
Deep Variational Network Embedding in Wasserstein Space
Dingyuan Zhu∗
Tsinghua University
zhudy11@126.com

Peng Cui
Tsinghua University
cuip@tsinghua.edu.cn

Daixin Wang
Tsinghua University

dxwang0826@gmail.com

Wenwu Zhu
Tsinghua University

wwzhu@tsinghua.edu.cn

ABSTRACT
Network embedding, aiming to embed a network into a low di-
mensional vector space while preserving the inherent structural
properties of the network, has attracted considerable attentions
recently. Most of the existing embedding methods embed nodes
as point vectors in a low-dimensional continuous space. In this
way, the formation of the edge is deterministic and only determi-
ned by the positions of the nodes. However, the formation and
evolution of real-world networks are full of uncertainties, which
makes these methods not optimal. To address the problem, we
propose a novel Deep Variational Network Embedding in Wasser-
stein Space (DVNE) in this paper. The proposed method learns
a Gaussian distribution in the Wasserstein space as the latent re-
presentation of each node, which can simultaneously preserve the
network structure and model the uncertainty of nodes. Specifically,
we use 2-Wasserstein distance as the similarity measure between
the distributions, which can well preserve the transitivity in the
network with a linear computational cost. Moreover, our method
implies the mathematical relevance of mean and variance by the
deep variational model, which can well capture the position of the
node by the mean vectors and the uncertainties of nodes by the va-
riance. Additionally, our method captures both the local and global
network structure by preserving the first-order and second-order
proximity in the network. Our experimental results demonstrate
that our method can effectively model the uncertainty of nodes in
networks, and show a substantial gain on real-world applications
such as link prediction and multi-label classification compared with
the state-of-the-art methods.

KEYWORDS
Network Embedding, Wasserstein space, Deep Learning
ACM Reference Format:
Dingyuan Zhu, Peng Cui, Daixin Wang, and Wenwu Zhu. 2018. Deep Varia-
tional Network Embedding in Wasserstein Space. In KDD ’18: The 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining,

∗Beijing National Research Center for Information Science and Technology(BNRist)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3220052

August 19–23, 2018, London, United Kingdom. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3219819.3220052

1 INTRODUCTION
Network embedding has attracted considerable research attentions
in the past few years. The basic idea is to embed a network into a
low-dimensional vector space to preserve the network structure.
Many network embeddingmethods are demonstrated to be effective
in a variety of applications, such as link prediction [42, 44], classi-
fication [8, 26] and clustering [35, 46]. However, most of existing
network embedding methods represent each node by a single point
in a low-dimensional vector space. In this way, the formation of
the whole network structure is deterministic.

Actually, real-world networks are much more complex than we
assume. The formation and evolution of the networks are full of
uncertainties. For example, for the nodes with low degree, they
contain less information and thus their representations bear more
uncertainties than others. For the nodes across multiple communi-
ties, the possible contradiction between their neighboring nodes
may also be larger and thus cause the uncertainty. Furthermore, in
social network, human behavior is multi-faceted which also ma-
kes the generation of edges uncertain [47]. For all of these cases,
without considering the uncertainty of networks, the learned em-
beddings will be less effective in network analysis and inference
tasks.

Gaussian distribution innately represents the uncertainty pro-
perty [43]. Therefore, it is promising to represent a node by Gauss-
ian distributions, i.e. the mean and the variance, rather than a point
vector to incorporate the uncertainty. Motivated by this, to model
the uncertainty of each node using Gaussian distributions, there
are some basic requirements for network embedding methods to
meet.

• Transitivity: The embedding space should be ametric space
to preserve the transitivity in networks. Transitivity is a
very important property in networks, especially in social
networks [25]. For example, the friend of my friend is more
likely to be my friend than some randomly chosen users.
Moreover, the transitivity measures the density of triangles
in a network, which plays an important role in calculating
clustering coefficient [7]. If the metric space satisfies the
triangle inequality, the transitivity in the network can be
well preserved.

• Uncertainty: By using Gaussian distributions to represent
a node, the mean and the variance should preserve different

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2827

https://doi.org/10.1145/3219819.3220052
https://doi.org/10.1145/3219819.3220052

properties to make such representations informative. Speci-
fically, the mean vectors should reflect the position of the
nodes and variance terms should contain the uncertainty of
the nodes. In this way, the representations based on distribu-
tions can preserve the uncertainty while supporting network
applications.

• Strcutural Proximity: The network structures, especially
high-order proximity, should be preserved in a effective and
efficient way. The high-order proximity is critical for captu-
ring the network structure, which has been demonstrated to
be useful in many real-world applications [36].

Recently, some works attempt to use Gaussian distributions to
represent a node for network embedding [3, 17, 24] to integrate un-
certainty. However, these methods use the Kullback-Leibler (abbre-
viated as KL) divergence [28] to measure the similarity between
distributions. However, the KL divergence is asymmetric and does
not satisfy triangle inequality. Thus, it can not well preserve the
transitivity of proximity in networks, especially in undirected net-
works. Additionally, these methods regard the variance terms as
additional dimensions of mean vectors, and use similarity measure
to constrain their learning. In this way, they do not reflect the in-
trinsic relationship between variance terms and mean vectors in
the model. Finally, very few of these works preserve the high-order
proximity in network embedding, except Graph2Gauss [3]. But
Graph2Gauss needs to calculate the shortest path between any two
nodes, which is unaffordable in large-scale networks.

To address these problems, we propose a novel Deep Variational
Network Embedding in Wasserstein Space method in this paper,
namedDVNE. The proposed method learns a Gaussian Embedding
for each node in the Wasserstein Space by the deep variational mo-
del. Specifically, we employ 2-Wasserstein distance to measure the
similarity between the distributions, i.e. the embeddings of the no-
des. The 2-Wasserstein distance is a real metric that able to preserve
the transitivity in embedding space. In this way, the proposed deep
model is able to simultaneously preserve the transitivity and model
the node uncertainty with linear time complexity. Meanwhile, we
use a deep variational model to minimize the Wasserstein distance
between the model distribution and the data distribution, which
can extract the intrinsic relationship between mean vectors and
variance terms. Furthermore, our method efficiently preserve the
first-order and second-order proximity of the nodes in networks,
empowering the learned node representations to reflect both local
and global network structure [44].

The main contributions of our method are summarized as fol-
lows:

• We propose DVNE, an novel method that learns the Gaussian
embedding in theWasserstein space, which canwell preserve
the transitivity in networks and reflect the uncertainties of
nodes.

• We imply the mathematical relevance of mean vectors and
variance terms by the deep variational model, where the
mean vectors denote the position of the nodes and the vari-
ance terms represent the uncertainties of the nodes.

• We efficiently preserve the first-order and second-order prox-
imity between nodes, thus the learned representations cap-
ture the local and global network structure.

• We comprehensively evaluate the effectiveness of DVNE on
several real-world networks in various applications.

The rest of the paper is organized as follows. In Section 2, we review
the related work. In Section 3, we summarize the notations used
in this paper and give the problem formulation. We introduce the
framework of the method in Section 4 and report the experimental
results in Section 5. We conclude the paper in Section 6.

2 RELATEDWORK
Because of the popularity of networked data, network embedding
has received more and more attentions in recent years. We briefly
review some network embedding methods, and readers can referred
to [13] for a comprehensive survey. Deepwalk [37] first uses the
language modeling technique to learn the latent representations
of a network by truncated random walks. LINE [39] embeds the
network into a low-dimensional space where the first-order and
second-order proximity between nodes are preserved. Node2vec
[22] learns a mapping of nodes to a low-dimensional space of fe-
atures that maximizes the likelihood of preserving network neig-
hborhoods of nodes. HOPE [36] proposes a high-order proximity
preserved embedding method. Furthermore, deep learning method
for network embedding is also studied. SDNE [44] first considers
the high nonlinearity in network embedding and proposes a deep
autoencoder to preserve the first- and the second-order proximities.
The graph variational autoencoder (GAE) [27] learns node embed-
dings in an unsupervised manner with variational autoencoder
(VAE) [16].

All the aforementioned methods learn a point-vector for each
node as its embedding. However, as we stated before, these methods
have the limitation to model the uncertainty, which is a critical
property needed to be considered for network embedding. Then
some following works start to consider the uncertainty problem.
Inspired by [43], which learns the Gaussian word embeddings to
model uncertainty, KG2E [24] learns Gaussian embeddings for kno-
wledge graphs. HCGE [17] similarly learns Gaussian embeddings
for heterogeneous graphs. And Aleksandar et al. [3] proposes a
deep model to learn Gaussian embeddings on the attributed net-
work. All of these methods use the KL divergence or its variant
JensenShannon divergence [19] as the similarity measure between
the distributions. However, both the KL divergence and the Jen-
senShannon divergence are not the true metrics. These metrics
do not satisfy the triangle inequality. In this way, these methods
cannot preserve the transitivity to get effective representations for
networks. Furthermore, these methods regard the variance terms as
the extra dimensions, then use the similarity measure to constrain
their learning. In this way, it is difficult to capture the intrinsic
relationships between the mean and the variance terms.

3 NOTATIONS AND PROBLEM DEFINITION
In this section, we summarize the notations used in this paper and
give the problem formulation.

3.1 Notations
We first summarize the notations used in this paper. A network
is defined as G = {V,E}, where V = {v1,v2, ...,vN } denotes a set
of nodes and N is the number of the nodes. E is the set of edges

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2828

between the nodes, and M = |E| is the number of the edges. In
this paper, we mainly consider undirected networks. Let Nbrsi =
{vj |(vi ,vj) ∈ E} denote the set of neighbors of node vi . Let P ∈

RN×N be the transition matrix, where P(i, :) and P(:, j) denote its
ith row and jth column respectively and P(i, j) is the element of
the ith row and jth column. If there is an edge from vi to vj and
the degree of node vi is di , then we set P(i, j) to 1

di
, otherwise

we mark P(i, j) with zero. We define hi = N(µi ,Σi) as a lower-
dimensional Gaussian distribution embedding for node vi , where
µi ∈ R

L , Σi ∈ RL×L . L is the embedding dimension, which satisfies
L ≪ N . In this paper, we focus on diagonal covariance matrices.

3.2 Problem Definition
In this paper, we focus on the problem of network embedding with
first-order and second-order proximity preserved.

Definition 3.1. (First-Order Proximity) The first-order proximity
describes the pairwise proximity between nodes. For any pair of
nodes, if P(i, j) > 0, there exists positive first-order proximity bet-
ween vi and vj . Otherwise, the first-order proximity between vi
and vj is 0.

The first-order proximity implies that two nodes in real-world
networks are similar if they are linked by an observed edge. For ex-
ample, if two users build a relationship between them on the social
network, they may have a common interest. However, real-world
networks are usually so sparse that we can only observe a very
limited number of links. Only capturing the first-order proximity
is not sufficient,thus we introduce the second-order proximity to
capture the global network structure.

Definition 3.2. (Second-Order Proximity) The second-order prox-
imity between a pair of nodes denotes the similarity between their
neighborhood network structures. Then the second-order proxi-
mity between vi and vj is determined by the similarity between
Nbrsi and Nbrsj . If none of nodes is linked with both vi and vj ,
the second-order proximity between vi and vj is 0.

Intuitively, the second-order proximity assumes that if two nodes
share common neighbors, they tend to be similar. The second-order
proximity has been demonstrated to be a good metric to define the
similarity of a pair of nodes, even if there is no edge between them
[31]. Moreover, the second-order proximity has been proved to be
able to alleviate the sparsity problem of the first-order proximity
and better preserve the global structure of the network [39].

With the first- and second-order proximity, then we define our
network embedding problem as follows:

Definition 3.3. (Gaussian-Based Network Embedding) Given a
network G = {V,E}, we aim to represent each node vi as a lower-
dimensional Gaussian distribution hi = N(µi ,Σi), where µi cap-
tures the position of the nodes in the embedding space and Σi
investigates the uncertainty of the nodes. Meanwhile, the latent
representations aim to preserve the first-order proximity and the
second-order proximity between the nodes to preserve the network
structure.

µi

…

D

…

D

encoder

decoder

µ i σi

Ranking
Loss

zi

 𝒙i

𝒙i

Node i

Parameter sharing

…

D

…

D

encoder

decoder

µ j σj

sample εj

zj

 𝒙j

𝒙j

Node j

…

D

…

D

encoder

decoder

µk σk

sample εk

zk

 𝒙k

𝒙k

Node k

sample εi

Figure 1: The framework of DVNE.

4 DEEP VARIATIONAL NETWORK
EMBEDDING

4.1 Framework
In this paper, we propose a novel model to perform network em-
bedding, namely DVNE, whose framework is shown in Figure 1.
Basically, we propose a deep architecture, which is composed of
multiple nonlinear mapping functions to map the input data to the
Wasserstein space to preserve the uncertainties of the nodes and
capture the network structure. Specifically, we first use a ranking
based loss function on the Wasserstein embedding space, aiming to
make nodes with edges similar and without edges dissimilar. In this
way, the first-order proximity is preserved. Furthermore, we use a
deep variational model to preserve the second-order proximity, by
reconstructing the neighborhood structure of each node. Meanw-
hile, the whole deep variational model implies the the mathematical
relevance of mean vectors and variance terms explicitly by the sam-
pling process. In this way, the mean vectors find an approximate
position of the node and the variance term capture the uncertainty.
In the following sections, we will introduce how to realize the deep
model in detail.

4.2 Similarity Measure
To support network applications, we need to define a suitable si-
milarity measure between the latent representations of two nodes.
Since we use distributions to represent our latent representations
to incorporate uncertainty, the similarity measure should be able to
measure the similarity between the distributions. Furthermore, as
transitivity is a important property of the network, the similarity
measure should simultaneously preserve the transitivity between
nodes. Through extensive studies, we find that the Wasserstein
distance is able to measure the similarity between two distributions
while simultaneously satisfies the triangle inequality [9], which gua-
rantees its ability to preserve the transitivity of similarity between
nodes.

The pth Wasserstein distance between two probability measures
µ and ν is defined as:

Wp (µ,ν)
p = inf E

[
d(X ,Y)p

]
, (1)

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2829

where E[Z] denotes the expected value of a random variable Z and
the infimum is taken over all joint distributions of the random vari-
ables X and Y with marginals µ and ν respectively. Moreover, when
p ≥ 1, the pth Wasserstein distance preserves all properties of a
metric [1], including both the symmetry and the triangle inequality
[6]. In this way, Wasserstein distance is suitable to be a similarity
measure between the latent representation of nodes, especially for
an undirected network.

But the calculation of the general-formed Wasserstein distance
is limited by a heavy computational cost, which poses a great chal-
lenge to network applications. To reduce the computational cost, in
our case since we use Gaussian distributions for the latent represen-
tation of nodes, the 2th Wasserstein distance (abbreviated asW2)
has the closed form solution to speed-up the calculation process.
TheW2 distance has also been widely used in in computer vision
[4, 11], computer graphics [5, 15] or machine learning [12, 14].

More specifically, we have the following formula to calculateW2
distance between two Gaussian distributions [20]:

dist =W2(N(µ1, Σ1),N(µ2, Σ2))

dist2 = ∥µ1 − µ2∥
2
2 + Tr(Σ1 + Σ2 − 2(Σ1/21 Σ2Σ

1/2
1)1/2)

(2)

In this paper we focus on diagonal covariance matrices1, thus
Σ1Σ2 = Σ2Σ1. Then the formula (2) can be simplified as:

W2(N(µ1, Σ1);N(m2, Σ2))
2 = ∥µ1 − µ2∥

2
2 + ∥Σ

1/2
1 − Σ

1/2
2 ∥2F . (3)

According to the above equation, the time complexity of calcula-
tingW2 distance between the latent representation of two nodes is
linear with the embedding dimension L. Therefore, we chooseW2
distance as the similarity measure, and the computational costs no
longer constitute limitations.

4.3 Loss Functions
Our overall loss functions for DVNE consists of two parts, the
ranking-based loss to preserve the first-order proximity and the
reconstruction loss to preserve second-order proximity.

First, we consider how to preserve the first-order proximity.
Intuitively, we want all nodes which are linked with vi to be closer
to vi w.r.t. their embedding, compared to the nodes that have no
edge with vi . More specifically, we propose the following pairwise
constraints to preserve the first-order proximity:

W2(hi , hj) <W2(hi , hk),∀vi ∈ V,∀vj ∈ Nbrsi ,∀vk < Nbrsi . (4)

where hi is the latent representation of node vi , Nbrsi is the set of
neighbors of node vi . The smaller theW2 distance, the larger the
similarities between nodes.

Then we use a energy based learning approach [29] to incorpo-
rate all of the pairwise constraints defined in the above equation.
Mathematically, denoting Ei j =W2(hi , hj) as the energy between
two nodes, we present the objective function as follows:

L1 =
∑

(i, j,k)∈D

(Ei j
2 + exp(−Eik)), (5)

where D is the set of all valid triplets given in Eq. (4). The above
objective function penalizes ranking errors by the energy of the
1When the covariance matrices is not diagonal, Wang proposed an fast iterative
algorithm (called BADMM) to solve the Wasserstein distance [45]. It is not the focus
of the paper and we will not discuss it.

pairs, which makes the energy of positive examples to be lower
than that of negative examples. Equivalently, it will make the simi-
larity between the positive examples larger than that of negative
examples, thus helps preserve the first-order proximity.

For second-order proximity, we use the transition matrix P as our
input features and propose a variant of Wasserstein Auto-Encoders
(WAE) [41] as the model to preserve the neighborhood structure.
WAE is a deep variational model, which can imply the mathematical
relevance of mean vectors and variance terms by the sampling
process. The objective of original WAE is composed of two terms,
the reconstruction cost and the regularizer. The reconstruction
cost aims to capture the information of the input. The regularizer
encourages the encoded training distributions to match the prior
distribution. As for our problem, the P(i, :) shows the neighborhood
structure of node vi , thus we use P(i, :) as the input feature to the
WAE for node vi and reconstruct it to preserve its neighborhood
structure. For the regularization term, it is hard to define the prior
distribution of each node in the network. Therefore, we focus only
on the reconstruction cost to preserve the neighborhood structure.

Let PX denote the data distribution, and PG denote the encoded
training distribution. The reconstruction cost can be represented
as:

DWAE (PX , PG) = inf
Q (Z |X)∈Q

EPX EQ (Z |X)

[
c(X ,G(Z))

]
, (6)

where Q is the encoders and G is the decoders, X ∼ PX and Z ∼

Q(Z |X). It aims to minimize Wasserstein distance between the PX
and PG .

According to [41], when using c(x ,y) = ∥x −y∥22 , the above loss
function (6) minimizes theW2 distance between PX and PG , thus
PG captures the information of the input data in the Wasserstein
space.

Considering the sparsity of the transition matrix P, we focus on
non-zero elements in P to speed up our model. Thus, we present
the loss function as follows to preserve the second-order proximity:

L2 = inf
Q (Z |X)∈Q

EPX EQ (Z |X)

[
∥X◦(X −G(Z))∥22

]
, (7)

where ◦ means the element-wise multiplication.
In our model, we use the transition matrix P as the input feature

X . The reconstruction process will make the nodes with similar
neighborhoods have similar latent representations. Therefore, the
second-order proximity between nodes is preserved.

To preserve first-order proximity and second-order proximity of
networks simultaneously, we jointly minimize the loss function by
combining Eq. (5) and Eq. (7):

L = L1 + αL2. (8)

4.4 Optimization
For large graphs, optimizing objective function (5) is computatio-
nally expensive, which requires to calculate the all valid triplets in
D. Therefore, we sample triplets from D uniformly, which replace∑
(i, j,k)∈D with E(i, j,k)∼D in Eq. (5). In details, for each iteration, we

sampleM triplets from D to calculate the estimates of the gradient.
Considering objective function (7), we need sample Z from

Q(Z |X), which is a non-continuous operation and has no gradient.
In this case, it is difficult for the deep models to optimize the loss

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2830

function. To solve the problem, inspired by the Variational Auto-
Encoders (VAE) [16], we can use the "reparameterization trick" to
optimize the above objective equation. Mathematically, we first
sample ϵ ∼ N(0, I), then compute Z = µ(X) + Σ1/2(X) ∗ ϵ . Given a
fixed X and ϵ , the objective function (7) is deterministic and con-
tinuous in the parameters of encoders Q and decoders G. In this
way, the whole model can get the gradient when performing the
back-propagation, and thus we can use stochastic gradient descent
to optimize the model.

4.5 Implementation Details
For all the experiments in this paper we used an encoder and a
decoder with a single hidden layer of size S = 512 respectively.
More specifically, to obtain the embeddings for a node vi , we have

y(1)i = Relu(xiW(1) + b(1)),W(1) ∈ RN×S , b(1) ∈ RS

µi = y(1)i W(2) + b(2),W(2) ∈ RS×L , b(2) ∈ RL

σi = Elu(y(1)i W(3) + b(3)) + 1,W(3) ∈ RS×L , b(3) ∈ RL

zi = µi + σi ∗ ϵ, ϵ ∼ N(0, I)

y(2)i = Relu(ziW(4) + b(4)),W(4) ∈ RL×S , b(4) ∈ RS

x̂i = Siдmoid(y(2)W(5) + b(5)),W(5) ∈ RS×N , b(5) ∈ RN ,

(9)

where xi is P(i, :), Relu [34] and Elu [10] are the rectified linear unit
and exponential linear unit. We use elu() + 1 to guarantee that σi
is positive. Because the range of values in xi is between [0, 1], we
use the sigmoid function as the output function of the last hidden
layer.

4.6 Complexity analysis
Algorithm 1 lists the procedures of our method. During the training
procedure, the time complexity of calculating gradients and upda-
ting parameters is O(T × M × (daveS + SL + L)), where M is the
number of the edges,dave is the average degree of all nodes, L is the
dimension of embedding vectors, S is the size of hidden layer of the
encoder and decoder, T is the number of iterations. Since we only
reconstruct non-zero elements in xi , the computational complexity
of the first and last hidden layers is O(daveS). The computational
complexity of other hidden layers is O(SL), and it takes O(L) to
calculate theW2 distance between the distributions. In practice we
found that a small number of iterations T (T ≤ 50 for all shown
experiments) is needed for convergence.

5 EXPERIMENT
In this section, we empirically evaluate the effectiveness of the our
method.

5.1 Experiment Setting
We first introduce the experiment setting before presenting results
of the experiments.

5.1.1 Baseline Methods. We use the following five methods as
the baselines.

• DVNE_kl : In order to show the advantages ofW2 distance
in undirected network. We replace the similarity measure in
our method with the KL divergence.

Algorithm 1 Training algorithm of DVNE

Input: The network G = {V,E} with the transition matrix P, the
parameter α

Output: Network embeddings {hi }Ni=1 and updated parameters
θ = {W(i), b(i)}5i=1

1: Initial parameters θ by xavier initialization
2: while L do not converge do
3: SampleM triplets from D uniformly
4: Split these triplets to a number of batches
5: calculate partial derivative ∂L/∂θ with backpropagation

algorithm to update θ
6: end while

• DeepWalk [37]: This algorithm learns embedding by simula-
ting several uniform random walks. It assumes that a pair of
nodes are similar if they are close in the random walks.

• LINE [39]: This algorithm preserves the first-order and second-
order proximity between nodes respectively, and directly
concatenates the representations for the first-order and second-
order proximity.

• SDNE [44]: This method learns a point-vector for each node
with preserving the first and the second order proximities
simultaneously using deep models.

• Graph2Gauss(G2G_oh) [2]: This method aims to learn the
lower-dimensional Gaussian distribution embedding by ran-
king similarity based on the shortest path between nodes. As
the datasets have no attribute information, we compare with
the one-hot encoding version of Graph2Gauss as described
in the paper.

5.1.2 Dataset. In order to comprehensively evaluate the effecti-
veness of our proposed method, we use four different real-world
datasets, including citation networks and social networks. The de-
tailed information is shown as follows:

• Cora : This is a research paper set constructed by McCal-
lum et al. [33], which consists of 2708 scientific publications
classified into one of seven classes.

• Facebook : It is a typical social network dataset without node
labels constructed by J. McAuley et al. [30].

• BlogCatalog[38]: This is a network of social relationships of
the bloggers listed on the BlogCatalog website. The labels
represent the topic categories provided by the authors.

• Flickr [38]: It is a social network where node represents
users and edges correspond to friendships between users.
The labels represent the interest groups of the users.

All the networks are undirected, and the detailed statistics of the
datasets are summarized in Table 1.

5.1.3 Parameter Settings. In all experiments, we set the em-
bedding dimension L = 128 unless stated. For the equality, all the
methods that learn the embedding as the distribution use the length
of mean vector and variance terms to match L. Specifically, our met-
hod actually uses half of the dimensionality L as the length of mean
vector in all experiments.

For DVNE and DVNE_kl, the hyper-parameters of α are tuned by
using grid search on the validation set. We use xavier initialization

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2831

Table 1: Statistics of datasets. |V | denotes the number of no-
des , |E | denotes the number of edges and |C | denotes the
number of classes.

Cora Facebook BlogCatalog Flickr
|V | 2,708 4,039 10,312 80,513
|E | 5,429 88,234 333,983 5,899,882
|C | 7 - 39 195

[21] for all weight matrices. The parameters are optimized using
RMSProp [40] with a fixed learning rate of 0.001.

The parameters for baselines are tuned to be optimal. For Deep-
Walk, we set window size as 10, walk length as 40, walks per node
as 10. For LINE, we set the number of negative samples as 5, and
line search for the optimal value of the training samples on dif-
ferent datasets. For SDNE, we use the default parameter settings
and the multi-layer deep structure in the author’s implementation.
For G2G_oh, we use the default parameter settings and the fixed
learning rate in the implementation details of the paper.

5.2 Network Reconstruction
The most primal objective for network embedding is to reconstruct
the given network, ans a good network embedding method should
ensure that the learned embeddings can preserve the original net-
work structure. Thus, we first provide a basic evaluation on different
network embedding methods with respect to their capability of net-
work reconstruction. More specifically, we use different network
embedding methods to learn the embedding vectors on the different
real-world networks. Then we rank pairs of nodes according to
their trained similarities between the embedding of nodes, i.e. the
W2 distance for our method, the KL divergence for G2G_oh. The
larger the similarities between pairs of nodes, the more likely they
have the edges. Then we can use the top ranking pairs to recon-
struct the edges of the original networks. For the evaluation metric,
we use Area Under Curve (AUC) [18].

Table 2: AUC scores for Network Reconstruction.

Cora Facebook BlogCatalog Flickr
DVNE 0.996 0.998 0.962 0.959

DVNE_kl 0.940 0.958 0.937 0.925
DeepWalk 0.986 0.984 0.864 0.950

Line 0.952 0.934 0.891 0.939
SDNE 0.992 0.960 0.958 0.917
G2G_oh 0.921 0.942 0.924 0.901

The results are shown in Table 2. Our proposed method outper-
forms the baseline methods in all datasets. The results demonstrate
that our proposed method can effectively preserve the original net-
work structure and reconstruct the network. It lays the foundation
for other real-world applications of network embedding.

5.3 Link Prediction
Link prediction, aiming to predict which pairs of nodes will form
edges in the future, is a typical task of network embedding. In our

experiments, we randomly hide 20% of the edges as the testing
network and train the embeddings on the rest of the network. After
the training, we can obtain the embedding for each node and then
use the embeddings to predict the unobserved edges. The pairs of
nodes are ranked in a similar way as network reconstruction and
the top ranking pairs are evaluated on the testing network. Unlike
the reconstruction task, this task predicts the unobserved edges
in testing network instead of reconstructing the existing edges in
training network. We still use AUC as the evaluation metric.

Table 3: AUC scores for Link Prediction.

Cora Facebook BlogCatalog Flickr
DVNE 0.947 0.982 0.945 0.942

DVNE_kl 0.919 0.930 0.917 0.908
DeepWalk 0.880 0.923 0.827 0.931

Line 0.854 0.882 0.802 0.919
SDNE 0.917 0.931 0.920 0.927
G2G_oh 0.901 0.925 0.903 0.906

From the results in Table 3, our proposed method still outper-
forms the baselines in all datasets. Especially on the facebook data-
set, our method significantly improve AUC scores by 0.05 than the
baselines. From the results, we have the following analysis:

Deepwalk can introduce high-order proximity by changing the
parameter of window size, but it can not balance the weight of the
first-order proximity and the high-order proximity. This means it
can not handle well both reconstruction task and prediction task at
the same time, which is evident from the experimental results. We
also find that LINE does not achieve as good performance as other
methods do in most cases. The reason may be twofold. Firstly, LINE
adopts shallow structure, which is difficult to capture the highly
non-linear structure [44] in the network. Moreover, LINE directly
concatenates the embeddings for the first-order and second-order
proximity, which is sub-optimal than jointly optimizing them in
our method.

Although DVNE and SDNE both exploit the first-order and
second-order proximity to preserve the network structure, DVNE
achieves better performance. The reason is that our method learns
a Gaussian distribution as an embedding for each node, allowing us
to capture uncertainty in the network by the latent representations.
Actually, adding a new edge between two nodes is a uncertain event,
it is more natural to describe this event from the perspective of the
distributions.

We also find that DVNE achieves a substantial gain over DVNE_kl
on all the datasets. The reason is two fold. Firstly, the KL divergence
is not suitable for undirected network because of the asymmetric
property of the KL divergence. Secondly, the KL divergence does
not necessarily guarantee the transitivity of similarities between
the nodes, which makes KL-based methods worse link prediction
results.

Compared with DVNE_kl and G2G_oh, which both use the KL di-
vergence as the similaritymeasures, DVNE_kl outperformsG2G_oh.
It is because that G2G_oh use the variance terms as the added di-
mensions while DVNE_kl relates the variance terms and the mean

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2832

0 0.2 0.4 0.6 0.8 1

0.25

0.3

0.35

0.4

Percentage of labeled nodes

M
ic

ro
 F

1

BlogCatalog Dataset

DVNE

DVNE_kl

DeepWalk

LINE

SDNE

G2G_oh

0 0.2 0.4 0.6 0.8 1
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Percentage of labeled nodes

M
a

c
ro

 F
1

BlogCatalog Dataset

DVNE

DVNE_kl

DeepWalk

LINE

SDNE

G2G_oh

Figure 2: Micro-F1 and Macro-F1 on BlogCatalog.

vectors by the sampling process. Thus, DVNE is able to better cap-
ture the uncertainties of nodes and get a better link prediction
result.

Overall, the results demonstrate that our proposedmethodworks
well for network inference tasks.

5.4 Multi-label Classification
Multi-label classification is another task commonly used to eva-
luate the effectiveness of the learned embeddings. We evaluate
the multi-label classification performance for three datasets (Cora,
Blogcatalog and Flickr) that have ground-truth labels. The represen-
tations for the nodes are generated from the network embedding
methods and are used as features to classify each node into a set of
labels. For all methods based on the distribution, we only use the
mean vectors as the input features in this task. We adopt a linear
SVC [23] as the classifiers for all methods. Then, following [37],
we randomly sample a portion of the labeled nodes as the training
data and the rest as the test. For BlogCatalog, we randomly sample
10% to 90% of the nodes as the training samples and use the left
nodes to test the performance. For Cora and for Flickr, we randomly
sample 1% to 10% of the nodes as the training samples and use the
left nodes to test the performance on even more sparsely labeled
networks. We use the Micro-F1 and Macro-F1 scores to evaluate the
performance and report results averaged over 10 trials. The results
are shown in Figure 2 and Figure 3 respectively.

In Figure 2 and Figure 3, the curve of our method is consistently
above the curves of baseline methods. It demonstrates that our
method can achieve a better classification performance than ba-
selines even if the labelled data is limited. Such an advantage is
meaningful for real-world applications, because the labelled data
in real-world network is usually scarce. The variance terms of the
representation can help us to deal with the noise information in
the network, which makes the mean vectors to better capture the
network structure. Therefore, the learned network embedding of
our method can better generalize to the classification task than
baselines.

In most cases, the performance of G2G_oh is the worst among all
the compared network embedding methods. The reasons are two-
fold. First, G2G_oh uses the variance terms as the added dimensions,
causing part of the information of the proximity between nodes
included in variance terms. In this way, the performance of G2G_oh
greatly degrades. Our method, by using the deep variational model,
makes the mean vectors and the variance terms capture different
properties of the network, i.e. the mean vector captures the proxi-
mity and the variance term captures the uncertainty. In this way,

our method can encode more proximity-based information into the
mean vectors and thus perform much better than G2G_oh. Second,
similar to the previous task, the KL divergence is not a suitable
similarity measure to capture the transitivity for the undirected
networks.

5.5 Embedding Uncertainty
Learning an embedding as a distribution rather than a point-vector
allows us to capture uncertainty of the nodes. With our intuition,
the nodes that have less links with other nodes, are harder to get a
exact point-vector in the latent space. In other words, the lower the
degree of a node, the less discriminative information it contains,
thus making its embedding more uncertain. Then we conduct the
following experiment to evaluate the intuition. For each node, we
select its 10 dimensions with the largest variance and averaged
the variance of the 10 dimensions as the variance value for the
node. Then for each network dataset, we divide the total nodes
into 10 parts based on their degrees. For each part of the nodes, we
report the relationship between their degree and their averaged
variance values. The Figure 4a shows the result on the all datasets.
The horizontal axis represents the log10() values of degree. Because
the max degree of the node is no more than 200 in Cora, the line of
Cora is different from the other datasets.

From Figure 4a, we find that the experimental results support our
intuition. The nodes with higher degree contains rich information,
thus making their variance smaller. Meanwhile, we can see that
when the network is denser like Facebook and Flickr, the average
variance of embeddings is smaller. This means that our learned
embeddings of variance can reflect the density of the network.

Moreover, to demonstrate that the uncertainty in variance terms
can help to deal with the noise edges in networks, we conduct an
experiment to show the benefits of the uncertainty. First, following
the setting in link prediction, we randomly hide 20% of the edges
as the testing network and use the rest of network as the training
network. Thenwe randomly choose some pairs of nodes as the noise
edges and add them into the training network. We use different
network embedding methods to learn the representations of nodes
in the modified training network. Similar to link prediction task, we
use the similarity between the learned node embeddings to predict
the unobserved edges in testing network. We use the results of each
method reported in link prediction as the benchmark to calculate
the percentage of AUC decline. We vary the percentage of noise
edges from 0.05 to 0.5, then show the percentage of AUC decline
with respect to it in Figure 4b.

From the results shown in Figure 4b, we can see that the per-
formance of our method is least affected by the noise edges. It
demonstrates that our method can better deal with the noise edges
in networks by capturing the uncertainties of the nodes. DeepWalk
adopts random walk to generate network representations. Each
node walks to other communities with a lower probability in the
modified training network. Thus, DeepWalk can still preserve the
original network structure and the result of DeepWalk is also good.
DVNE_kl uses the KL divergence as the similarity measure, which
can not well preserve the transitivity in the networks. The noise
edges between nodes will further damage this property, leading to
worse results. For G2G_oh, there is a weak connection between

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2833

0 0.02 0.04 0.06 0.08 0.1
0.55

0.6

0.65

0.7

0.75

Percentage of labeled nodes

M
ic

ro
 F

1

Cora Dataset

DVNE

DVNE_kl

DeepWalk

LINE

SDNE

G2G_oh

0 0.02 0.04 0.06 0.08 0.1

0.55

0.6

0.65

0.7

Percentage of labeled nodes

M
a

c
ro

 F
1

Cora Dataset

DVNE

DVNE_kl

DeepWalk

LINE

SDNE

G2G_oh

0 0.02 0.04 0.06 0.08 0.1

0.15

0.2

0.25

0.3

Percentage of labeled nodes

M
ic

ro
 F

1

Flickr Dataset

DVNE

DVNE_kl

DeepWalk

LINE

SDNE

G2G_oh

0 0.02 0.04 0.06 0.08 0.1

0.05

0.1

0.15

0.2

Percentage of labeled nodes

M
a

c
ro

 F
1

Flickr Dataset

DVNE

DVNE_kl

DeepWalk

LINE

SDNE

G2G_oh

Figure 3: Micro-F1 and Macro-F1 on Cora and Flickr.

0 0.5 1 1.5 2 2.5 3
0.1

0.15

0.2

0.25

0.3

0.35

Log
10

(degree)

A
v

e
ra

g
e

 v
a

ri
a

n
c

e

Cora

Facebook

Blogcatalog

Flickr

(a) The average variance wrt the
degree of nodes.

0 0.1 0.2 0.3 0.4 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Percentage of noise edges

P
e

rc
e

n
ta

g
e

 o
f

A
U

C
 d

e
c

li
n

e

Cora Dataset

DVNE

DVNE_kl

DeepWalk

LINE

SDNE

G2G_oh

(b) The performance wrt the
noise edges.

Figure 4: Results of embedding uncertainty.

(a) DVNE (b) DVNE_kl

Figure 5: Visualization of network embedding.

variance terms and mean vectors in the model, which means the
variance terms can not well capture the uncertainties of the nodes.
Through the sampling process proposed by our method, DVNE is
more natural to learn the variance terms that contains the uncer-
tainties of the nodes. Therefore, DVNE and DVNE_kl achieve better
performance than G2G_oh. SDNE and LINE treat each edge equally,
thus the similarities between nodes in latent space are easily be
destroyed by the noise edges.

5.6 Visualization
Visualization is another important application for network embed-
ding. Therefore, we visualize the learned embeddings of the Cora
network. Following [39], we first learn a lower-dimensional L = 128
embedding for each node and then map those representations in
2-dimension space by t-SNE [32]. For nodes with different labels,
we use different colors. Thus, a good visualization result is that the
points of the same color are near from each other.

0 50 100 150 200 250 300
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Dimensionality L

A
U

C
 s

c
o

re
s

(a) The AUC scores wrt the di-
mensionality L

0 0.2 0.4 0.6 0.8 1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Hyper−parameter alpha

A
U

C
 s

c
o

re
s

(b) TheAUC scoreswrt the hyper-
parameter α

Figure 6: Results of parameter sensitivity.

The visualization results are shown in Figure 5, we compare
the DVNE with DVNE_kl. For DVNE_kl, in the center part the
nodes of different classes are mixed with each other. Obviously,
the visualization of DVNE looks better because points of the same
color form segmented classes, and the boundaries of each class are
clearer. It demonstrate the superiority of our method that using the
W2 distance as the similarity measure in the visualization task.

5.7 Parameter Sensitivity
In this section, we investigate the parameter sensitivity. More spe-
cifically, we evaluate how different numbers of the embedding
dimensions and different values of hyper-parameter α can affect
the results. We report AUC scores on the dataset of Cora.

First, we show how the dimension of the embedding vectors
affects the performance in Figure 6a. We can see that initially the
performance raises when the number of dimension increases. Ho-
wever, when the number of dimensions continuously increases,
the performance tends to be stable. This is because most of the
useful information is already encoded into the embeddings. Addi-
tional dimensions consume more computing resources, but have
less effect on performance. Overall, it is important to determine
the appropriate number of dimensions for the latent space. When
the number of dimensions is not too small (L ≥ 32), DVNE is not
sensitive to this parameter.

Then, we fix the number of dimensions to 128. The Figure 6b
shows how the value ofα affects the performance . The parameter of
α balances the weight of the first-order proximity and second-order
proximity between nodes. When α = 0, our method only preserves
the first-order proximity between nodes and the performance is
worse than that of other parameter settings. It demonstrates that

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2834

both first-order and second-order proximity are essential for net-
work embedding methods to capture the network structure. When
α > 0, we observe that DVNE is also not very sensitive to the choice
of this hyper-parameter.

6 CONCLUSIONS
In this paper, we propose a method to learn the Gaussian embedding
by the deep variational model, namely DVNE, which can model
the uncertainties of nodes. It is the first unsupervised method that
represents nodes in networks as Gaussian distributions in Was-
serstein space. The method preserves first-order proximity and
second-order proximity between nodes to capture the local and
global network structure. Moreover, DVNE uses the 2-Wasserstein
distance as the similarity measure to better preserve the transitivity
in the network with the linear time complexity. The empirical study
demonstrates the superiority of our proposed method. Our future
direction is to find a good Gaussian prior for each node to better
capture the network structure and model the uncertainties of nodes.

7 ACKNOWLEDGEMENTS
This work was supported in part by National Program on Key Basic
Research Project (No. 2015CB352300), National Natural Science
Foundation of China (No. 61772304, No. 61521002, No. 61531006,
No. 61702296), National Natural Science Foundation of China Major
Project (No.U1611461), the research fund of Tsinghua-Tencent Joint
Laboratory for Internet Innovation Technology, and the Young Elite
Scientist Sponsorship Program by CAST. All opinions, findings,
conclusions and recommendations in this paper are those of the
authors and do not necessarily reflect the views of the funding
agencies.

REFERENCES
[1] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. 2008. Gradient flows: in metric

spaces and in the space of probability measures. Springer Science & Business
Media.

[2] Aleksandar Bojchevski and StephanGünnemann. 2017. Deep gaussian embedding
of attributed graphs: Unsupervised inductive learning via ranking. arXiv preprint
arXiv:1707.03815 (2017).

[3] A. Bojchevski and S. Günnemann. 2017. Deep Gaussian Embedding of Graphs:
Unsupervised Inductive Learning via Ranking. ArXiv e-prints (July 2017).
arXiv:stat.ML/1707.03815

[4] Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. 2015. Sliced
and radon wasserstein barycenters of measures. Journal of Mathematical Imaging
and Vision 51, 1 (2015), 22–45.

[5] Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris, and Wolfgang Heidrich.
2011. Displacement interpolation using Lagrangian mass transport. In ACM
Transactions on Graphics (TOG), Vol. 30. ACM, 158.

[6] Victor Bryant. 1985.Metric spaces: iteration and application. Cambridge University
Press.

[7] Chen Chen and Hanghang Tong. 2015. Fast eigen-functions tracking on dynamic
graphs. In Proceedings of the 2015 SIAM International Conference on Data Mining.
SIAM, 559–567.

[8] Siheng Chen, Sufeng Niu, Leman Akoglu, Jelena Kovačević, and Christos Falout-
sos. 2017. Fast, Warped Graph Embedding: Unifying Framework and One-Click
Algorithm. arXiv preprint arXiv:1702.05764 (2017).

[9] Philippe Clement andWolfgang Desch. 2008. An elementary proof of the triangle
inequality for the Wasserstein metric. Proc. Amer. Math. Soc. 136, 1 (2008), 333–
339.

[10] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2015. Fast and
accurate deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289 (2015).

[11] Nicolas Courty, Rémi Flamary, and Mélanie Ducoffe. 2017. Learning Wasserstein
Embeddings. arXiv preprint arXiv:1710.07457 (2017).

[12] Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. 2017.
Optimal transport for domain adaptation. IEEE transactions on pattern analysis

and machine intelligence 39, 9 (2017), 1853–1865.
[13] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2017. A Survey on Network

Embedding. arXiv preprint arXiv:1711.08752 (2017).
[14] Marco Cuturi and Arnaud Doucet. 2014. Fast computation of Wasserstein bary-

centers. In International Conference on Machine Learning. 685–693.
[15] Fernando De Goes, Katherine Breeden, Victor Ostromoukhov, and Mathieu Des-

brun. 2012. Blue noise through optimal transport. ACM Transactions on Graphics
(TOG) 31, 6 (2012), 171.

[16] Carl Doersch. 2016. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908 (2016).

[17] Ludovic Dos Santos, Benjamin Piwowarski, and Patrick Gallinari. 2016. Multila-
bel classification on heterogeneous graphs with gaussian embeddings. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases.
Springer, 606–622.

[18] Tom Fawcett. 2006. An introduction to ROC analysis. Pattern recognition letters
27, 8 (2006), 861–874.

[19] Bent Fuglede and Flemming Topsoe. 2004. Jensen-Shannon divergence and
Hilbert space embedding. In Information Theory, 2004. ISIT 2004. Proceedings.
International Symposium on. IEEE, 31.

[20] Clark R Givens, Rae Michael Shortt, et al. 1984. A class of Wasserstein metrics
for probability distributions. The Michigan Mathematical Journal 31, 2 (1984),
231–240.

[21] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics. 249–256.

[22] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 855–864.

[23] Steve RGunn et al. 1998. Support vectormachines for classification and regression.
ISIS technical report 14, 1 (1998), 5–16.

[24] Shizhu He, Kang Liu, Guoliang Ji, and Jun Zhao. 2015. Learning to represent
knowledge graphs with gaussian embedding. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management. ACM,
623–632.

[25] Paul W Holland and Samuel Leinhardt. 1972. Holland and Leinhardt reply: some
evidence on the transitivity of positive interpersonal sentiment.

[26] Zhipeng Huang and Nikos Mamoulis. 2017. Heterogeneous Information Network
Embedding forMeta Path based Proximity. arXiv preprint arXiv:1701.05291 (2017).

[27] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

[28] Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency.
The annals of mathematical statistics 22, 1 (1951), 79–86.

[29] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. 2006. A
tutorial on energy-based learning. Predicting structured data 1, 0 (2006).

[30] Jure Leskovec and Julian J Mcauley. 2012. Learning to discover social circles in
ego networks. In Advances in neural information processing systems. 539–547.

[31] David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem for
social networks. journal of the Association for Information Science and Technology
58, 7 (2007), 1019–1031.

[32] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of Machine Learning Research 9, Nov (2008), 2579–2605.

[33] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.
2000. Automating the construction of internet portals with machine learning.
Information Retrieval 3, 2 (2000), 127–163.

[34] Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th international conference
on machine learning (ICML-10). 807–814.

[35] Feiping Nie, Wei Zhu, and Xuelong Li. 2017. Unsupervised Large Graph Embed-
ding.. In AAAI. 2422–2428.

[36] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric transitivity preserving graph embedding. In Proc. of ACM SIGKDD. 1105–
1114.

[37] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701–710.

[38] Zafarani Reza and Liu Huan. 2009. Social Computing Data Repository. (2009).
[39] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web. ACM, 1067–1077.

[40] Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude. COURSERA: Neural
networks for machine learning 4, 2 (2012), 26–31.

[41] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. 2017.
Wasserstein Auto-Encoders. arXiv preprint arXiv:1711.01558 (2017).

[42] Ke Tu, Peng Cui, Xiao Wang, Fei Wang, and Wenwu Zhu. 2017. Structural Deep
Embedding for Hyper-Networks. arXiv preprint arXiv:1711.10146 (2017).

[43] Luke Vilnis and Andrew McCallum. 2014. Word representations via gaussian
embedding. arXiv preprint arXiv:1412.6623 (2014).

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2835

http://arxiv.org/abs/stat.ML/1707.03815

[44] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network em-
bedding. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 1225–1234.

[45] Huahua Wang and Arindam Banerjee. 2014. Bregman alternating direction
method of multipliers. In Advances in Neural Information Processing Systems.
2816–2824.

[46] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017.
Community Preserving Network Embedding. (2017).

[47] Chengxi Zang, Peng Cui, Christos Faloutsos, and Wenwu Zhu. 2017. Long Short
Memory Process: Modeling Growth Dynamics of Microscopic Social Connectivity.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 565–574.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2836

	Abstract
	1 Introduction
	2 Related Work
	3 Notations and Problem Definition
	3.1 Notations
	3.2 Problem Definition

	4 Deep Variational Network Embedding
	4.1 Framework
	4.2 Similarity Measure
	4.3 Loss Functions
	4.4 Optimization
	4.5 Implementation Details
	4.6 Complexity analysis

	5 Experiment
	5.1 Experiment Setting
	5.2 Network Reconstruction
	5.3 Link Prediction
	5.4 Multi-label Classification
	5.5 Embedding Uncertainty
	5.6 Visualization
	5.7 Parameter Sensitivity

	6 Conclusions
	7 Acknowledgements
	References

