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ABSTRACT

Network embedding, aiming to embed a network into a low di-
mensional vector space while preserving the inherent structural
properties of the network, has attracted considerable attentions
recently. Most of the existing embedding methods embed nodes
as point vectors in a low-dimensional continuous space. In this
way, the formation of the edge is deterministic and only determi-
ned by the positions of the nodes. However, the formation and
evolution of real-world networks are full of uncertainties, which
makes these methods not optimal. To address the problem, we
propose a novel Deep Variational Network Embedding in Wasser-
stein Space (DVNE) in this paper. The proposed method learns
a Gaussian distribution in the Wasserstein space as the latent re-
presentation of each node, which can simultaneously preserve the
network structure and model the uncertainty of nodes. Specifically,
we use 2-Wasserstein distance as the similarity measure between
the distributions, which can well preserve the transitivity in the
network with a linear computational cost. Moreover, our method
implies the mathematical relevance of mean and variance by the
deep variational model, which can well capture the position of the
node by the mean vectors and the uncertainties of nodes by the va-
riance. Additionally, our method captures both the local and global
network structure by preserving the first-order and second-order
proximity in the network. Our experimental results demonstrate
that our method can effectively model the uncertainty of nodes in
networks, and show a substantial gain on real-world applications
such as link prediction and multi-label classification compared with
the state-of-the-art methods.
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1 INTRODUCTION

Network embedding has attracted considerable research attentions
in the past few years. The basic idea is to embed a network into a
low-dimensional vector space to preserve the network structure.
Many network embedding methods are demonstrated to be effective
in a variety of applications, such as link prediction [42, 44], classi-
fication [8, 26] and clustering [35, 46]. However, most of existing
network embedding methods represent each node by a single point
in a low-dimensional vector space. In this way, the formation of
the whole network structure is deterministic.

Actually, real-world networks are much more complex than we
assume. The formation and evolution of the networks are full of
uncertainties. For example, for the nodes with low degree, they
contain less information and thus their representations bear more
uncertainties than others. For the nodes across multiple communi-
ties, the possible contradiction between their neighboring nodes
may also be larger and thus cause the uncertainty. Furthermore, in
social network, human behavior is multi-faceted which also ma-
kes the generation of edges uncertain [47]. For all of these cases,
without considering the uncertainty of networks, the learned em-
beddings will be less effective in network analysis and inference
tasks.

Gaussian distribution innately represents the uncertainty pro-
perty [43]. Therefore, it is promising to represent a node by Gauss-
ian distributions, i.e. the mean and the variance, rather than a point
vector to incorporate the uncertainty. Motivated by this, to model
the uncertainty of each node using Gaussian distributions, there
are some basic requirements for network embedding methods to
meet.

e Transitivity: The embedding space should be a metric space
to preserve the transitivity in networks. Transitivity is a
very important property in networks, especially in social
networks [25]. For example, the friend of my friend is more
likely to be my friend than some randomly chosen users.
Moreover, the transitivity measures the density of triangles
in a network, which plays an important role in calculating
clustering coefficient [7]. If the metric space satisfies the
triangle inequality, the transitivity in the network can be
well preserved.

Uncertainty: By using Gaussian distributions to represent
a node, the mean and the variance should preserve different
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properties to make such representations informative. Speci-
fically, the mean vectors should reflect the position of the
nodes and variance terms should contain the uncertainty of
the nodes. In this way, the representations based on distribu-
tions can preserve the uncertainty while supporting network
applications.

Strcutural Proximity: The network structures, especially
high-order proximity, should be preserved in a effective and
efficient way. The high-order proximity is critical for captu-
ring the network structure, which has been demonstrated to
be useful in many real-world applications [36].

Recently, some works attempt to use Gaussian distributions to
represent a node for network embedding [3, 17, 24] to integrate un-
certainty. However, these methods use the Kullback-Leibler (abbre-
viated as KL) divergence [28] to measure the similarity between
distributions. However, the KL divergence is asymmetric and does
not satisfy triangle inequality. Thus, it can not well preserve the
transitivity of proximity in networks, especially in undirected net-
works. Additionally, these methods regard the variance terms as
additional dimensions of mean vectors, and use similarity measure
to constrain their learning. In this way, they do not reflect the in-
trinsic relationship between variance terms and mean vectors in
the model. Finally, very few of these works preserve the high-order
proximity in network embedding, except Graph2Gauss [3]. But
Graph2Gauss needs to calculate the shortest path between any two
nodes, which is unaffordable in large-scale networks.

To address these problems, we propose a novel Deep Variational
Network Embedding in Wasserstein Space method in this paper,
named DVNE. The proposed method learns a Gaussian Embedding
for each node in the Wasserstein Space by the deep variational mo-
del. Specifically, we employ 2-Wasserstein distance to measure the
similarity between the distributions, i.e. the embeddings of the no-
des. The 2-Wasserstein distance is a real metric that able to preserve
the transitivity in embedding space. In this way, the proposed deep
model is able to simultaneously preserve the transitivity and model
the node uncertainty with linear time complexity. Meanwhile, we
use a deep variational model to minimize the Wasserstein distance
between the model distribution and the data distribution, which
can extract the intrinsic relationship between mean vectors and
variance terms. Furthermore, our method efficiently preserve the
first-order and second-order proximity of the nodes in networks,
empowering the learned node representations to reflect both local
and global network structure [44].

The main contributions of our method are summarized as fol-
lows:

o We propose DVNE, an novel method that learns the Gaussian
embedding in the Wasserstein space, which can well preserve
the transitivity in networks and reflect the uncertainties of
nodes.

We imply the mathematical relevance of mean vectors and
variance terms by the deep variational model, where the
mean vectors denote the position of the nodes and the vari-
ance terms represent the uncertainties of the nodes.

We efficiently preserve the first-order and second-order prox-
imity between nodes, thus the learned representations cap-
ture the local and global network structure.
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e We comprehensively evaluate the effectiveness of DVNE on
several real-world networks in various applications.

The rest of the paper is organized as follows. In Section 2, we review
the related work. In Section 3, we summarize the notations used
in this paper and give the problem formulation. We introduce the
framework of the method in Section 4 and report the experimental
results in Section 5. We conclude the paper in Section 6.

2 RELATED WORK

Because of the popularity of networked data, network embedding
has received more and more attentions in recent years. We briefly
review some network embedding methods, and readers can referred
to [13] for a comprehensive survey. Deepwalk [37] first uses the
language modeling technique to learn the latent representations
of a network by truncated random walks. LINE [39] embeds the
network into a low-dimensional space where the first-order and
second-order proximity between nodes are preserved. Node2vec
[22] learns a mapping of nodes to a low-dimensional space of fe-
atures that maximizes the likelihood of preserving network neig-
hborhoods of nodes. HOPE [36] proposes a high-order proximity
preserved embedding method. Furthermore, deep learning method
for network embedding is also studied. SDNE [44] first considers
the high nonlinearity in network embedding and proposes a deep
autoencoder to preserve the first- and the second-order proximities.
The graph variational autoencoder (GAE) [27] learns node embed-
dings in an unsupervised manner with variational autoencoder
(VAE) [16].

All the aforementioned methods learn a point-vector for each
node as its embedding. However, as we stated before, these methods
have the limitation to model the uncertainty, which is a critical
property needed to be considered for network embedding. Then
some following works start to consider the uncertainty problem.
Inspired by [43], which learns the Gaussian word embeddings to
model uncertainty, KG2E [24] learns Gaussian embeddings for kno-
wledge graphs. HCGE [17] similarly learns Gaussian embeddings
for heterogeneous graphs. And Aleksandar et al. [3] proposes a
deep model to learn Gaussian embeddings on the attributed net-
work. All of these methods use the KL divergence or its variant
JensenShannon divergence [19] as the similarity measure between
the distributions. However, both the KL divergence and the Jen-
senShannon divergence are not the true metrics. These metrics
do not satisfy the triangle inequality. In this way, these methods
cannot preserve the transitivity to get effective representations for
networks. Furthermore, these methods regard the variance terms as
the extra dimensions, then use the similarity measure to constrain
their learning. In this way, it is difficult to capture the intrinsic
relationships between the mean and the variance terms.

3 NOTATIONS AND PROBLEM DEFINITION

In this section, we summarize the notations used in this paper and
give the problem formulation.

3.1 Notations

We first summarize the notations used in this paper. A network
is defined as G = {V,E}, where V = {v1, vy, ...,uN} denotes a set
of nodes and N is the number of the nodes. E is the set of edges
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between the nodes, and M = |E| is the number of the edges. In
this paper, we mainly consider undirected networks. Let Nbrs;
{vj|(vi,v;) € E} denote the set of neighbors of node v;. Let P €
RNXN be the transition matrix, where P(i, :) and P(;, j) denote its
ith row and jth column respectively and P(i, j) is the element of

the i'" row and j'" column. If there is an edge from v; to v; and
1

4
we mark P(i, j) with zero. We define h; = N(p;,X;) as a lower-
dimensional Gaussian distribution embedding for node v;, where
s € RL, =; e RIXL L is the embedding dimension, which satisfies
L < N.In this paper, we focus on diagonal covariance matrices.

the degree of node v; is d;, then we set P(i, j) to otherwise

3.2 Problem Definition

In this paper, we focus on the problem of network embedding with
first-order and second-order proximity preserved.

Definition 3.1. (First-Order Proximity) The first-order proximity
describes the pairwise proximity between nodes. For any pair of
nodes, if P(i, j) > 0, there exists positive first-order proximity bet-
ween v; and v;. Otherwise, the first-order proximity between v;
and vj is 0.

The first-order proximity implies that two nodes in real-world
networks are similar if they are linked by an observed edge. For ex-
ample, if two users build a relationship between them on the social
network, they may have a common interest. However, real-world
networks are usually so sparse that we can only observe a very
limited number of links. Only capturing the first-order proximity
is not sufficient,thus we introduce the second-order proximity to
capture the global network structure.

Definition 3.2. (Second-Order Proximity) The second-order prox-
imity between a pair of nodes denotes the similarity between their
neighborhood network structures. Then the second-order proxi-
mity between v; and v; is determined by the similarity between
Nbrs; and Nbrs;. If none of nodes is linked with both v; and vy},
the second-order proximity between v; and vj is 0.

Intuitively, the second-order proximity assumes that if two nodes
share common neighbors, they tend to be similar. The second-order
proximity has been demonstrated to be a good metric to define the
similarity of a pair of nodes, even if there is no edge between them
[31]. Moreover, the second-order proximity has been proved to be
able to alleviate the sparsity problem of the first-order proximity
and better preserve the global structure of the network [39].

With the first- and second-order proximity, then we define our
network embedding problem as follows:

Definition 3.3. (Gaussian-Based Network Embedding) Given a
network G = {V, E}, we aim to represent each node v; as a lower-
dimensional Gaussian distribution h; = N(y;,X;), where p; cap-
tures the position of the nodes in the embedding space and X;
investigates the uncertainty of the nodes. Meanwhile, the latent
representations aim to preserve the first-order proximity and the
second-order proximity between the nodes to preserve the network
structure.
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Figure 1: The framework of DVNE.

4 DEEP VARIATIONAL NETWORK
EMBEDDING

4.1 Framework

In this paper, we propose a novel model to perform network em-
bedding, namely DVNE, whose framework is shown in Figure 1.
Basically, we propose a deep architecture, which is composed of
multiple nonlinear mapping functions to map the input data to the
Wasserstein space to preserve the uncertainties of the nodes and
capture the network structure. Specifically, we first use a ranking
based loss function on the Wasserstein embedding space, aiming to
make nodes with edges similar and without edges dissimilar. In this
way, the first-order proximity is preserved. Furthermore, we use a
deep variational model to preserve the second-order proximity, by
reconstructing the neighborhood structure of each node. Meanw-
hile, the whole deep variational model implies the the mathematical
relevance of mean vectors and variance terms explicitly by the sam-
pling process. In this way, the mean vectors find an approximate
position of the node and the variance term capture the uncertainty.
In the following sections, we will introduce how to realize the deep
model in detail.

4.2 Similarity Measure

To support network applications, we need to define a suitable si-
milarity measure between the latent representations of two nodes.
Since we use distributions to represent our latent representations
to incorporate uncertainty, the similarity measure should be able to
measure the similarity between the distributions. Furthermore, as
transitivity is a important property of the network, the similarity
measure should simultaneously preserve the transitivity between
nodes. Through extensive studies, we find that the Wasserstein
distance is able to measure the similarity between two distributions
while simultaneously satisfies the triangle inequality [9], which gua-
rantees its ability to preserve the transitivity of similarity between
nodes.

The p*" Wasserstein distance between two probability measures
p and v is defined as:

Wy (u,v)P = inf E[d(X, )], (1)
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where E[Z] denotes the expected value of a random variable Z and
the infimum is taken over all joint distributions of the random vari-
ables X and Y with marginals p and v respectively. Moreover, when
p > 1, the p'" Wasserstein distance preserves all properties of a
metric [1], including both the symmetry and the triangle inequality
[6]. In this way, Wasserstein distance is suitable to be a similarity
measure between the latent representation of nodes, especially for
an undirected network.

But the calculation of the general-formed Wasserstein distance
is limited by a heavy computational cost, which poses a great chal-
lenge to network applications. To reduce the computational cost, in
our case since we use Gaussian distributions for the latent represen-
tation of nodes, the 2¢" Wasserstein distance (abbreviated as W2)
has the closed form solution to speed-up the calculation process.
The W, distance has also been widely used in in computer vision
[4, 11], computer graphics [5, 15] or machine learning [12, 14].

More specifically, we have the following formula to calculate W
distance between two Gaussian distributions [20]:

dist = Wp(N (p1, 21), N(p2, 22))
dist? = s — ol + T3 + 5 - 2052255ty D

In this paper we focus on diagonal covariance matrices!, thus

3132 = 2331. Then the formula (2) can be simplified as:

Wa(N (1, 510 N(ma, 52))% = llus = a2 + 1512 = 23212, 3)

According to the above equation, the time complexity of calcula-
ting W; distance between the latent representation of two nodes is
linear with the embedding dimension L. Therefore, we choose W,
distance as the similarity measure, and the computational costs no
longer constitute limitations.

4.3 Loss Functions

Our overall loss functions for DVNE consists of two parts, the
ranking-based loss to preserve the first-order proximity and the
reconstruction loss to preserve second-order proximity.

First, we consider how to preserve the first-order proximity.
Intuitively, we want all nodes which are linked with v; to be closer
to v; w.r.t. their embedding, compared to the nodes that have no
edge with v;. More specifically, we propose the following pairwise
constraints to preserve the first-order proximity:

Wz(hi,hj) < Wa(hj, hg),Vo; €V, Vv; € Nbrs;, Yoy ¢ Nbrs;. (4)

where h; is the latent representation of node v;, Nbrs; is the set of
neighbors of node v;. The smaller the W, distance, the larger the
similarities between nodes.

Then we use a energy based learning approach [29] to incorpo-
rate all of the pairwise constraints defined in the above equation.
Mathematically, denoting E;; = Wa(h;, hj) as the energy between
two nodes, we present the objective function as follows:

Ly = Z (Eij® + exp(~Ex)),
(i.j.k)eD

®)

where D is the set of all valid triplets given in Eq. (4). The above
objective function penalizes ranking errors by the energy of the

!When the covariance matrices is not diagonal, Wang proposed an fast iterative
algorithm (called BADMM) to solve the Wasserstein distance [45]. It is not the focus
of the paper and we will not discuss it.
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pairs, which makes the energy of positive examples to be lower
than that of negative examples. Equivalently, it will make the simi-
larity between the positive examples larger than that of negative
examples, thus helps preserve the first-order proximity.

For second-order proximity, we use the transition matrix P as our
input features and propose a variant of Wasserstein Auto-Encoders
(WAE) [41] as the model to preserve the neighborhood structure.
WAE is a deep variational model, which can imply the mathematical
relevance of mean vectors and variance terms by the sampling
process. The objective of original WAE is composed of two terms,
the reconstruction cost and the regularizer. The reconstruction
cost aims to capture the information of the input. The regularizer
encourages the encoded training distributions to match the prior
distribution. As for our problem, the P(i, :) shows the neighborhood
structure of node v;, thus we use P(i, :) as the input feature to the
WAE for node v; and reconstruct it to preserve its neighborhood
structure. For the regularization term, it is hard to define the prior
distribution of each node in the network. Therefore, we focus only
on the reconstruction cost to preserve the neighborhood structure.

Let Px denote the data distribution, and Pg denote the encoded
training distribution. The reconstruction cost can be represented
as:

inf
Q(Z1X)eQ
where Q is the encoders and G is the decoders, X ~ Px and Z ~
Q(Z|X). It aims to minimize Wasserstein distance between the Py
and Pg.

According to [41], when using c(x,y) = ||x — y||§, the above loss
function (6) minimizes the W, distance between Px and Pg, thus
Pg captures the information of the input data in the Wasserstein
space.

Considering the sparsity of the transition matrix P, we focus on
non-zero elements in P to speed up our model. Thus, we present
the loss function as follows to preserve the second-order proximity:

BpyEgzix) [IXe(X = G2)I5]. ()

Dwae(Px. Pg) = EpyEo(zix)[c(X.G(Z)],  (6)

inf
Q(Z|1X)eQ
where o means the element-wise multiplication.

In our model, we use the transition matrix P as the input feature
X. The reconstruction process will make the nodes with similar
neighborhoods have similar latent representations. Therefore, the
second-order proximity between nodes is preserved.

To preserve first-order proximity and second-order proximity of
networks simultaneously, we jointly minimize the loss function by
combining Eq. (5) and Eq. (7):

L=Li+als.

®)

4.4 Optimization
For large graphs, optimizing objective function (5) is computatio-
nally expensive, which requires to calculate the all valid triplets in
D. Therefore, we sample triplets from D uniformly, which replace
2, j,k)ep WithE(; j y~p in Eq. (5). In details, for each iteration, we
sample M triplets from D to calculate the estimates of the gradient.
Considering objective function (7), we need sample Z from
Q(Z|X), which is a non-continuous operation and has no gradient.
In this case, it is difficult for the deep models to optimize the loss
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function. To solve the problem, inspired by the Variational Auto-
Encoders (VAE) [16], we can use the "reparameterization trick" to
optimize the above objective equation. Mathematically, we first
sample € ~ N(0,1I), then compute Z = u(X) + ZI/Z(X) x €. Given a
fixed X and ¢, the objective function (7) is deterministic and con-
tinuous in the parameters of encoders Q and decoders G. In this
way, the whole model can get the gradient when performing the
back-propagation, and thus we can use stochastic gradient descent
to optimize the model.

4.5 Implementation Details

For all the experiments in this paper we used an encoder and a
decoder with a single hidden layer of size S = 512 respectively.
More specifically, to obtain the embeddings for a node v;, we have

v = Relu(x; WD + b)), W) € RNXS (1) ¢ RS

pi = y\VW® £ 5@ W e RSXL b® ¢ RE

oi = Elu(y"W® +b®)) + 1, WO e RS p® ¢ rL
zj = pii + 0j x€,€ ~ N(0,I)

yE.Z) = Relu(ziW(4) + b(4)),W(4) e REXS p@ ¢ RS

%; = Sigmoid(y@W® + b®)), W6 e RSN p5) ¢ RN,

where x; is P(i, :), Relu [34] and Elu [10] are the rectified linear unit
and exponential linear unit. We use elu() + 1 to guarantee that o;
is positive. Because the range of values in x; is between [0, 1], we
use the sigmoid function as the output function of the last hidden
layer.

©

4.6 Complexity analysis

Algorithm 1 lists the procedures of our method. During the training
procedure, the time complexity of calculating gradients and upda-
ting parameters is O(T X M X (dgyeS + SL + L)), where M is the
number of the edges, d;ve is the average degree of all nodes, L is the
dimension of embedding vectors, S is the size of hidden layer of the
encoder and decoder, T is the number of iterations. Since we only
reconstruct non-zero elements in x;, the computational complexity
of the first and last hidden layers is O(dgyeS). The computational
complexity of other hidden layers is O(SL), and it takes O(L) to
calculate the W, distance between the distributions. In practice we
found that a small number of iterations T (T < 50 for all shown
experiments) is needed for convergence.

5 EXPERIMENT

In this section, we empirically evaluate the effectiveness of the our
method.

5.1 Experiment Setting

We first introduce the experiment setting before presenting results
of the experiments.

5.1.1 Baseline Methods. We use the following five methods as
the baselines.
e DVNE_KI : In order to show the advantages of W, distance
in undirected network. We replace the similarity measure in
our method with the KL divergence.
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Algorithm 1 Training algorithm of DVNE

Input: The network G = {V, E} with the transition matrix P, the
parameter o
Output: Network embeddings {hi}f\i , and updated parameters
0 = {W(i),b(i)}§:1
Initial parameters 6 by xavier initialization
while £ do not converge do
Sample M triplets from D uniformly
Split these triplets to a number of batches
calculate partial derivative 0.L/06 with backpropagation
algorithm to update 6
6: end while

1:
2:
3:
4
5

e DeepWalk [37]: This algorithm learns embedding by simula-
ting several uniform random walks. It assumes that a pair of
nodes are similar if they are close in the random walks.

o LINE [39]: This algorithm preserves the first-order and second-
order proximity between nodes respectively, and directly
concatenates the representations for the first-order and second-
order proximity.

e SDNE [44]: This method learns a point-vector for each node
with preserving the first and the second order proximities
simultaneously using deep models.

o Graph2Gauss(G2G_oh) [2]: This method aims to learn the
lower-dimensional Gaussian distribution embedding by ran-
king similarity based on the shortest path between nodes. As
the datasets have no attribute information, we compare with
the one-hot encoding version of Graph2Gauss as described
in the paper.

5.1.2  Dataset. In order to comprehensively evaluate the effecti-
veness of our proposed method, we use four different real-world
datasets, including citation networks and social networks. The de-
tailed information is shown as follows:

e Cora : This is a research paper set constructed by McCal-
lum et al. [33], which consists of 2708 scientific publications
classified into one of seven classes.

e Facebook : It is a typical social network dataset without node
labels constructed by J. McAuley et al. [30].

e BlogCatalog[38]: This is a network of social relationships of
the bloggers listed on the BlogCatalog website. The labels
represent the topic categories provided by the authors.

e Flickr [38]: It is a social network where node represents
users and edges correspond to friendships between users.
The labels represent the interest groups of the users.

All the networks are undirected, and the detailed statistics of the
datasets are summarized in Table 1.

5.1.3  Parameter Settings. In all experiments, we set the em-
bedding dimension L = 128 unless stated. For the equality, all the
methods that learn the embedding as the distribution use the length
of mean vector and variance terms to match L. Specifically, our met-
hod actually uses half of the dimensionality L as the length of mean
vector in all experiments.

For DVNE and DVNE_KI, the hyper-parameters of « are tuned by
using grid search on the validation set. We use xavier initialization
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Table 1: Statistics of datasets. |V| denotes the number of no-
des , |E| denotes the number of edges and |C| denotes the
number of classes.

Cora | Facebook | BlogCatalog | Flickr
V]| 2,708 4,039 10,312 80,513
|E| | 5,429 88,234 333,983 5,899,882
cr [ 7 - 39 195

[21] for all weight matrices. The parameters are optimized using
RMSProp [40] with a fixed learning rate of 0.001.

The parameters for baselines are tuned to be optimal. For Deep-
Walk, we set window size as 10, walk length as 40, walks per node
as 10. For LINE, we set the number of negative samples as 5, and
line search for the optimal value of the training samples on dif-
ferent datasets. For SDNE, we use the default parameter settings
and the multi-layer deep structure in the author’s implementation.
For G2G_oh, we use the default parameter settings and the fixed
learning rate in the implementation details of the paper.

5.2 Network Reconstruction

The most primal objective for network embedding is to reconstruct
the given network, ans a good network embedding method should
ensure that the learned embeddings can preserve the original net-
work structure. Thus, we first provide a basic evaluation on different
network embedding methods with respect to their capability of net-
work reconstruction. More specifically, we use different network
embedding methods to learn the embedding vectors on the different
real-world networks. Then we rank pairs of nodes according to
their trained similarities between the embedding of nodes, i.e. the
W, distance for our method, the KL divergence for G2G_oh. The
larger the similarities between pairs of nodes, the more likely they
have the edges. Then we can use the top ranking pairs to recon-
struct the edges of the original networks. For the evaluation metric,
we use Area Under Curve (AUC) [18].

Table 2: AUC scores for Network Reconstruction.

Cora | Facebook | BlogCatalog | Flickr

DVNE 0.996 0.998 0.962 0.959
DVNE_kI | 0.940 0.958 0.937 0.925
DeepWalk | 0.986 0.984 0.864 0.950
Line 0.952 0.934 0.891 0.939
SDNE 0.992 0.960 0.958 0.917
G2G_oh | 0.921 0.942 0.924 0.901

The results are shown in Table 2. Our proposed method outper-
forms the baseline methods in all datasets. The results demonstrate
that our proposed method can effectively preserve the original net-
work structure and reconstruct the network. It lays the foundation
for other real-world applications of network embedding.

5.3 Link Prediction

Link prediction, aiming to predict which pairs of nodes will form
edges in the future, is a typical task of network embedding. In our
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experiments, we randomly hide 20% of the edges as the testing
network and train the embeddings on the rest of the network. After
the training, we can obtain the embedding for each node and then
use the embeddings to predict the unobserved edges. The pairs of
nodes are ranked in a similar way as network reconstruction and
the top ranking pairs are evaluated on the testing network. Unlike
the reconstruction task, this task predicts the unobserved edges
in testing network instead of reconstructing the existing edges in
training network. We still use AUC as the evaluation metric.

Table 3: AUC scores for Link Prediction.

Cora | Facebook | BlogCatalog | Flickr

DVNE 0.947 0.982 0.945 0.942
DVNE_kl | 0.919 0.930 0.917 0.908
DeepWalk | 0.880 0.923 0.827 0.931
Line 0.854 0.882 0.802 0.919
SDNE 0.917 0.931 0.920 0.927
G2G_oh 0.901 0.925 0.903 0.906

From the results in Table 3, our proposed method still outper-
forms the baselines in all datasets. Especially on the facebook data-
set, our method significantly improve AUC scores by 0.05 than the
baselines. From the results, we have the following analysis:

Deepwalk can introduce high-order proximity by changing the
parameter of window size, but it can not balance the weight of the
first-order proximity and the high-order proximity. This means it
can not handle well both reconstruction task and prediction task at
the same time, which is evident from the experimental results. We
also find that LINE does not achieve as good performance as other
methods do in most cases. The reason may be twofold. Firstly, LINE
adopts shallow structure, which is difficult to capture the highly
non-linear structure [44] in the network. Moreover, LINE directly
concatenates the embeddings for the first-order and second-order
proximity, which is sub-optimal than jointly optimizing them in
our method.

Although DVNE and SDNE both exploit the first-order and
second-order proximity to preserve the network structure, DVNE
achieves better performance. The reason is that our method learns
a Gaussian distribution as an embedding for each node, allowing us
to capture uncertainty in the network by the latent representations.
Actually, adding a new edge between two nodes is a uncertain event,
it is more natural to describe this event from the perspective of the
distributions.

We also find that DVNE achieves a substantial gain over DVNE_kl
on all the datasets. The reason is two fold. Firstly, the KL divergence
is not suitable for undirected network because of the asymmetric
property of the KL divergence. Secondly, the KL divergence does
not necessarily guarantee the transitivity of similarities between
the nodes, which makes KL-based methods worse link prediction
results.

Compared with DVNE_kl and G2G_oh, which both use the KL di-
vergence as the similarity measures, DVNE_kl outperforms G2G_oh.
It is because that G2G_oh use the variance terms as the added di-
mensions while DVNE_KI relates the variance terms and the mean
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Figure 2: Micro-F1 and Macro-F1 on BlogCatalog.

vectors by the sampling process. Thus, DVNE is able to better cap-
ture the uncertainties of nodes and get a better link prediction
result.

Overall, the results demonstrate that our proposed method works
well for network inference tasks.

5.4 Multi-label Classification

Multi-label classification is another task commonly used to eva-
luate the effectiveness of the learned embeddings. We evaluate
the multi-label classification performance for three datasets (Cora,
Blogcatalog and Flickr) that have ground-truth labels. The represen-
tations for the nodes are generated from the network embedding
methods and are used as features to classify each node into a set of
labels. For all methods based on the distribution, we only use the
mean vectors as the input features in this task. We adopt a linear
SVC [23] as the classifiers for all methods. Then, following [37],
we randomly sample a portion of the labeled nodes as the training
data and the rest as the test. For BlogCatalog, we randomly sample
10% to 90% of the nodes as the training samples and use the left
nodes to test the performance. For Cora and for Flickr, we randomly
sample 1% to 10% of the nodes as the training samples and use the
left nodes to test the performance on even more sparsely labeled
networks. We use the Micro-F; and Macro-F; scores to evaluate the
performance and report results averaged over 10 trials. The results
are shown in Figure 2 and Figure 3 respectively.

In Figure 2 and Figure 3, the curve of our method is consistently
above the curves of baseline methods. It demonstrates that our
method can achieve a better classification performance than ba-
selines even if the labelled data is limited. Such an advantage is
meaningful for real-world applications, because the labelled data
in real-world network is usually scarce. The variance terms of the
representation can help us to deal with the noise information in
the network, which makes the mean vectors to better capture the
network structure. Therefore, the learned network embedding of
our method can better generalize to the classification task than
baselines.

In most cases, the performance of G2G_oh is the worst among all
the compared network embedding methods. The reasons are two-
fold. First, G2G_oh uses the variance terms as the added dimensions,
causing part of the information of the proximity between nodes
included in variance terms. In this way, the performance of G2G_oh
greatly degrades. Our method, by using the deep variational model,
makes the mean vectors and the variance terms capture different
properties of the network, i.e. the mean vector captures the proxi-
mity and the variance term captures the uncertainty. In this way,
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our method can encode more proximity-based information into the
mean vectors and thus perform much better than G2G_oh. Second,
similar to the previous task, the KL divergence is not a suitable
similarity measure to capture the transitivity for the undirected
networks.

5.5 Embedding Uncertainty

Learning an embedding as a distribution rather than a point-vector
allows us to capture uncertainty of the nodes. With our intuition,
the nodes that have less links with other nodes, are harder to get a
exact point-vector in the latent space. In other words, the lower the
degree of a node, the less discriminative information it contains,
thus making its embedding more uncertain. Then we conduct the
following experiment to evaluate the intuition. For each node, we
select its 10 dimensions with the largest variance and averaged
the variance of the 10 dimensions as the variance value for the
node. Then for each network dataset, we divide the total nodes
into 10 parts based on their degrees. For each part of the nodes, we
report the relationship between their degree and their averaged
variance values. The Figure 4a shows the result on the all datasets.
The horizontal axis represents the log; () values of degree. Because
the max degree of the node is no more than 200 in Cora, the line of
Cora is different from the other datasets.

From Figure 4a, we find that the experimental results support our
intuition. The nodes with higher degree contains rich information,
thus making their variance smaller. Meanwhile, we can see that
when the network is denser like Facebook and Flickr, the average
variance of embeddings is smaller. This means that our learned
embeddings of variance can reflect the density of the network.

Moreover, to demonstrate that the uncertainty in variance terms
can help to deal with the noise edges in networks, we conduct an
experiment to show the benefits of the uncertainty. First, following
the setting in link prediction, we randomly hide 20% of the edges
as the testing network and use the rest of network as the training
network. Then we randomly choose some pairs of nodes as the noise
edges and add them into the training network. We use different
network embedding methods to learn the representations of nodes
in the modified training network. Similar to link prediction task, we
use the similarity between the learned node embeddings to predict
the unobserved edges in testing network. We use the results of each
method reported in link prediction as the benchmark to calculate
the percentage of AUC decline. We vary the percentage of noise
edges from 0.05 to 0.5, then show the percentage of AUC decline
with respect to it in Figure 4b.

From the results shown in Figure 4b, we can see that the per-
formance of our method is least affected by the noise edges. It
demonstrates that our method can better deal with the noise edges
in networks by capturing the uncertainties of the nodes. DeepWalk
adopts random walk to generate network representations. Each
node walks to other communities with a lower probability in the
modified training network. Thus, DeepWalk can still preserve the
original network structure and the result of DeepWalk is also good.
DVNE_Kkl uses the KL divergence as the similarity measure, which
can not well preserve the transitivity in the networks. The noise
edges between nodes will further damage this property, leading to
worse results. For G2G_oh, there is a weak connection between
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Figure 4: Results of embedding uncertainty.

(a) DVNE (b) DVNE_kI

Figure 5: Visualization of network embedding.

variance terms and mean vectors in the model, which means the
variance terms can not well capture the uncertainties of the nodes.
Through the sampling process proposed by our method, DVNE is
more natural to learn the variance terms that contains the uncer-
tainties of the nodes. Therefore, DVNE and DVNE_kl achieve better
performance than G2G_oh. SDNE and LINE treat each edge equally,
thus the similarities between nodes in latent space are easily be
destroyed by the noise edges.

5.6 Visualization

Visualization is another important application for network embed-
ding. Therefore, we visualize the learned embeddings of the Cora
network. Following [39], we first learn a lower-dimensional L = 128
embedding for each node and then map those representations in
2-dimension space by t-SNE [32]. For nodes with different labels,
we use different colors. Thus, a good visualization result is that the
points of the same color are near from each other.
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Figure 6: Results of parameter sensitivity.

The visualization results are shown in Figure 5, we compare
the DVNE with DVNE_kI. For DVNE_KI, in the center part the
nodes of different classes are mixed with each other. Obviously,
the visualization of DVNE looks better because points of the same
color form segmented classes, and the boundaries of each class are
clearer. It demonstrate the superiority of our method that using the
W, distance as the similarity measure in the visualization task.

5.7 Parameter Sensitivity

In this section, we investigate the parameter sensitivity. More spe-
cifically, we evaluate how different numbers of the embedding
dimensions and different values of hyper-parameter a can affect
the results. We report AUC scores on the dataset of Cora.

First, we show how the dimension of the embedding vectors
affects the performance in Figure 6a. We can see that initially the
performance raises when the number of dimension increases. Ho-
wever, when the number of dimensions continuously increases,
the performance tends to be stable. This is because most of the
useful information is already encoded into the embeddings. Addi-
tional dimensions consume more computing resources, but have
less effect on performance. Overall, it is important to determine
the appropriate number of dimensions for the latent space. When
the number of dimensions is not too small (L > 32), DVNE is not
sensitive to this parameter.

Then, we fix the number of dimensions to 128. The Figure 6b
shows how the value of « affects the performance . The parameter of
a balances the weight of the first-order proximity and second-order
proximity between nodes. When « = 0, our method only preserves
the first-order proximity between nodes and the performance is
worse than that of other parameter settings. It demonstrates that
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both first-order and second-order proximity are essential for net-
work embedding methods to capture the network structure. When
a > 0, we observe that DVNE is also not very sensitive to the choice
of this hyper-parameter.

6 CONCLUSIONS

In this paper, we propose a method to learn the Gaussian embedding
by the deep variational model, namely DVNE, which can model
the uncertainties of nodes. It is the first unsupervised method that
represents nodes in networks as Gaussian distributions in Was-
serstein space. The method preserves first-order proximity and
second-order proximity between nodes to capture the local and
global network structure. Moreover, DVNE uses the 2-Wasserstein
distance as the similarity measure to better preserve the transitivity
in the network with the linear time complexity. The empirical study
demonstrates the superiority of our proposed method. Our future
direction is to find a good Gaussian prior for each node to better
capture the network structure and model the uncertainties of nodes.
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