities only. To learn node embeddings
of dimension d , it first separately learns two sets of d/2-
dimension node embeddings according to 1st- and 2nd-order
node proximity, respectively, and then concatenates them
together.
• PTE [24] is a semi-supervised model for learning text em-
beddings using both labeled and unlabeled data. In our ex-
periments, similar to [7, 8], we use PTE in an unsupervised
way. Specifically, for a heterogeneous graph, we extract one
bipartite graph between the domain of interest and each
of the other domains, and then feed these graphs to PTE
to output the node embeddings for the domain of interest.
Subsequently, we construct three bipartite heterogeneous
graphs for each dataset as follows: DBLP (A-P, A-V, A-T),
Movie (M-A, M-D, M-C) and Foursquare (P-C, P-U, P-T).
• Metapath2vec [7] first generates meta-path guided random
walks based on only one given meta-path, then feeds them
to a SkipGram model. For each dataset, we conduct experi-
ments with Metapath2vec using different meta-paths, and
report the best performing one. For DBLP graph, we use
the meta-paths suggested by the authors: “A-P-V-P-A” and
“A-P-A”. We also tried the following meta-paths: “A-P-P-V-P-
P-A”, “A-P-P-T-P-P-A” and “A-P-P-V-P-T-P-A” suggested by
[13]. For MOVIE dataset, we use “A-M-D-M-A” and “A-M-C-
M-A” which represent actors starring in movies with com-
mon directors and composers respectively. For Foursquare
dataset, we use “U-C-P-C-U” which represents different users
checking-in at the same point of interest, and “P-C-T-C-P”
which represents different points of interest having check-
ins at the same time stamp. We keep the same parameters
r ,Lmax ,k as for DeepWalk.
• Hin2vec [8] combines a set of meta-paths shorter than a
certain length to perform meta-path guided random walks,

in order to jointly learn both node embeddings and meta-
path embeddings. The node embeddings are learnt such that
they can be effectively used to predict the meta-paths which
actually connects them. We tune the maximum length of
meta-paths from 3 to 6 and report the best performing one.
We keep other parameters r ,Lmax ,k same as for DeepWalk.
• JUST_no_memory is a simplified version of our method,
which does not memorize any of the previously visited nodes
or domains. First, when choosing to jump or stay, we use
a fixed stay probability Prstay (by setting l = 1), no matter
how long a random walk stays in the same domain. Second,
when choosing where to jump, we consider only the current
domain (by settingm = 1), and uniformly sample a target
domain from those differing from the current one. We keep
the same parameters r ,Lmax ,k as for DeepWalk.

Note that among these baselines, DeepWalk and LINE are orig-
inally designed for homogeneous graphs; they are applied to a
heterogeneous graph by ignoring the schema of the graph and
treating all nodes and edges equally as for a homogeneous graph.

For our method JUST, we configure it with three settings ac-
cording to the number of memorized domainsm = 1, 2, 3 (we have
maximum four domains in our datasets), and tune the initial stay
parameter α within [0.1, 0.9] with a step of 0.1. By tuning our pa-
rameters m and alpha, we report the best performance on both
classification and clustering tasks (we investigate the impact of
these parameters later in Sections 5.4 and 5.5). We also keep the
same random walk parameters r ,Lmax ,k as for DeepWalk. The di-
mension of the node embeddings d is set to 128 and the number of
negative samples γ is set to 10 for all methods in all experiments, if
not specified otherwise. In all experiments, we tune the parameters
for each method, to let it achieve its best performance.

5.2 Node Classification Task
The objective of node classification task is to predict the most
probable label(s) for some nodes based on other labeled nodes.
We focus on the author domain in the DBLP graph, the movie
domain in the Movie graph, and the point of interest domain in the
Foursquare graph. To implement this task, we use the same settings
as in [7, 8, 18]. We randomly sample a set of nodes as labeled nodes
for training, and use the rest for testing. Based on the embeddings
of the training nodes, we train a one-vs-rest logistic regression
classifier to predict the most probable labels for test nodes, and
compare the prediction against their ground truth labels. We report
the average Macro-F1 and Micro-F1 scores from 10 repeated trials.

Figure 4 shows our results on the node classification task. First,
we clearly observe that more training data results in higher per-
formance in general. Second, we see that our method outperforms
baselines in most of cases. For the DBLP graph, JUST significantly
outperforms all baselines. For the Movie graph, we observe that
JUST/JUST_no_memory and Hin2vec show comparable perfor-
mance. However, compared to Hin2vec which combines all meta-
paths shorter than a certain length, JUST without involving meta-
paths can learn node embeddings much more efficiently. For ex-
ample, the end-to-end learning time is 442 seconds using JUST on
the Movie graph, while it takes 1,301 seconds using Hin2vec (more
discussion on this point in Section 5.7 below). For the Foursquare
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Figure 4: Performance on node classification task

graph, we find that although our method shows similar Macro-F1
score with PTE and Hin2vec, it consistently achieves the highest
Micro-F1 compared to all baselines.

5.3 Node Clustering Task
The objective of community detection is to regroup similar nodes
into clusters. Same as in the node classification task, we also focus
on the domain with labeled nodes in each graph, and regard nodes
with the same label as a ground truth community. To implement
this task, we adopt similar settings as in [7, 11]. Specifically, we
cluster nodes based on their embeddings using the k-means al-
gorithm [1], and evaluate the clusters using Normalized Mutual
Information (NMI). We note that while the output of k-means con-
tains non-overlapping communities (i.e., each node belongs to one
cluster only), the ground truth communities in our Movie graph
are overlapping (i.e., one movie may belong to one or more genre).
To evaluate the clusters in this case, we compute a generalized
NMI using the method proposed by [12], which can measure NMI
between partitions (i.e., non-overlapping communities) and covers
(i.e., overlapping communities). As a large number of communities
often results in very small NMI values (which makes it hard for com-
paring different methods), we thus select only the top two largest
communities and the corresponding nodes in individual graphs in
this experiment. We report the average NMI from 10 repeated trials.

Figure 5 shows the results of the node clustering task. We clearly
observe that our proposed method JUST (even its simplified varia-
tion JUST_no_memory) consistently outperforms all other baselines
across different datasets.

Figure 5: Performance on node clustering task

Interestingly, comparing the performance of Metapath2vec and
Hin2vec, we observe very different results across three datasets.
Specifically, Metapath2vec achieves slightly higher, much higher
andmuch lowerNMI thanHin2vec on theDBLP,Movie and Foursquare
graphs, respectively. This observation shows the limitations of the
meta-path based heterogeneous graph embedding techniques. First,
for the techniques which require a predefined meta-path (like Meta-
path2vec), the selection of the meta-path is indeed complex, and the
quality of the learnt node embeddings (in downstream graph analy-
sis tasks) is sensitive to the selection of the meta-path. Second, the
techniques combining different meta-paths (like Hin2vec) may not
consistently outperform the techniques with a manually selected
meta-path (Metapath2vec). In other words, the meta-path combina-
tion strategies are also complex, as they not only take advantages
of different meta-paths, but also might introduce additional noise
from suboptimal meta-paths.

5.4 Impact of the Initial StayProbability α
We investigate the impact of the initial stay probability α on the
quality of the learnt node embedding. It balances the impact of
heterogeneous and homogeneous edges on the learnt node em-
beddings. A smaller value of α leads to less homogeneous edges
(staying less), and more heterogeneous edges in the resulting ran-
domwalks. In this experiment, by keeping other parameters to their
optimal settings, we tune α within [0.1, 0.9] with a step of 0.1, and
report the corresponding performance on both node classification
and clustering.

Figure 6 shows the results. We clearly observe suboptimal results
when considering either too many heterogeneous or homogeneous
edges. In other words, balancing the number heterogeneous and
homogeneous edges is important to learn high-quality node embed-
dings in a heterogeneous graph. We find that the optimal α mostly
lies in the range [0.2, 0.4] on all three datasets in both node classi-
fication and clustering tasks, which suggests that heterogeneous
edges linking nodes across domains indeed play the primary role
in learning node embeddings for heterogeneous graphs.

Moreover, to further verify the trade-off between heterogeneous
and homogeneous edges, we investigate the percentage of hetero-
geneous/homogeneous edges in random walks. Figure 7 shows the
results on all three datasets. We observe that a small value of α
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Figure 6: Impact of the initial stay probability α

Figure 7: Trade-off between heterogeneous and homoge-
neous edges using α

leads to a large portion of heterogeneous edges in the resulting
random walks. When increasing the initial stay probability α to
“stay more”, the portion of heterogeneous edges clearly decreases.
We also note that our technique is robust to the absolute number
of homogeneous/heterogeneous edges, as we actually control the
stay/jump probability before choosing the next node in a random
walk. For example, the portion of heterogeneous edges varies in a
similar way for the DBLP and Movie datasets as shown in Figure
7, while we observe much more homogeneous edges in the Movie
graph than in the DBLP graph as shown in Table 1.

5.5 Impact of the Number of Memorized
Domainsm

We investigate the impact of the number of memorized domainsm
on the quality of the learnt node embedding. It balances the node
distribution over different domains. When tuningm ∈ [1, |Q | − 1],
a smaller value ofm gives more “randomness” in choosing a target

Figure 8: Impact of the number of memorized domainsm

Figure 9: Balancing node distribution over different do-
mains usingm.

domain to jump to in general. In this experiment, by keeping other
parameters to their optimal settings, we tunem within {1, 2, 3}, and
report the corresponding performance on both node classification
and clustering.

Figure 8 shows the results. First, we observe that compared
to the initial stay probability α , the performances on both tasks
are less sensitive tom. Second, we find that the optimalm varies
across different datasets and tasks. Moreover, we are interested in
how m balances the node distribution over different domains in
random walks. We compute the entropy of the node distribution
for differentm. As shown in Figure 9, we observe that the entropy
increases when increasingm. In other words, larger values ofm
indeed increase the evenness of the node distribution over domains.
Note that we have four domains for our datasets3, meaning the
maximum entropy is 2.

3We coincidentally have four domains for all our datasets, which is not a design choice.
In the future, we also plan to evaluate our technique on large heterogeneous graphs
having vastly more complex schemas with more domains.
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(a) (b)

Figure 10: Impact of other parameters in node classification
task: a) node embedding dimensiond in the left column; and
b) context window size k in the right column

5.6 Other Parameter Sensitivity Study
In this section, we investigate the impact of the node embedding
size d and the context window size k on the quality of the learnt
node embeddings.

5.6.1 Node embedding dimension d . By fixing other parameters
to their optimal values, we study the impact of the node embed-
ding dimension d by increasing it from 4 to 256. Figure 10(a) shows
the results for node classification (similar results are observed for
the clustering task). First, we observe that a small d yields low
performance, as the corresponding node embeddings are not able
to capture sufficient information from the graph. From there, the
performance increases with increasing d . The performance further
flattens out after a certain point, or even decreases (in the case of the
Foursquare dataset) as the resulting node embeddings start to over-
fit the input graph. We select d = 128 in all previous experiments,
as it shows good performance on all three datasets.

5.6.2 Context window size k . By fixing other parameters, we
study the impact of the context window k by increasing it from
2 to 10 with a step of 2. Figure 10(b) shows the results for the
node classification task (similar results are observed for the node
clustering task). We observe that a larger context window size
usually leads to better performance, as it is able to capture higher-
order node proximity.We also observe that the performance flattens
out after a certain point, and we empirically select k = 10 in all
previous experiments.

Table 2: End-to-end node embedding learning time (in sec-
onds)

DBLP Movie Foursquare
DeepWalk 236 333 484

Metapath2vec (original) 965 19,200 2,248
Metapath2vec (ours) 290 408 550

Hin2vec 904 1,301 1,801
JUST 310 442 616

5.7 Runtime Performance
In order to evaluate the runtime performance of our proposed
method, we investigate the end-to-end node embedding learning
time (from an input graph to the final node embeddings) using our
test PC4, for all random-walk based methods from our baselines
(including DeepWalk, Metapath2vec, Hin2vec) and our method
JUST. In particular, we note that the original implementation of
Metapath2vec released by the authors is highly customized to the
DBLP graph (the only dataset used in the paper), and also takes long
to run even on a small graph. Therefore, we implemented our own
version of Metapath2vec (ours) using the efficient Gensim library5
for the SkipGram training process.

Table 2 shows the results. First, we observe that DeepWalk shows
the shortest learning time, as it simply combines classical random
walks and a SkipGram model. Second, Metapath2vec (ours) requires
a bit more time than DeepWalk, as it needs to follow a given meta-
path to sample the next node in a random walk. In addition, we also
find that our implementation of Metapath2vec is much faster than
the original implementation. Third, our method JUST requires a bit
more time than Metapath2vec (ours), as we probabilistically control
random walks by balancing jumping and staying in a random walk.
Here we note that the SkipGram training process is the same for
DeepWalk, Metapath2vec (ours) and JUST; any runtime overhead
is only caused by their random walk strategies. Finally, Hin2vec
takes much longer than all other methods, as it tries to combine
all meta-paths shorter than a certain length and also output the
embeddings for the involved meta-paths.

In summary, compared to Metapath2vec (ours), our proposed
technique without requiring prior knowledge on meta-paths is
able to achieve higher performance on both node classification
and clustering tasks, with a minor overhead on the learning time.
Meanwhile, our technique outperforms also Hin2vec in most of the
experiments, with a dramatically reduced embedding learning time
(about 3x speedup).

6 DISCUSSION
Heterogeneous graphs with complex structures. In this study,
we evaluate our proposed technique using several widely used
heterogeneous graphs, which do not involve complex structures.
However, real-world heterogeneous graphs often have complex
structures, such as a large number of domains, or multi-relational
edges (hyperedges simultaneously linking multiple nodes). For
example, Knowledge Graphs often contain a large number of node
domains (types). Therefore, it is interesting to investigate how our
4Intel Core i5-7440EQ@2.90 GHz, 16GB RAM, Mac OS X.
5https://radimrehurek.com/gensim/models/word2vec.html
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proposed technique without meta-paths performs on those complex
heterogeneous graphs.

Automatic discovery of relevantmeta-paths.An alternative
way without requiring meta-paths as the input of an heterogeneous
graph embedding technique is to automatically discover/suggest
high-quality meta-paths. For example, Meng et al. [13] suggest
several meta-paths for DBLP graphs which are missed by domain
experts, with a particular focus on the authorship prediction task.
We note that we tried all their suggested meta-paths in our exper-
iments, but none of them leads to good results in our evaluation
tasks, as those meta-paths are suggested for a particular task only
(i.e., authorship prediction). However, it is still interesting to inves-
tigate how to automatically discover general-purpose meta-paths
for heterogeneous graph embedding problems.

7 CONCLUSION
Existing heterogeneous graph embedding techniques mostly resort
to ad-hoc meta-paths to guide random walks on an input heteroge-
neous graph for learning node embeddings. However, using these
meta-paths either requires prior knowledge from a domain expert
for optimal meta-path selection, or requires much computation to
combine all meta-paths shorter than a predefined length. In this pa-
per, by revisiting these meta-path based techniques, we investigated
the initial motivation of introducing meta-paths in heterogeneous
graph embedding problems, and considered whether meta-paths
were really necessary in this context. Specifically, as the meta-paths
were originally introduced to overcome the bias of classical random
walk to the highly visible domains, we proposed an alternative to
this issue without involving any meta-path. More precisely, we
proposed JUST, a heterogeneous graph embedding technique using
random walks with jump and stay strategies to overcome the afore-
mentioned bias in a more efficient manner. It can not only balance
between homogeneous edges (linking nodes in the same domain)
and heterogeneous edges (linking nodes across different domain), it
also balances the node distribution over different domains. To vali-
date our technique, we conducted a thorough empirical evaluation
on three heterogeneous graph datasets on both node classification
and clustering. Empirical results show the superiority of our tech-
nique compared to state-of-the-art methods. In particular, compared
to Hin2vec which tries to optimally combine all meta-paths shorter
than a predefined length, our technique yields higher performance
in most experiments, while dramatically reducing the embedding
learning time (3x speedup).

In the future, we plan to evaluate our technique on large hetero-
geneous graphs having vastly more complex schemas, such as RDF
graphs or knowledge graphs.
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