
Content to Node: Self-Translation Network Embedding
Jie Liu

Nankai University
Tianjin, China

jliu@nankai.edu.cn

Zhicheng He
Nankai University
Tianjin, China

hezhicheng@mail.nankai.edu.cn

Lai Wei
Nankai University
Tianjin, China

future@mail.nankai.edu.cn

Yalou Huang
Nankai University
Tianjin, China

ylhuang@nankai.edu.cn

ABSTRACT
This paper concerns the problem of network embedding (NE),
whose aim is to learn low-dimensional representations for nodes in
networks. Such dense vector representations offer great promises
for many network analysis problems. However, existing NE ap-
proaches are still faced with challenges posed by the characteristics
of complex networks in real-world applications. First, for many
real-world networks associated with rich content information, pre-
vious NE methods tend to learn separated content and structure
representations for each node, which requires a post-processing
of combination. The empirical and simple combination strategies
often make the final vector suboptimal. Second, the existing NE
methods preserve the structure information by considering short
and fixed neighborhood scope, such as the first- and/or the second-
order proximities. However, it is hard to decide the scope of the
neighborhood when facing a complex problem. To this end, we
propose a novel sequence-to-sequence model based NE framework
which is referred to as Self-Translation Network Embedding (STNE)
model. With the sequences generated by random walks on a net-
work, STNE learns the mapping that translates each sequence itself
from the content sequence to the node sequence. On the one hand,
the bi-directional LSTM encoder of STNE fuses the content and
structure information seamlessly from the raw input. On the other
hand, high-order proximity can be flexibly learned with the memo-
ries of LSTM to capture long-range structural information. By such
self-translation from content to node, the learned hidden represen-
tations can be adopted as node embeddings. Extensive experimental
results based on three real-world datasets demonstrate that the pro-
posed STNE outperforms the state-of-the-art NE approaches. To
facilitate reproduction and further study, we provide Internet access
to the code and datasets1.

1http://dm.nankai.edu.cn/code/STNE.rar

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3219988

CCS CONCEPTS
•Computingmethodologies→Neural networks; Natural lan-
guage processing; Unsupervised learning; Learning latent representa-
tions;

KEYWORDS
Network Embedding; Feature Learning; Sequence to Sequence

ACM Reference Format:
Jie Liu, Zhicheng He, Lai Wei, and Yalou Huang. 2018. Content to Node:
Self-Translation Network Embedding. In KDD ’18: The 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, August
19–23, 2018, London, United Kingdom. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3219819.3219988

1 INTRODUCTION
Network data is ubiquitous in many fields. Complex networks, such
as social networks and citation networks, often involve complex
structure and attribute information, which makes network mining
a challenging problem to deal with. Furthermore, large-scale net-
works cause issues of high dimensional representation and compu-
tational complexity for conventional network analysis approaches.
Hence, finding effective node representations plays a critical role in
many network analysis tasks, such as node classification, clustering,
and link prediction.

Recently, network embedding (NE) methods have been widely
recognized as effective network representation learning approaches.
NE aims to learn low-dimensional vectors for nodes in a network
by preserving the structural information. Perozzi et al. proposed
DeepWalk [19] to learn node representations based on local net-
work information. It first conducts random walks to obtain node
sequences. Then it employs the skip-gram model [17] to learn node
representations by treating node sequences as sentences. Inspired
by the success of DeepWalk, a number of NE approaches, such as
LINE [26], PTE [25], and node2vec [9] are proposed. It has been
theoretically proved that these approaches are closely related or
equivalent [20]. These approaches only focus on the structure of
the network. However, there is rich content information associated
with each node. In order to incorporate the content or attribute
information, TADW [32] is proposed to extend DeepWalk by taking
into consideration the text content associated with nodes, which
proves that DeepWalk is equivalent to factorizing a matrix derived
from node adjacency. Similarly, [28] extends LINE to incorporate
text information as well as the network structure.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1794

https://doi.org/10.1145/3219819.3219988
https://doi.org/10.1145/3219819.3219988

However, existing NE approaches are still faced with challenges
posed by the characteristics of the complex networks in real-world
applications. First, for many real-world networks, the nodes are
associated with rich content information, in addition to the net-
work structure information. Existing NE methods tend to learn
node representation with separated structure and content embed-
ding vectors, which requires post-processing of the combination of
these two kinds of vectors. The empirical combination strategies
often make the final vector suboptimal. Second, the existing NE
methods preserve the structure information by considering the
short, fixed, and handcrafted neighborhood information, such as
the first and the second order proximities, which cannot capture
long-range structure but local neighborhood information. Besides,
it is hard to decide the appropriate scope of neighborhood informa-
tion when facing a complex problem. Although there are a variety
of approaches for NE, these approaches do not have a focus on
dealing with these challenges.

To address these issues, in this paper, we present a Self-Translation
Network Embedding (STNE) model to learn network embedding
with flexible neighborhood scope for capturing more meaningful
proximity. We cast the network embedding problem as a machine
translation problem and determine the mapping from content se-
quence to node identity sequence. Specifically, given a mass of
sampled sequences using random walk, we devise an end-to-end
network embedding to encode each content sequence as a com-
pressed vector, and then decode it to generate the corresponding
node sequence. We exploit sequence to sequence model (seq2seq)
[24] to encode and decode the sampled sequences. The seq2seqmod-
els have been successfully applied to machine translation [1, 24],
and other natural language processing (NLP) problems[8]. The idea
of seq2seq is to use a long short-term memory (LSTM) to read the
input sequence, one step at a time, to obtain an overall sequence
vector representation, and then use another LSTM to learn the
output sequence from that vector. Since the structure information
is preserved by sequence context vector learned in a data-driven
manner via LSTM, it avoids the rigid assumption of the scope of
neighborhood.

Compared with the traditional NE approaches, our STNE directly
models the generation process of node sequences, and the gener-
ation function can be automatically learned from a large number
of text sequences, which provides an end-to-end solution. The key
to incorporate and learn the content information from scratch is
that we couple the seq2seq network model with additional text
embedding layers. Through learning the mapping from content
sequences to node sequences, the content information and struc-
ture information are seamlessly fused into the latent vectors of
hidden layers, which can be effectively used as the representations
of nodes.

In addition, STNE assigns context-aware embeddings to a node
according to different contexts it interacts with. Most existing NE
models assign each node a static embedding vector, which results
into context-free embeddings. Context-aware embeddings are ideal
because it is intuitive that one node may demonstrate various as-
pects when interacting with different neighboring nodes. Very
recently, CANE [28] is proposed to learn context-aware embedding
vectors from text contents of neighboring nodes. Instead of lean-
ing context-aware embeddings mainly from texts of neighboring

nodes, our STNE learns dynamic embeddings of a node when con-
fronting different sequences, which could take longer range and
more flexible context into account.

We conduct extensive experiments onmultiple real-world datasets
from different areas. Experimental results demonstrate the effec-
tiveness of our proposed STNE model as compared to other state-
of-the-art methods.

Our contributions are as follows:

• We propose to cast network embedding problem as a seq2seq
task. This advances the mainstream NE methods, such as
DeepWalk and its extensions, from local structure modeling
to global structure modeling of a sequence, which enables
capturing more semantic information and provides more
meaningful network presentation.
• Wedevise a heterogeneous seq2seqmodel architecturewhich
embeds raw input text and then learns the mapping from
content sequence to node sequence in an end-to-end manner.
• Extensive experiments are conducted on multiple real-world
network datasets. The results demonstrate the effectiveness
of our approach.

The rest of the paper is organized as follows. In Section 2, we
briefly survey related work in network embedding and sequence
learning. Section 3 presents the formal definitions of our problem.
We give the technical details for representation learning using STNE
in Section 4. In Section 5, we empirically evaluate STNE on various
real-world networks and assess the parameter sensitivity of our
algorithm. We conclude our work in section 6.

2 RELATEDWORK
Network embedding, whose aim is to learn low-dimensional node
representations, is an emerging network analysis paradigm. Tradi-
tionally, a network is represented as a graph. And then the affinity
graph [21] is constructed using the feature vectors of the data
points, e.g., the K-nearest neighbor graph of data. In this way, the
affinity graph can be embedded into a low dimensional space. Ex-
tensive graph embedding approaches have been proposed, such
as multidimensional scaling (MDS) [6], IsoMap [27], LLE [21] and
Laplacian Eigenmaps [2]. Due to the relying on solving the leading
eigenvectors of the affinity matrices, the computational complexity
is a critical bottleneck and makes them inefficient in real-world
applications.

Recently, network embedding or network representation learn-
ing has become an active research problem. DeepWalk [19] per-
forms random walks over networks and introduces an efficient
word representation learning model, Skip-Gram [17], to learn net-
work embeddings. LINE [26] optimizes the joint and conditional
probabilities of edges in large-scale networks to learn node rep-
resentations. Node2vec [9] modifies the random walk strategy in
DeepWalk into biased random walks to explore the network struc-
ture more efficiently. All of these approaches only consider the first-
and/or second-order proximities which preserve the microscopic
and local structure. Cao et al. [3] proposed to capture higher-order
proximity. Wang et al. [31] introduced task-specific structure, i.e.,
community module, for higher order proximity. Essentially, these
previous approaches mainly focus on the pairwise relation or other
task-specific local structures. Instead, our proposed approach can

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1795

Content-rich network Parallel Sequences Content-to-vertex self-translation Network embedding vectors (| |)

| |

Radom walk Seq2Seq Embedding

Figure 1: The framework of Self-Translation Network Embedding.

flexibly capture global proximity in an data-driven manner without
making any task-specific assumption.

In addition to the network topological information, the nodes
are often associated with rich attributes, such as text content, labels,
etc. In order to take content into account, Yang et al. presented text-
associated DeepWalk (TADW) [32] to improve matrix factorization
based DeepWalk with text information. Tu et al. proposed max-
margin DeepWalk (MMDW) [29] to learn discriminative network
representations by utilizing labeling information of nodes. Chen et
al. introduced group enhanced network embedding (GENE) [4] to
integrate existing group information in NE. Sun et al. regarded text
content as a special kind of nodes and proposed context-enhanced
network embedding (CENE) [23] through leveraging both structural
and textural information to learn network embeddings.

Another line of related work is sequence modeling which we
exploit to build our network embedding model. Recently, the broad
adoption of deep learning methods in NLP has given rise to the
prevalent use of the recurrent neural network (RNN) [7]. Long
short-term memory (LSTM) [10], a particular variant of RNN, have
become particularly popular, and been successfully applied to a
large number of tasks: speech recognition [8], sequence tagging
[12, 15], document categorization [33]. Moreover, in machine trans-
lation [1, 5, 24], an LSTM is used to encode a source sequence and
then another LSTM is adopted to decode a target sequence, which
is called Seq2Seq. Seq2Seq has also received significant research
attention in other NLP tasks such as parsing [13, 30], text summa-
rization [18] and multi-task learning [14]. In this work, we develop
an end-to-end Seq2Seq model to learn the mapping from content
sequence to node sequence.

3 PROBLEM FORMULATION
We consider the problem of learning low-dimensional represen-
tation for the content-rich network. In addition to the network
structure, there is often heterogeneous information accompanied
with nodes in real-world networks which are referred to as content-
rich networks.
Definition 1: Content-rich Network. Suppose there is a network
G = (V ,E), where V is the set of all vertices, and E is the set of all
connections between these vertices, i.e., E ⊂ V ×V . For each vertex

v , vi is the identity of the vertex v , and vc is the content associated
with v . Each edge eu,v ∈ E represents the relation between two
vertices (u,v).

Network embedding for content-rich network aims to learn a
low-dimensional representation xv ∈ Rk for each vertex v ∈ V
where k is the the dimension of representation space and expected
much smaller than |V |. The learned representations encode seman-
tic information of nodes in the network, which can be used to do
further network analysis, such as node classification.

Conventional network embedding approaches mainly focus on
short-range proximity to preserve the network structure semantic
information. One of the main representative network embeddings
is DeepWalk [19], which has inspired a number of extensions, in-
cluding TADW [32] for content-rich network embedding.

Compared with previous approaches, the key to our method is
that we formulate this task as a sequence to sequence problem. It
makes an analogy with machine translation tasks [5]. Using random
walk to generate truncated sequences from network, a set of parallel
sequences can be obtained.
Definition 2: Parallel Sequences. Let S = {v1,v2, · · · ,vT } be a
sequence of vertices sampled from a network using random walk,
the vertex identity sequence Si = {vi1,v

i
2, · · · ,v

i
T } and the cor-

responding content sequence Sc = {vc1 ,v
c
2 , · · · ,v

c
T } are a pair of

parallel sequences.
In order to capture long-range proximity, we propose to learn

a specific seq2seq model. With the set of parallel sequences, we
cast the network embedding task as a machine translation problem.
Specifically, as is shown in Figure 1, it is a heterogeneous self-
translation of vertices from content to vertex.
Definition 3: Content-to-node Self-translation. Given a set of
parallel sequences S = {(Sin , Scn)N1 }, content-to-node self-translation
is to learn a mapping function fθ : Scn 7→ Sin for each Sn ∈ S .

Figure 1 shows the overview of our proposed method. Given a
content-rich network, the random walk is employed to generate a
“corpus” that consists of parallel sequences. Then a specific seq2seq
model will be learned on the parallel sequences “corpus”. Finally
the latent representations of the intermediate layers are regarded
as the embedding vectors which can be used for various network
analysis tasks.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1796

4 METHODOLOGY
In this paper, we propose a Self-Translation Network Embedding
model to learn node representations on the basis of both content
and structure information. The critical point of STNE is the content-
to-node self-translation process that maps content sequences into
corresponding node sequences. Figure 2 illustrates the overall frame-
work of STNE which we will explain in details in this section.

4.1 Content Embedding
STNE is a hierarchical seq2seq model that works on the parallel
sequences and learns the mapping relation from content to nodes.
Compared with conventional seq2seq models, we couple a hierar-
chical text embedding layer before sequence encoder to encode the
input content sequences into latent semantic space.

Formally, for a given parallel sequence (Sin , Scn), content sequence
Scn = {vc1 , v

c
2 , . . . , v

c
T } and identity sequence S

i
n = {vi1, v

i
2, . . . , v

i
T },

STNE first reads Scn and encodes it into a context-aware vector rep-
resentation w. Since vct is the raw content of node vi , e.g. text, it
should be preprocessed into a vector. For end-to-end learning pur-
pose, an embedding layer is adopted to reduce manual intervention:

vct = Emb(vct). (1)

The embedding function Emb(·) could be any combination of fea-
ture learning neural networks layers, such as the fully connected
layer, convolution layer, etc. Furthermore, In this paper, to make a
fair comparison with other approaches, we use the raw TFIDF repre-
sentations and fully connected layer for semantic feature learning.

4.2 Content Sequence Encoder
In order to capture the global semantic information over sequences,
we employ LSTM [24] to encode the sequence of embedding vectors.
{vc1 , . . . , v

c
T }

ht = H(vct ,ht−1) (2)
and

w = Q({h1, . . . ,hT }), (3)
where ht ∈ Rk is the hidden state vector at time step t and context
vector w is calculated from the sequence of ht s.H(·, ·) and Q(·)
are some nonlinear functions.

LSTM uses purpose-built memory cells to store information
which makes it better at considering long-range context informa-
tion. At the t-th time step,H(·, ·) is implemented by the following
composite functions:

it = σ (Wvivct +Whiht−1 +Wcict−1 + bi), (4)

ft = σ (Wv f v
c
t +Whf ht−1 +Wcf ct−1 + bf), (5)

ot = σ (Wvovct +Whoht−1 +Wcoct−1 + bo), (6)
ct = ft ⊗ ct−1 + it ⊗ tanh(Wvcvct +Whcht−1+bc), (7)

ht = ot ⊗ tanh(ct), (8)
where σ (·) is the logistic sigmoid function, ⊗ is the point-wise
product of vectors, it , ft , ot are the input, forget, and output gate
vectors respectively, and ct is the cell memory vector. To model
both the forward and backward context information along random
walks, we adopt a bi-directional LSTM (Bi-LSTM) encoder layer:

−→
ht = Hf w (vct ,

−−−→
ht−1),

←−
ht = Hbw (vct ,

←−−−
ht+1). (9)

Text content

embedding

Node Content Sequence

LSTM Decoder

Node Identity Sequence

Context vector

Bi-LSTM Encoder

Figure 2: STNE for network embedding.

And the Q(·) function concatenates the last hidden state vectors of
the forward and backward LSTM:

w = Q({
−→
h1, . . . ,

−→
hT ,
←−
h1, . . . ,

←−
hT }) = [

−→
hT ;
←−
h1]. (10)

4.3 Node Sequence Generation
Now that the content sequence Scn has been compressed into the
context vector representation w. The context vector w seamlessly
fuses the content information in vct s and the structure information
implied by the sequence itself. Before translating w into the node
identity sequence Sin , a decoder layer is employed to decode w
into a sequence of high-level hidden representation vectors so that
sequences can be mapped from the content semantic space into the
identity semantic space.

Formally, the decoder layer takes the compressed context vec-
tor w as input and generates a sequence of representations D =
{d1, d2, . . . , dT } for the translation layer. Because LSTM has been
proved to perform well in various sequence generating tasks, we
use an LSTM decoder function D(·, ·) to generate D:

dt = D(w, dt−1). (11)

Compared with natural word space, the semantics of the identity
space is relatively concise, and a simplified LSTM is enough to
decode w:

dt = D(w, dt−1) =
{
H(0, w) t = 1
H(0, dt−1) t > 1 , (12)

where 0 is an all-zero vector.
After D = {d1, d2, . . . , dT } is decoded from the context vector

w, the final step is translatingD into the identity sequence Sin with a
translation layer. Specifically, the translation is a mapping function

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1797

from the identity semantic vector dt to the corresponding identity
vit . For such purpose, a fully connected layer is first utilized to
transform dt into a |V |-dimension vector, where each dimension
corresponds to an identity of a node,

gt = σ (Wf cdt + bf c). (13)

Then a softmax layer transforms gt into the probabilities,

pt (j) = softmax(gt)j =
exp(gt (j))∑
j′ exp(gt (j ′))

. (14)

4.4 Optimization
After the prediction layer, a cross-entropy loss is adopted tomeasure
the correctness of the translation,

L = −
N∑
n=1

∑
vt ∈Sn

|V |∑
j
δ (vit , j)pt (j), (15)

where δ (·, ·) is a binary function that outputs 1 if vit equals j, oth-
erwise 0. To make the predicted identity sequence continuous, the
predicted node vit should be a neighbor of the previous node vit−1,
thus the loss function can be further improved to concentrate only
on the neighborhood nodes of vit−1:

Lt = −
N∑
n=1

∑
vt ∈Sn

∑
j ∈N (v it−1)

δ (vit , j)pt (j), (16)

where N (vit−1) denotes the neighborhood set of vit−1.
The model parameter set is θ = {W∗s, b∗s} where the size of

each is O(|V |k). The RMSProp algorithm [22] is used to optimize
these parameters (Line 6 and 7 in Algorithm 1), which is very
effective for optimizing RNNs. The derivatives are solved by using
the chain rules in the back-propagation process. The learning rate
η for RMSProp is initially set to 0.001, and the decay rate α is 0.9.

Algorithm 1 STNE Optimization Algorithm.

Input: network G = (V ,E)
Output: {h(v1), . . . , h(v |V |)}
1: Generate parallel sequence set S = {(Sin , Scn)N1 } with random

walk
2: Initialize model parameters θ
3: for each (Sin , Scn) do
4: for vt ∈ (Sin , Scn) do
5: Lt = −vitgt (vit)
6: η = decay(η,α , ∂Lt

∂θ)
7: θ = θ − η ∂Lt

∂θ
8: end for
9: end for

4.5 Node Embedding
After the training process converges, the outputs of the encoder
layers are taken as the node representations. It is worth noting
that the node representations learned by STNE are context-aware.
That is, one node appears in multiple sequences and has multiple
hidden representations. This characteristic is appealing that it can
capture different semantic aspects of a node when interacting with
different neighbors. For example, a paper can be cited by other
papers from different research sub-fields. They might be related

due to similar application tasks, same theoretics, or something else.
Suppose that node vi appears |vi | times in different sequences, it
would have |vi | representations

−−−−→
H(vi) = {

−−−−−→
h1(vi), . . . ,

−−−−−−−→
h |vi |(vi)}

from the forward encoder layer and |vi | representations
←−−−−
H(vi) =

{
←−−−−−
h1(vi), . . . ,

←−−−−−−−
h |vi |(vi)} from the backward encoder layer. The final

representation ofvi is calculated as the average of the concatenation
of
−−−−→
H(vi) and

←−−−−
H(vi):

h(vi) =
1
|vi |

|vi |∑
j=1
[
−−−−−→
hj (vi);

←−−−−−
hj (vi)]. (17)

The overall end-to-end learning process of our STNE model is
summarized in Figure 1.

5 EXPERIMENTS
To investigate the effectiveness of STNE in the joint modeling
of content and structure information, we evaluate our proposed
method on several real-world datasets. The experimental results
prove our points.

5.1 Datasets
We conduct experiments of node classification on three publicly
available real-world datasets2, including two citation networks and
one web page network.
• Cora is a citation network dataset which contains 2708 ma-
chine learning papers from seven research categories. There
are 5429 citation relations between all these papers. Each doc-
ument is described by its title and abstract. After removing
stop words and low-frequency words, we have a vocabulary
of 1433 words. Samples are represented as TFIDF vectors,
and each sample has 18 words on average.
• Citeseer is also a citation network dataset. It contains 3312
research papers from six categories, and there are 4732 cita-
tion links between them. Each paper is also described by its
title and abstract. Stop words and low-frequency words are
also removed, and the final vocabulary contains 3703 terms.
Each document has 32 words on average and is represented
as a TFIDF vector too.
• Wiki dataset contains 2405web pages from 17 categories. The
pages are long texts and there are 17981 hyper links among
them. After removing stop words, low-frequency words, and
documents that have no links to the others, vocabulary size
is reduced to 4973. Each document has 640 words on average
and is represented as a TFIDF vector as well.

To facilitate random walks on the edges, all three networks are
treated as undirected graphs. Table 1 summarizes the statistics of
datasets.

5.2 Comparison Models
As a hot research topic, various models have been developed to
learn node representations in content-rich networks. To achieve
comprehensive and comparative analysis of STNE, we compared
it with three kinds of representative models: content-only models,

2http://linqs.cs.umd.edu/projects//projects/lbc/index.html

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1798

Table 1: Statistics of Datasets.

Datasets Cora Citeseer Wiki
Nodes 2708 3312 2405
Edges 5429 4732 17981
Edge Density 0.074% 0.043% 31.1%
Words 1433 3703 4973
Avg. Words / Doc. 18 32 640
Labels 7 6 17
Max. class size 818 701 406
Min. class size 180 248 9
Avg. class size 387 552 141

structure-only models, and models that combine both content and
structure information.

• DeepWalk. DeepWalk [19] is a structure-only NE model. We
follow the parameter settings in the original paper, where
the number of walks started at each node is set to 80, the
length of each walk is set to 40, and the window size is 10.
After grid search from 50 to 200, the dimension of learned
representations is 100 for Cora and Citeseer datasets, and it
is 200 for Wiki dataset.
• MMDW.MMDW [29] is an extension of DeepWalk, which in-
corporates the semi-supervised information. Hence, MMDW
is still a structure-only baseline. The pairwise structural rela-
tions between nodes are summarized into a matrix which is
latter factorized with the max-margin loss for discrimination
purpose. Following the original paper, the maximum length
of random walks is set to t = 2. And the balancing parameter
η is set to 0.01.
• SVD. In SVD, documents are first formalized into a TFIDF
matrix whose rows and columns correspond to documents
and words respectively. After that, singular value decompo-
sition is performed on the TFIDF matrix, and the left singular
matrix T ∈ R200×|V | is treated as document representations.
Therefore, SVD is a content-only baseline.
• PLSA. Similar to SVD, PLSA [11] is also a content-only base-
line. Instead of directly decomposing the TFIDFmatrix, PLSA
learns the topic distributions of documents and words. And
the topic distributions are regarded as node representations.
• Naive Combination. As a simple baseline that considers both
structure and content information, we concatenate node
representations learned by SVD and DeepWalk. Due to the
above settings, the dimension of learned representations is
300 for Cora and Citeseer datasets, and it is 400 for Wiki
dataset.
• NetPLSA. NetPLSA [16] is another baseline method that
considers both structure and text information. According to
the assumption that linked documents should share similar
semantics, it learns network enhanced topic distributions
with a link based regularization term. After grid search, we
set the number of topics to 160 for Cora and Citeseer datasets,
and 200 for Wiki dataset.
• TADW. TADW [32] is another extension of DeepWalk which
considers both structure and content information of nodes.
Relations between node pairs are summarized into a matrix

and then factorized with the assistance of content informa-
tion. Following the original paper, the maximum random
walk steps is set to t = 2. Node content features are obtained
the same as the SVD method. The representation dimension
k is set to 80 for Cora and Citeseer datasets, and 200 for Wiki
dataset. And the balancing parameter is λ = 0.2.

Table 2: Configurations of STNE.

Datasets Cora Citeseer Wiki
TFIDF embedding dimension 1433 3703 4973
Forward encoder dimension 500 500 500
Forward encoder cells 1 2 1
Backward encoder dimension 500 500 500
Backward encoder cells 1 2 1
Encoder context dimension 1000 2000 1000
Decoder layer dimension 1000 2000 1000
Prediction layer dimension 2708 3312 2405
Total layers 7 9 7

5.3 STNE Settings
The architectures of STNE for different datasets are listed in Table
2. The neural networks have 7 layers for Cora and Wiki datasets,
and 9 layers for Citeseer dataset. If deeper models are adopted,
performances almost remain unchanged or even deteriorate.

For all three datasets, we generate 10 random walks that start at
each node, and the length of the walks is set to 10. Detailed analysis
of these two parameters will be provided later. For encoder and
decoder layers, we apply dropout with probability p = 0.2, the
batch size is set to 128 during training. The optimization process
converges within 2, 1 and 7 epochs on Cora, Citeseer, and Wiki
datasets respectively.

For all compared algorithms, to eliminate the classifier’s impact
on performances, we simply apply the Logistic Regression classifier
for classification after node representations are learned. Classifica-
tion results are evaluated with the F1-score metric. In detail, for a
label A, we denote TP(A), FP(A) and FN(A) as the number of true
positives, false positives and false negatives in the instances which
are predicted as A, respectively. Suppose C is the overall label set.
F1-score is defined as:

Pr =

∑
A∈C TP(A)∑

A∈C TP(A) + FP(A) , R =
∑
A∈C TP(A)∑

A∈C TP(A) + FN (A) , (18)

F1 − score = 2 × Pr × R
Pr + R

. (19)

5.4 Classification Results
Table 3, Table 4 and Table 5 show the classification results on Cora,
Citeseer and Wiki datasets respectively. The percentage of labeled
nodes varies from 10% to 50%. And the best results are boldfaced.
From these results, we have the following observations and analysis:
• Structure-only baselines (DeepWalk and MMDW) perform
better than content-only baselines (PLSA and SVD) on Cora
dataset, while content-only baselines perform better on the
other two datasets. This phenomenon can be explained by
the characteristics of datasets. First, the Cora documents

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1799

Table 3: F1-score on Cora dataset with the percentage of la-
beled nodes varies from 10% to 50%.

% Labeled Nodes 10% 20% 30% 40% 50%
DeepWalk 76.4 78.0 79.5 80.5 81.0
MMDW 74.9 80.8 82.8 83.7 84.7
SVD 58.3 67.4 71.1 73.3 74.0
PLSA 57.0 63.1 65.1 66.6 67.6
Naive Combination 76.5 80.4 82.3 83.3 84.1
NetPLSA 80.2 83.0 84.0 84.9 85.4
TADW 82.4 85.0 85.6 86.0 86.7
STNE 84.2 86.5 87.0 86.9 88.2

Table 4: F1-score on Citeseer dataset with the percentage of
labeled nodes varies from 10% to 50%.

% Labeled Nodes 10% 20% 30% 40% 50%
DeepWalk 52.4 54.7 56.0 56.5 57.3
MMDW 55.6 60.1 63.2 65.1 66.9
SVD 58.3 66.4 69.2 71.2 72.2
PLSA 54.1 58.3 60.9 62.1 62.6
Naive Combination 61.0 66.7 69.1 70.8 72.0
NetPLSA 58.7 61.6 63.3 64.0 64.7
TADW 70.6 71.9 73.3 73.7 74.2
STNE 69.6 71.2 72.2 74.3 74.8

Table 5: F1-score on Wiki dataset with the percentage of la-
beled nodes varies from 10% to 50%.

% Labeled Nodes 10% 20% 30% 40% 50%
DeepWalk 59.3 64.3 66.2 68.1 68.8
MMDW 57.8 62.3 65.8 67.3 67.3
SVD 65.1 72.9 75.6 77.1 77.4
PLSA 69.0 72.5 74.7 75.5 76.0
Naive Combination 66.3 73.0 75.2 77.1 78.6
NetPLSA 67.2 70.6 71.7 71.9 72.3
TADW 72.6 77.3 79.2 79.9 80.3
STNE 73.9 78.0 80.6 81.5 82.7

contain fewer words than the other two, which makes the
content information relatively sparse. Second, documents
in Citeseer datasets contain more words than those in Cora
dataset, but there are fewer edges among nodes. So the con-
tent information contributes relatively more to performances
on Citeseer dataset. Third, although the Wiki dataset con-
tains far more edges than the other two, the long documents
seem to contribute more to the classification. However, by
simultaneously modeling content and structure information,
Naive Combination, NetPLSA, TADW, and STNE can all
outperform the content-only or structure-only baselines.
• On Cora and Wiki datasets, STNE outperforms all compared
baselines. On Citeseer dataset, STNE achieves comparable
results to TADW, but still outperforms other baselines. These
observations demonstrate the effectiveness of STNE. As
shown in Table 1, the Citeseer dataset has a lower edge
density. Because our STNE utilizes higher order proximity
information than TADW, it suffers more from the insufficient
links.

• On Cora and Wiki datasets, STNE can outperform compared
baselines even if it uses fewer labeled nodes. The F1-scores
of most compared baselines would drop when the classi-
fier is trained with fewer labeled nodes. The reason is that
they cannot effectively combine the content and structure
information, and inconsistencies exist between the represen-
tations of training and testing samples. Because STNE can
jointly learn from content and structure information, and
take advantage of long node sequences to smooth nodes’
representations, the training and testing samples would be
more consistent.

5.5 Parameter Analysis
There are two important parameters in STNE, the length of ran-
dom walks and the number of walks started at each node. In this
subsection, we evaluate how different values of walk length and
walk number can affect the results.

5.5.1 Length of Random Walks. We first show how the length
of random walks affects the performance in Figure 3. The length
varies from 3 to 15, and the F1-scores are shown.We can see that the
performance initially raises a little when the length increases. This
is intuitive as longer sequences can encode higher-order proximity
information. However, when the length of walks continuously in-
creases after it reaches 10, the performance starts to drop slowly.
The reason is that too long sequences may introduce noises and
deteriorate performances. Compared with the Figure 5 in node2vec
[9], STNE is less sensitive to the length of random walks. Thus
jointly modeling both content and structure information can reduce
the dependence on high order proximity information. In addition,
STNE only requires length 10 walks to achieve best performances,
while DeepWalk and node2vec require 40.

5.5.2 Number of Random Walks per Node. Then we show how
the number of random walks started at each node affects the per-
formance in Figure 4, where it varies from 1 to 15. The number
of random walks decides how many times we traverse the inner
sequential structure information contained in graphs. As observed
in Figure 4, a small number of random walks is incapable of fully
exploiting the structure information, and performance would be
improved when it increases. However, when the number of walks
continuously increases after it reaches 10, the performance starts
to drop slowly. The reason is that too many random walks may
introduce noises and redundancy and deteriorate performance. In
addition, compared with the Figure 5 in DeepWalk [19] and the
Figure 5 in node2vec [9], STNE is less sensitive to the number
of random walks, as the content information can help reduce the
dependence on structure information.

5.6 Node Representation Analysis
Besides the encoder output h(vi), the decoder output d(vi) can
also be similarly calculated as in Equation (17). Both hs and ds
can be taken as node representations in subsequent tasks, so as
the concatenation of them. It is interesting to investigate the per-
formances of different node representations in classification. The
F1-scores are plotted out in Figure 5, where the percent of labeled
nodes r varies from 10% to 50%. The overall trend is similar on all
three datasets, where encoder output h achieves the best F1-scores,

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1800

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

3 4 5 6 7 8 9 10 11 12 13 14 15

F
1
-s

co
re

Length of Random Walks

r=10%

r=20%

r=30%

r=40%

r=50%

(a) Cora

0.5

0.55

0.6

0.65

0.7

0.75

0.8

3 4 5 6 7 8 9 10 11 12 13 14 15

F
1
-s

co
re

Length of Random Walks

r=10%

r=20%

r=30%

r=40%

r=50%

(b) Citeseer

0.6

0.65

0.7

0.75

0.8

0.85

3 4 5 6 7 8 9 10 11 12 13 14 15

F
1

-s
co

re

Length of Random Walks

r=10%

r=20%

r=30%

r=40%

r=50%

(c) Wiki

Figure 3: Analysis of the length of random walks with the percentage of labeled nodes r varying from 10% to 50%.

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F
1

-s
c
o

re

Number of Random Walks Started at Each Node

r=10%

r=20%

r=30%

r=40%

r=50%

(a) Cora

0.5

0.55

0.6

0.65

0.7

0.75

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F
1

-s
c
o

re

Number of Random Walks Started at Each Node

r=10%

r=20%

r=30%

r=40%

r=50%

(b) Citeseer

0.6

0.65

0.7

0.75

0.8

0.85

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F
1

-s
c
o
re

Number of Random Walks Started at Each Node

r=10%

r=20%

r=30%

r=40%

r=50%

(c) Wiki

Figure 4: Analysis of the number of random walks started at each node with the percentage of labeled nodes r varying from
10% to 50%.

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

r=10% r=20% r=30% r=40% r=50%

F
1

-s
co

re

Percentage of Labeled Nodes

h d [h; d]

(a) Cora

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

r=10% r=20% r=30% r=40% r=50%

F
1

-s
co

re

Percentage of Labeled Nodes

h d [h; d]

(b) Citeseer

0.6

0.65

0.7

0.75

0.8

0.85

r=10% r=20% r=30% r=40% r=50%

F
1

-s
co

re

Percentage of Labeled Nodes

h d [h; d]

(c) Wiki

Figure 5: Analysis of different node representations with the percentage of labeled nodes r varying from 10% to 50%.

decoder output d performs worst, and the concatenation of them
[h; d] gets a compromise between them. The possible reason is
that the encoder layer learns node representations directly from the
input sequence with content and structure, while the decoder layer
learns on the basis of the compressed sequence encoding vector
w, which leads to more information loss in the outputs of decoder
layer. The results suggest that the h is the ideal choice for node
representation.
5.7 Node Content Embedding Analysis
Here we investigate the effectiveness of the content embedding in
STNE. An STNE model with content embedding from raw TFIDF

input is compared with another STNE without content embedding.
For the latter one, we use SVD to extract features as in TADW
[32]. Figure 6 shows the F1-scores of node classification, where the
percentage of labeled nodes r varies from 10% to 50%. It is obvi-
ous that content embedding on the raw TFIDF features achieves
significantly better performances than SVD features. This phenom-
enon illustrates that there exists a lot of information loss in the
non-trainable SVD process. And it is better to directly learn from
the raw inputs with end-to-end methods, which is exactly what we
want to do with the STNE model.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1801

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

r=10% r=20% r=30% r=40% r=50%

F
1
-s

co
re

Percentage of Labeled Nodes

TFIDF SVD

(a) Cora

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

r=10% r=20% r=30% r=40% r=50%

F
1

-s
co

re

Perventage of Labeled Nodes

TFIDF SVD

(b) Citeseer

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

r=10% r=20% r=30% r=40% r=50%

F
1
-s

co
re

Percentage of Labeled Nodes

TFIDF SVD

(c) Wiki

Figure 6: Analysis of content embedding with the percentage of labeled nodes r varying from 10% to 50%.

6 CONCLUSION
In this paper, we explored the task of content-rich network embed-
ding. We cast this problem as a neural machine translation task,
and proposed STNE to learn node representation with a content-
to-node seq2seq model. To the best of our knowledge, this is the
first time that the network embedding problem is cast as a ma-
chine translation task. The merits of STNE come from three as-
pects. First, it overcomes the restrictions of fixed and low-order
proximity. Second, an integrated embedding vector that seamlessly
fuses content and structure information can be learned for each
node automatically, which avoids handcrafted combinations of sep-
arated content and structure vectors. Third, the representation is
context-aware, which is appealing in many real-world applications.
Extensive experiments demonstrated that our proposed end-to-end
content-to-node translation framework substantially outperforms
the state-of-the-art approaches.

ACKNOWLEDGMENTS
This research is supported by the National Natural Science Foun-
dation of China under the grant No. U1633103, the Key Projects
in Tianjin Science and Technology Pillar Program under the grant
No. 17YFZCGX00610, and the Open Project Foundation of Informa-
tion Technology Research Base of Civil Aviation Administration of
China under the grant No. CAAC-ITRB-201601.

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[2] Mikhail Belkin and Partha Niyogi. 2001. Laplacian Eigenmaps and Spectral
Techniques for Embedding and Clustering. Advances in Neural Information
Processing Systems 14, 6 (2001).

[3] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning Graph Repre-
sentations with Global Structural Information. InACM International on Conference
on Information and Knowledge Management. 891–900.

[4] Jifan Chen, Qi Zhang, and Xuanjing Huang. 2016. Incorporate Group Information
to Enhance Network Embedding. In Proceedings of the 25th CIKM (CIKM ’16).
ACM, New York, NY, USA, 1901–1904. https://doi.org/10.1145/2983323.2983869

[5] Kyunghyun Cho, Bart Van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
Computer Science (2014).

[6] Michael A. A. Cox and Trevor F. Cox. 2001. Multidimensional Scaling. Journal of
the Royal Statistical Society 46, 2 (2001), 1050âĂŞ1057.

[7] Jeffrey L. Elman. 1990. Finding Structure in Time. Cognitive Science 14, 2 (1990),
179–211.

[8] Alex Graves. 2013. Generating Sequences With Recurrent Neural Networks.
CoRR abs/1308.0850 (2013). arXiv:1308.0850 http://arxiv.org/abs/1308.0850

[9] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. 2016 (2016), 855–864.

[10] Sepp Hochreiter and JÃĳrgen Schmidhuber. 1997. Long short-term memory.
Neural Computation 9, 8 (1997), 1735–1780.

[11] Thomas Hofmann. 1999. Probabilistic Latent Semantic Indexing. In IGIR. 50–57.
https://doi.org/10.1145/312624.312649

[12] Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF Models for
Sequence Tagging. arXiv: Computation and Language (2015).

[13] Dong Li and Mirella Lapata. 2016. Language to Logical Form with Neural Atten-
tion. In Meeting of the Association for Computational Linguistics.

[14] Minh Thang Luong, Quoc V Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser.
2015. Multi-task Sequence to Sequence Learning. Computer Science (2015).

[15] Xuezhe Ma and Eduard H Hovy. 2016. End-to-end Sequence Labeling via Bi-
directional LSTM-CNNs-CRF. ACL (2016), 1064–1074.

[16] Qiaozhu Mei, Deng Cai, Duo Zhang, and ChengXiang Zhai. 2008. Topic modeling
with network regularization. InWWW. 101–110.

[17] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. Computer Science (2013).

[18] Ramesh Nallapati, Bing Xiang, and Bowen Zhou. 2016. Sequence-to-Sequence
RNNs for Text Summarization. CoRR abs/1602.06023 (2016). arXiv:1602.06023

[19] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning
of social representations. In SIGKDD. 701–710.

[20] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2017.
Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE,
and node2vec. (2017).

[21] Sam T. Roweis and Lawrence K. Saul. 2000. Nonlinear Dimensionality Reduction
by Locally Linear Embedding. Science 290, 5500 (2000), 2323–6.

[22] Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747 (2016).

[23] Xiaofei Sun, Jiang Guo, Xiao Ding, and Ting Liu. 2016. A General Frame-
work for Content-enhanced Network Representation Learning. arXiv preprint
arXiv:1610.02906 (2016).

[24] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to Sequence
Learning with Neural Networks. In NIPS. Curran Associates, Inc., 3104–3112.

[25] Jian Tang, Meng Qu, and Qiaozhu Mei. 2015. PTE: Predictive Text Embedding
through Large-scale Heterogeneous Text Networks.

[26] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-scale Information Network Embedding. 2 (2015), 1067–1077.

[27] J. B. Tenenbaum, Silva V De, and J. C. Langford. 2000. A global geometric
framework for nonlinear dimensionality reduction. Science 290, 5500 (2000),
2319.

[28] Cunchao Tu, Han Liu, Zhiyuan Liu, and Maosong Sun. 2017. CANE: Context-
Aware Network Embedding for Relation Modeling. In Meeting of the Association
for Computational Linguistics. 1722–1731.

[29] Cunchao Tu, Weicheng Zhang, Zhiyuan Liu, and Maosong Sun. 2016. Max-
margin deepwalk: discriminative learning of network representation. In IJCAI.
3889–3895.

[30] Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey
Hinton. 2014. Grammar as a foreign language. Eprint Arxiv (2014), 2773–2781.

[31] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017.
Community Preserving Network Embedding. In AAAI.

[32] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Chang. 2015.
Network representation learning with rich text information. In IJCAI.

[33] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alexander J Smola, and Ed-
uard HHovy. 2016. Hierarchical Attention Networks for Document Classification.
(2016), 1480–1489.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1802

https://doi.org/10.1145/2983323.2983869
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850
https://doi.org/10.1145/312624.312649
http://arxiv.org/abs/1602.06023

	Abstract
	1 Introduction
	2 Related work
	3 Problem Formulation
	4 Methodology
	4.1 Content Embedding
	4.2 Content Sequence Encoder
	4.3 Node Sequence Generation
	4.4 Optimization
	4.5 Node Embedding

	5 Experiments
	5.1 Datasets
	5.2 Comparison Models
	5.3 STNE Settings
	5.4 Classification Results
	5.5 Parameter Analysis
	5.6 Node Representation Analysis
	5.7 Node Content Embedding Analysis

	6 Conclusion
	Acknowledgments
	References

