
NetWalk: A Flexible Deep Embedding Approach for Anomaly
Detection in Dynamic Networks

Wenchao Yu1, Wei Cheng2, Charu C. Aggarwal3, Kai Zhang4, Haifeng Chen2, and Wei Wang1
1Department of Computer Science, University of California Los Angeles

2NEC Laboratories America, Inc. 3IBM Research AI
4Department of Computer and Information Sciences, Temple University

{wenchaoyu,weiwang}@cs.ucla.edu,charu@us.ibm.com,{weicheng,haifeng}@nec-labs.com,zhang.kai@temple.edu

ABSTRACT

Massive and dynamic networks arise in many practical applica-
tions such as social media, security and public health. Given an
evolutionary network, it is crucial to detect structural anomalies,
such as vertices and edges whose “behaviors” deviate from un-
derlying majority of the network, in a real-time fashion. Recently,
network embedding has proven a powerful tool in learning the
low-dimensional representations of vertices in networks that can
capture and preserve the network structure. However, most existing
network embedding approaches are designed for static networks,
and thus may not be perfectly suited for a dynamic environment in
which the network representation has to be constantly updated. In
this paper, we propose a novel approach, NetWalk, for anomaly de-
tection in dynamic networks by learning network representations
which can be updated dynamically as the network evolves. We first
encode the vertices of the dynamic network to vector representa-
tions by clique embedding, which jointly minimizes the pairwise
distance of vertex representations of each walk derived from the
dynamic networks, and the deep autoencoder reconstruction er-
ror serving as a global regularization. The vector representations
can be computed with constant space requirements using reser-
voir sampling. On the basis of the learned low-dimensional vertex
representations, a clustering-based technique is employed to incre-
mentally and dynamically detect network anomalies. Compared
with existing approaches, NetWalk has several advantages: 1) the
network embedding can be updated dynamically, 2) streaming net-
work nodes and edges can be encoded efficiently with constant
memory space usage, 3). flexible to be applied on different types
of networks, and 4) network anomalies can be detected in real-
time. Extensive experiments on four real datasets demonstrate the
effectiveness of NetWalk.

CCS CONCEPTS

• Computing methodologies → Anomaly detection; Dimen-

sionality reduction and manifold learning; • Theory of com-

putation → Dynamic graph algorithms;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3220024

KEYWORDS

Anomaly detection, dynamic network embedding, deep autoen-
coder, clique embedding

ACM Reference Format:

Wenchao Yu1,Wei Cheng2, Charu C. Aggarwal3, Kai Zhang4, Haifeng Chen2,
and Wei Wang1. 2018. NetWalk: A Flexible Deep Embedding Approach
for Anomaly Detection in Dynamic Networks. In KDD ’18: The 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining,
August 19–23, 2018, London, United Kingdom. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3219819.3220024

1 INTRODUCTION

Anomaly detection (a.k.a outlier detection) in dynamically chang-
ing networks is a long-standing problem deeply motivated in a
number of application domains, such as social media, security, pub-
lic health, and computational biology [1, 5, 7, 16, 33]. Identifying
time-varying anomalies (such as edges or vertices), which repre-
sent significant deviations from “normal” structural patterns in the
evolving network, can shed important light on the functional status
of the whole system. Many methods have been proposed in the past
decade to solve this problem [3, 18, 23, 32, 40]. Some prominent
examples of applications are summarized as follows.
• With the popularity of social media, anomalous behaviors
can be found in the underlying social network. The mali-
cious activities such as cyber-bullying, terrorist attack plan-
ning and fraud information dissemination can be detected as
anomalies using anomaly detection models based on social
network.
• The advanced persistent threat (APT) detection problem in
security can also be cast as real-time anomaly detection in
network streams. In an APT scenario, we are given a stream
of system logs which can be used to construct information-
flow networks. Information flows induced by malicious ac-
tivities can be quite different from normal system behaviors.
• In clinics, anomaly detection can provide valuable informa-
tion on managing and diagnosis with the electric patient
records. The data typically consist of records from various
types of entities (vertices) such as patients, symptoms and
treatments, which can be modeled as a multi-partite network
representing their complex interactions. Anomalies in such
networks can pinpoint important scenarios requiring instant
human interventions, such as abnormal patient condition or
recording errors.

To detect network anomalies in these applications, a typical
approach is to first perform network sketching and then identify

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2672

https://doi.org/10.1145/3219819.3220024
https://doi.org/10.1145/3219819.3220024

6

8

2

1

4

3

Initial Network Vertex Reservoirs
Network Embedding

Streaming Edge(s)

Update

Anomaly
Detection

7

2

3

9 4

5

3
!" !# !$

…

7

5

Dynamic Network Embedding

1 6 3 4

2 1 5 3

3 1 2 4

4 1 1 3
… …

Figure 1: Workflow of NetWalk for anomaly detection in

dynamic networks

anomalies in the sketches through clustering and outlier detection,
such as in [23, 32]. The network sketches serve as a compact, latent
representation of the network and thus allow efficient updates as
new network objects arrive in a streaming fashion, without having
tomaintain the complete details of the full network. In the literature,
the network sketches have been learned through locality-sensitive
hashing [20] and count-min sketch [11]. However, these approaches
are not directly designed to learn the network sketches that can
simultaneously preserve important structural relations, such as the
local neighborhood composition or proximity landscapes. Thus,
the sketches extracted are usually shallow [8, 22], and thereby
bottleneck the accuracy of downstream anomaly detection task.

Recently, network embedding through neural networks has at-
tracted significant interest and shown promising results, in partic-
ular towards obtaining desired low-dimensional representations
of network that best preserve the neighborhood information [8,
22, 25, 26]. The structure preserving property of the network em-
bedding makes it particularly suitable for anomaly detection tasks,
by examining the similarity between vertices/edges in the latent
representation. For example, vertices staying far away from the ma-
jority clusters in the multidimensional latent space will very likely
indicate certain types of anomalies, which can be detected conve-
niently through dynamic clustering algorithms. However, existing
methods for network embedding can not update the representa-
tion dynamically as new vertices or edges keep feeding, and thus
may not be perfectly suitable for anomaly detection in a dynamic
environment [8, 22, 25, 26]. In case of a rapidly evolving network,
the problem can be even more challenging. It is therefore highly
desirable to design an effective and especially efficient embedding
algorithm that is capable of fast, real-time detection with bounded
memory usage.

To address this problem, in this paper, we propose the NetWalk
algorithm to incrementally learn network representations as the
network evolves, and detect anomalies in the networks in a real-
time fashion. Figure 1 shows an illustrative diagram of the anomaly
detection pipeline in dynamic networks. First, we learn the latent
network representation by using a number of network walks ex-
tracted from the initial network. The representation is obtained
not only through maintaining the pairwise vertex-distance in the
local walks, but also by hybridizing it with the hidden layer of a

deep auto-encoder, such that the resultant embedding is guaran-
teed to faithfully reconstruct the original network. By doing this,
the learned vertex coordinates in the multi-dimensional Euclidean
space can achieve both local fitting and global regularization. In
addition, the learned representations can be easily updated over
dynamic changes by leveraging a reservoir sampling strategy. Then,
a dynamic clustering model is used to flag anomalous vertices or
edges based on the learned vertex or edge representations. We quan-
titatively validate the effectiveness and efficiency of the proposed
framework on real datasets. To summarize, the main contributions
are as follows:
• We propose a novel anomaly detection framework, Net-
Walk, which learns vector representations for vertices and
edges, and detects network deviations based on a dynamic
clustering algorithm.
• We propose an efficient algorithm for network representa-
tion learning based on deep neural network embedding and
reservoir sampling. It can accurately and rapidly encode the
evolving network objects.
• The proposed NetWalk is flexible. It is applicable on both
directed and undirected networks, either weighted or not,
to detect abnormal vertices and edges in a network that
may evolve over time by dynamically inserting or deleting
vertices and edges.
• We conduct extensive experiments on real-world informa-
tion networks. Experimental results demonstrate the effec-
tiveness and efficiency of NetWalk.

The rest of this paper is organized as follows. Section 2 formally
defines the problem of anomaly detection in dynamic networks.
Section 3 introduces the methods used for network representation
learning and Section 4 describes the clustering-based anomaly de-
tection algorithm. Section 5 empirically evaluates NetWalk on
anomaly detection tasks using various real-world networks. Sec-
tion 6 briefly surveys related work on anomaly detection in dynamic
networks. Finally we conclude in Section 7.

2 PROBLEM FORMULATION

Given a temporal network G (t) = (E (t),V (t)), we assume that
the incoming stream of network objects at time-stamp t is typically
a small number of network objects denoted by an edge set1 E (t)
where |E (t) | ≥ 1. All vertices in the edge set E (t) at time-stamp t are
denoted byV (t) . The vertex setV (t) denotes the union of the vertex
sets across all time-stamps from 1 to t , that is,V (t) = ∪{V (i) }ti=1.
Similarly, we have E (t) = ∪{E (i) }ti=1. Note that the complete set of
vertices may not be known at time-stamp t , since new vertices may
keep arriving at time-stamp t ′ for any t ′ > t . The network G (t)
includes all edges received from time-stamps 1 to t .

Our goal is to detect anomalous vertices, edges and communities
(group of vertices) at any given time-stamp t , i.e., in real time as
E (t) occurs. To achieve this goal, we encode the network G (t) as
a feature matrix, where each row is the vector representation of a
vertex (Section 3). The main challenges are, i) we need a cohesive
way to encode the dynamic network, ii) incoming network objects
1Note that the case of incoming stream of edges includes the case of new vertices since
an edge contains both the edge itself and the connected vertices. The case of incoming
stream of singleton vertices is trivial because they are obviously anomalies.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2673

Table 1: Notation Description

Notation Description
E (t) streaming edges received from time-stamps 1 to t
V (t) vertex set across time-stamp 1 to time-stamp t
G (t) the network at time-stamp t with E (t) andV (t)
Ω(t) network walk set of G (t)
n number of vertices, |V (t) |
m number of edges, |E (t) |
l walk length
ψ number of network walks per vertex
|Ω | total number of network walks, |Ω | = n ×ψ
d latent dimension of vertex representation
ρ sparsity parameter
nl total number of layers of the autoencoder network

x(i)p ∈ R
n input vector of vertex p ∈ [1, l] in walk i ∈ [1, |Ω |]

W(ℓ) ∈ Rn×d weight matrix at layer ℓ
b(ℓ) ∈ Rd bias vector at layer ℓ
D ∈ Rn×n diagonal degree matrix
f (ℓ) (x) network output of layer ℓ

should be easily coded with the learned network representations,
iii) network representations need to be efficiently updated as new
network objects arrive. We then follow a clustering-based approach
to detect the anomalies in the dynamic network (Section 4). The
clusters are generated after calculating the distances between the
embedded vertices. Whether the incoming network objects are
anomalies or not can be determined from the distance between
their respective representations and existing clusters. The clustering
results are updated efficiently as new network objects arrive. The
notations used in this paper are summarized in Table 1.

3 ENCODING NETWORK STREAMS

In order to detect anomalies in dynamic networks in real time, our
method needs to learn network representations and perform online
updates efficiently as network evolves. For clarity, now we only
discuss the case that new edges stream in on unweighed network.
The cases of decreasing edges or tackling weighted networks are
similar and will be discussed in Section 3.2. In this section, we
present the network encoding and the updating phase in NetWalk
which does not require to store the entire network.

3.1 Network Walk Generation

Analogous to word embedding techniques [25, 26] in constructing
vector representations, we decompose the network into a set of
network walks each of which contains a list of vertices selected by
a random walk2. We formally define the network walk as follows.

Definition 3.1 (Network Walk). For a given vertex v1 ∈ V in
a network G (E,V), its network walk set is defined as Ωv1 =

{(v1,v2, ...,vl) | (vi ,vi+1) ∈ E ∧ p (vi ,vi+1) = 1
Dvi ,vi

}, which is
a collection of l-hop walks starting from vertex v1. The transition
probability p (vi ,vi+1) from vi to vi+1 is proportional to the degree
Dvi ,vi of vertex vi . We call Ωv a network walk set starting from v ,
and Ω = {Ωv }v ∈V as the union of all walks.

2Note that this works for both directed and undirected network

Layer 0 Layer :;

&("), *(")

+$(,)+#(,)+"(,)

2

1

3

Encoding

Network Walk -
+.$(,)+.#(,)+."(,)

&(<=), *(<=)

Layer <=#

/$
(<=# ,,)

/#
(<=# ,,)

/"
(<=# ,,)

min
3,4

5 /6
(<=# ,,) − /8

(<=# ,,)
#

#

"96,89$

… …

Figure 2: Illustration of clique embedding for one network

walk of length 3

Similar to the word frequency which typically follows a power
law distribution in natural language, we observe that if the degree
distribution of the network follows a power law distribution, the
frequency distribution of vertices occurring in the network walks
also follows a power law distribution (or Zipf’s law) [31]. There-
fore we will use a stream of network walks as our basic tool for
extracting information from a network. We then learn the vertex
representations of the network using a novel embedding method
introduced in Section 3.2.

3.2 Learning Network Representations

We formulate the network representation learning problem as an
optimization problem. Our goal is to learn a mapping function f :
V → Rd such that each v ∈ V is represented as a d-dimensional
vector, whered is the latent-space dimension. Themapping function
f applies to any (un)directed, (un)weighted network.

Inspired by skip-gram architecture [26], we propose a network
embedding algorithm, clique embedding, that utilizes an deep auto-
encoder neural network to learn the vector representation of ver-
tices through a stream of network walks while minimizing the
pairwise distance among all vertices in each walk. Figure 2 depicts
the clique embedding model used in NetWalk. The inputs and
outputs are one-hot encoded vectors, that is, for a given vertex
input x(i)p ∈ R

n , only one out of n elements will be 1, and all others
are 0’s. Our goal is to learn a latent representation for each input
network walk {x(i)p }lp=1. Here l is the walk length, {W

(ℓ) }
nl
ℓ=1 are the

weight matrices, {b(ℓ) }nl
ℓ=1 are the bias vectors, and f (ℓ) (·) denotes

the output of each layer.
Formally, given a one-hot encoded network walk {x(i)p }

l
p=1, i =

1, ..., |Ω |, we want to learn the following representations in a nl -
layer autoencoder network,

f (
nl
2) (x(i)p) = σ (W(

nl
2)⊤h (

nl
2) (x(i)p) + b(

nl
2)), (1)

where
h (

nl
2) (x(i)p) =W(

nl
2 −1) f (

nl
2 −1) (x(i)p) + b(

nl
2 −1) . (2)

Here, σ (z) = 1
1+exp(z) is the sigmoid function; nl ≥ 2; f (0) (x(i)p) =

x(i)p . In an auto-encoder network, the output hypotheses f (nl) (x(i)p)

is approximately equal to x(i)p . Therefore, if we use ℓ2 norm to
minimize the reconstruction error, the objective function becomes

JAE =
1
2

|Ω |∑
i=1

l∑
p=1

f
(nl) (x(i)p) − x(i)p

2
2 . (3)

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2674

We also seek to minimize the pairwise distance among all ver-
tices3 of each network walk in the embedding space at layer nl

2 ,
which can be formally described as follows,

JClique =
|Ω |∑
i=1

∑
1≤p,q≤l

f
(
nl
2) (x(i)p) − f (

nl
2) (x(i)q)

2

2
. (4)

Due to the sparsity of the input and output vectors, we consider
a sparse auto-encoder with sparsity parameter ρ and penalize it
with the Kullback-Leibler divergence [27],

KL(ρ ∥ρ̂ (ℓ)) =
d∑
j=1

KL(ρ ∥ ρ̂ (ℓ)
j) =

d∑
j=1

ρ log ρ
ρ̂ j
+ (1 − ρ) log 1 − ρ

1 − ρ̂ j
, (5)

where ρ̂ (ℓ) = 1
|Ω |×l

∑ |Ω |
i=1

∑l
p=1 f

(ℓ) (x(i)p) is the average activation
of the units in the hidden layer. This sparsity constraint penalizes
large deviation of ρ̂ (ℓ)j from ρ. Given a training set of network walks
Ω, we then define the overall cost function to be:

J (W, b) =
|Ω |∑
i=1

∑
1≤p,q≤l

f
(
nl
2) (x(i)p) − f (

nl
2) (x(i)q)

2

2︸ ︷︷ ︸
Clique Embedding Loss

+
γ
2

|Ω |∑
i=1

l∑
p=1

f
(nl) (x(i)p) − x(i)p

2
2︸ ︷︷ ︸

Reconstruction Error

+ β
nl −1∑
ℓ=1

∑
j

KL
(
ρ ∥ ρ̂ (ℓ)

j

)
︸ ︷︷ ︸

Sparsity Constraint

+
λ
2

nl∑
ℓ=1

W
(ℓ)

2
F
,︸ ︷︷ ︸

Weight Decay

(6)

where |Ω | is the number of network walks, l is the walk length.
The weight decay term decreases the magnitude of the weights,
and helps prevent overfitting. γ , β and λ control the weight of the
corresponding penalty terms. The loss function J (W, b) can also
be written in a matrix form,

J (W, b) =
|Ω |∑
i=1

Tr(F (i)LF (i)⊤) +
γ
2

H
(nl) (X) − X

2
F

+ β
nl −1∑
ℓ=1

KL(ρ ∥ρ̂ (ℓ)) +
λ
2

W
(1)

2
F
+
λ
2

nl∑
ℓ=1

W
(ℓ)

2
F
, (7)

where F (i) = [f (i)1 , f
(i)
2 , ..., f

(i)
l], f (i)l = f (

nl
2) (x(i)l); L is the

Laplacian matrix of the clique with l vertices, thus we have L =
Il × (l − 1) − Φ, and Φi, j = 1,∀i , j. X = [x(1) , x(2) , ..., x(|Ω |)],
x(i) = [x(i)1 , x

(i)
2 , ..., x

(i)
l];H (nl) (X) = [д(1) ,д(2) , ...,д(|Ω |)], д(i) =

[f (nl) (x(i)1), f (nl) (x(i)2), ... f (nl) (x(i)l)].
Our goal is to minimize J (W, b) as a function ofW and b. The

key step is to compute the partial derivatives of objective function
Eq.(7), with respect toW and b to derive updates. Inspired by back-
propagation algorithm [34], we introduce “error terms” for δ (ℓ)
and δ (nl) for the hidden layer and output layer respectively. These
“error terms” can be computed as follows:

δ (nl) = −γ∇
f (nl) (X)

JAE ◦ σ ′
(
h (nl) (X)

)
= −γ

(
H

(nl) (X) − X
)
◦ f (nl) (X) ◦

(
1 − f (nl) (X)

)
, (8)

δ (ℓ) =

(
W(ℓ)⊤δ (ℓ+1) + β

ρ̂ (ℓ) − ρ0

ρ̂ (ℓ) (1 − ρ0)

)
◦ σ ′

(
h (ℓ) (X)

)
=

(
W(ℓ)⊤δ (ℓ+1) + β

ρ̂ (ℓ) − ρ0

ρ̂ (ℓ) (1 − ρ0)

)
◦ f (ℓ) (X) ◦

(
1 − f (ℓ) (X)

)
, (9)

3This is inspired by skip-gram architecture that considers all word pairs within a
distance window. It is effective for extracting local proximity information [26].

where ρ0 is a vector with all entries ρ; “◦” denotes the element-
wise product. Since the clique embedding loss only depends on

{W(ℓ) , b(ℓ) }
nl
2
ℓ=1, then the derivatives for ℓ > nl

2 are

∇W(ℓ) J (W, b) =δ (ℓ)
(
f (ℓ−1) (X)

)⊤
+ λW(ℓ), (10)

∇b(ℓ) J (W, b) =
|Ω |∑
i=1

δ (ℓ)
i . (11)

We need to take the clique embedding loss into consideration

when computing the derivatives for {W(ℓ) , b(ℓ) }
nl
2
ℓ=1.

∇W(ℓ) J (W, b) =
|Ω |∑
i=1
F

(i) (L + L⊤) ◦ F (i)
◦ (1 − F (i))

(
f (ℓ−1) (X)

)⊤
+ δ (ℓ)

(
f (ℓ−1) (X)

)⊤
+ λW(ℓ), (12)

∇b(ℓ) J (W, b) =
|Ω |∑
i=1
F

(i) (L + L⊤) ◦ F (i)
◦ (1 − F (i)) + δ (ℓ)

i . (13)

Starting from every vertexv ∈ V , we generate all network walks
via random walk. Then network representations are learned by op-
timizing the aforementioned loss function J (W, b). The pseudocode
for network encoding is given in Algorithm 1.

Algorithm 1: Clique Embedding of NetWalk
Input: Network walk set Ω.
Output: Network representations f

nl
2 (x(i)p)

Set latent dimension d , sparsity ρ , weight control parameters γ , β and
λ.

Randomly initialize {W(ℓ), b(ℓ) }nl
ℓ=1.

Construct input vector x(i)p ∈ Rn for vertex p in walk i , 1 ≤ p ≤ l ,
1 ≤ i ≤ |Ω |

while not stopping criterion do

Perform a feedforward pass to compute f (ℓ) (x(i)p).
For the output layer nl , set δ (nl) using Eq.(8)
for ℓ = nl − 1, nl − 2, nl − 3, . . . , 1 do

Compute “error terms” δ (ℓ) using Eq.(9).
if ℓ >

nl
2 then

Compute partial derivatives ∇W(ℓ) J (W, b) and
∇b(ℓ) J (W, b) using Eq.(10)-(11).

else

Compute partial derivatives ∇W(ℓ) J (W, b) and
∇b(ℓ) J (W, b) using Eq.(12)-(13).

Determine the step size ξ by line search.
UpdateW(ℓ) =W(ℓ) − ξ∇W(ℓ) J (W, b).
Update b(ℓ) = b(ℓ) − ξ∇b(ℓ) J (W, b).

Compute embedding results f
nl
2 (x(i)p).

In a fully streaming setting, the entire vertex setV will change
over time, and hence is the number of vertices n. In this case, we
need to pre-allocate a fixed length for one-hot encoding technique
to encode the input vectors x(i)p ’s.

Visualization. In the network representation learning phase,
NetWalk takes an initial network as input and learns a latent rep-
resentation for every vertex. Here, we show the encoding capability
of clique embedding in NetWalk by applying our method to the
Zachary’s karate network [42]. Figure 3 (a) shows the original net-
work in which the vertex color indicates the community to which

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2675

(a) (b)

Figure 3: Embedding results on Zachary’s karate network.

Vertex colors represent amodularity-based clustering on the

input graph. (a) the Zachary’s karate network, (b) Embed-

ding results of NetWalk.

each vertex belongs. Figure 3 (b) presents the 2-dimensional rep-
resentations learned by NetWalk. Notably, the linearly separable
clusters can be found in the vector representation space learned by
our method.

3.3 Edge Encoding

NetWalk learns vector representations for vertices, which allows
us to detect vertex anomalies based on clustering. In addition, we
are also interested in edge anomaly detection. Therefore, in order
to determine whether an incoming edge is an anomaly, we build
a lookup table to encode new edge(s) in real-time based on the
network representations we have learned. For undirected networks,
the operator has to be symmetric. That is, for any edge (u,v) or
(v,u), the edge representation should be the same. In this paper, we
use the Hadamard operator which has shown good performance in
edge encoding [15]. Assume that the d-dimensional representation
learned by Algorithm 1 for vertexv is f (v), then the representation
of each edge (v,u) under Hadamard operator is [f (v) ◦ f (u)]i =
fi (v) × fi (u). It is worth mentioning that the way to encode edges
is very flexible. We can add any additional edge-specific features to
augment the edge vector.

3.4 Maintaining Network Representations

Incrementally

To cope with the fast evolving nature of dynamic networks, we
prefer to update the network representations without having to
maintain explicitly the complete details of network structures. This
section describes how the network representations learned by Net-
Walk are dynamically updated upon changes of the network. Each
added/deleted edge affects in a number of network walks which
will be used to update the current network representation. In our
model, we design a reservoir-based algorithm to maintain a com-
pact record which consists of a set of “neighbors” for each vertex,
and the walks are updated based on the reservoir for each vertex.

Definition 3.2 (Vertex Reservoir). For each vertex v ∈ V , the
corresponding vertex reservoir Sv is a set of vertex withψ items,
which are sampled with replacement from v’s neighbors nev =
{u |(u,v) ∈ E,u , v}.

Given a stream of edges, NetWalkmaintains a reservoir for each
vertex v such that each single item in the reservoir is selected at

Timestamp !"

6

8

2

1

4

3

7

5

6

8

2

1

4

3

7

5

6

8

2

1

4

3
×

7

5

1 6 3 4

2 1 5 1

3 1 4 4

Timestamp !# Timestamp !$

1 6 3 4

2 1 5 3

3 1 2 4

1 6 3 6

2 1 5 1

3 1 4 4

4 1 1 3 4 1 1 3 4 3 3 3
… …… …… …

Figure 4: Illustration of updating the reservoirs. Initially we

build the reservoir of each vertex based on the network at

t1. When (v2,v3) is added at timestamp t2, the correspond-

ing reservoirs of v2 and v3 will be updated. Similarly, when

(v1,v4) is deleted at timestamp t3, we replace the deleted

items with the remaining neighbors of the corresponding

vertex.

random fromv’s neighbors. Thus the reservoir needs to be updated
as new edges arrive. The updating rules are described as follows
for each newly added edge (u,v):

(1) update the degree of vertices u and v: Du,u = Du,u + 1,
Dv,v = Dv,v + 1;

(2) for each item in the reservoir Su , with probability 1
Du,u

,
replace the old itemwith the new itemv ; andwith probability
1 − 1

Du,u
, keep the old item;

(3) for each item in the reservoir Sv , with probability 1
Dv,v

,
replace the old itemwith the new itemu; andwith probability
1 − 1

Dv,v
, keep the old item.

Lemma 3.3. For each i , the ith neighbor of vertex v is chosen to be
included in the reservoir Sv with probability ψ

Dv,v
.

Proof. We will prove it by induction. After the (i − 1)th round,
let us assume that the probability of an item being in the reservoir
Sv is ψ

Dv,v
. Since the probability of the item being replaced in the ith

round is 1
Dv,v+1 , the probability that a given item is in the reservoir

after the (i − 1)th round will be ψ
Dv,v

× (1 − 1
Dv,v+1) =

ψ
Dv,v+1 .

We update Dv,v ← Dv,v + 1. Hence, the result holds for i , and is
therefore true by induction. □

In case where edges are deleted, the reservoir is chosen similarly
to aforementioned rules. In this case, one needs to update the degree
matrix first, and then replace the deleted items with the remaining
neighbors of the corresponding vertex. As illustrated in Figure 4,
when (v2,v3) is added at timestamp t2, the corresponding reservoirs
of v2 and v3 will be updated by adding v3 with a probability of 1

3 ,
andv2 with a probability of 1

3 , respectively. Similarly, when (v1,v4)
is deleted at timestamp t3, we replace the deleted item v1 with v3
with a probability of 1 (there is only one remaining neighbor of the
corresponding vertex v4), and replace the deleted item v4 with v3
or v6 with probability 1

2 .
After updating the reservoir of the corresponding vertices as

edge (u,v) arrives, we will generate the network walks that need to

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2676

be updated accordingly. For each newly added edge (u,v), the walks
need to be added are defined asΩ+ = {(u1,u2, ...,ui ,u,v,v1,v2, ...,vj)
∨(v1,v2, ...,vi ,v, u,u1,u2, ...,uj) |i + j = l − 2}, which is a col-
lection of network walks with length l including the new edge
(u,v). The transition probability of each connected vertex pair
(um ,un) is p (um ,un) = 1

Dum ,um
. For each edge (u ′,v ′) that needs

to be removed, the dynamic walk are defined as Ω− = {ω |∀ω ∈
Ω∧ ((u ′,v ′) ∈ ω∨ (v ′,u ′) ∈ ω)}. We will then continue to train the
model with the updated network walk set in a warm-start fashion.
The pseudocode of updating network representations is shown in
Algorithm 2.

Algorithm 2: Network Representation Maintenance
Input: Network walk set Ω, a streaming edge set E (t) ; saved clique embedding

model
Output: The updated Ω, the updated embedding clique model
// dynamic walks generation
for (u, v) in the streaming edge set E (t)

do

Update vertex set V .
Update degree matrix D.
Update the reservoirs Su and Sv using the rules described in Section 3.4.
Generate the network walk sets Ω+ for new edges and Ω− for deleted
edges, respectively.

// model update
Load the saved embedding model.
Train the model with the dynamic network walk set Ω+ with a small sample set
of walks from Ω, or with the updated walk set Ω − Ω− if with edge deletion.

Update network representations f (
nl
2) (x(i)p).

Save the updated clique embedding model.

Discussion. 1). On the incremental online training. When new
edges come, ideally, we need to retrain the embedding model on the
whole walk set Ω ∪ Ω+. However, this is usually time-consuming.
Many online gradient decent methods have been discussed for this
problem. For example, we can sample a small set of walks from Ω
based on their gradients [12] and add them to Ω+ for training. For
the edge deletion case, we retrain the model with the updated walk
set Ω −Ω− for edge deletion. This is time consuming if the original
walk set Ω is very large. We can also incorporate the edge deletion
part into the objective function Eq.(7),

J (W, b) =
|Ω+ |∑
i=1

∑
1≤p,q≤l

f
(
nl
2) (x(i)p) − f (

nl
2) (x(i)q)

2

2

+

|Ω− |∑
i=1

∑
1≤p,q≤l

max
(
0, α −

f
(
nl
2) (x(i)p) − f (

nl
2) (x(i)q)

2

2

)

+
γ
2 JAE + β JSparsity +

λ
2 JWeight Decay, (14)

which ensures that the deleted edges in the embedding space have
a distance of at least α from each other. In the following evalu-
ation section, we focus on the edge addition scenario which is
more common in real world. 2). On the weighted networks. Only
minor modification on current algorithm is needed to accommodate
weighted network anomaly detection. First, since the walks gener-
ating step adopts random walker technique, it is easy to consider
the weights of edges into the transition probability. Accordingly, in
Eq.(4), additional weights should be put to the pairwise loss of two
vertices.

Visualization. In this subsection, we show the dynamic encod-
ing capability of NetWalk by applying our method to the Email

(a) (b) (c)

Figure 5: Embedding results onEmail network. Vertex colors

represent a modularity-based clustering on the input graph.

(a) initial embedding with 50% edges, (b) online embedding

with additional 25% edges (75% edges in total), (b) online em-

bedding with additional 25% edges (100% edges in total).

network4. Figure 5 (a) shows the embedding results with 50% edges,
in which the vertex color indicates the community to which each
vertex belongs. Figure 5 (b) presents the online embedding results
with additional 25% edges, and Figure 5 (c) updates the embeddings
with the remaining 25% edges. Notably, more and more linearly
separable clusters can be found in the 2-dimensional representation
space in Figure 5 (b) and (c).

Computational Analysis. To help analyzing the complexity of
maintaining network representations, a summary of the notations
is given in Table 1. In network walk generation section, the time
complexity to generate |Ω | walks with length l in a network with
n vertices is O (nl |Ω |). The edge encoding step takes O (md) time
to encodem edges with vertex dimension d . For each newly added
edge, it takes O (ψ) time to update the corresponding reservoirs,
and O (ψl) time to generate the walks that need to be retrained.

4 ANOMALY DETECTION

The network representations learned by NetWalk can be benefi-
cial for lots of downstream applications, such as link prediction,
anomaly detection and community detection. In this paper, we
focus on the anomaly detection problem based on the learned net-
work representations. We define the anomaly detection problem
in dynamic network as follows: given the vertex representations
fW,b (x

(i)
p) ∈ Rd or corresponding edge representations, group ex-

isting representations into k clusters, and detect any newly arriving
vertices or edges that do not naturally belong to any existing cluster.
This may include the following scenarios: 1) the vertex or edge cor-
responds to an anomaly; 2) the vertex or edge marks the start of a
new cluster in the network stream. It is difficult to distinguish these
two cases unless we receive more streaming data afterwards. So
in our model, we find the closest cluster to each point. We use the
Euclidean distance as the similarity measure, given by | |c − f (·) | |2,
where c is the cluster center and f (·) is the learned representa-
tion for each vertex or edge. The anomaly score for each point is
reported as its closest distance to any cluster centers.

When new edges stream in, we need to update cluster centers
accordingly. In this paper, we leverage the streaming k-means clus-
tering [4] which uses parameters to control the decay of estimates.
Here, we introduce a decay factor α when calculating the new clus-
ter centers after absorbing new point(s). We use the parameter α to
control the importance of “older” data points in existing clusters.

4https://snap.stanford.edu/data/email-Eu-core-temporal.html

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2677

Table 2: Anomaly detection performance comparison

Methods UCI Messages arXiv hep-th Digg DBLP
1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

GOutlier 0.7181 0.7053 0.6707 0.6964 0.6813 0.6322 0.6963 0.6763 0.6353 0.7172 0.6891 0.6460
CM-Sketch 0.7270 0.7086 0.6861 0.7030 0.6709 0.6386 0.6871 0.6581 0.6179 0.7097 0.6892 0.6332

Spectral Clustering 0.6324 0.6104 0.5794 0.6114 0.6034 0.5593 0.5949 0.5823 0.5591 0.6141 0.6245 0.5915
DeepWalk 0.7514 0.7391 0.6979 0.7312 0.7000 0.6644 0.7080 0.6881 0.6396 0.7413 0.7202 0.6657
node2vec 0.7371 0.7433 0.6960 0.7374 0.7137 0.6748 0.7364 0.7081 0.6508 0.7368 0.7193 0.6786
SDNE 0.7307 0.7144 0.6868 0.7221 0.7041 0.6609 0.7160 0.6804 0.6340 0.7342 0.7160 0.6565

NetWalk 0.7758 0.7647 0.7226 0.7489 0.7293 0.6939 0.7563 0.7176 0.6837 0.7654 0.7388 0.6858

Table 3: Temporal network dataset description

Dataset #Vertex #Edge Max. Degree Avg. Degree
UCI Messages (directed) 1,899 13,838 255 14.57
arXiv hep-th (undirected) 6,798 214,693 1,590 63.16

Digg (directed) 30,360 85,155 283 5.61
DBLP (undirected) 315,159 743,709 216 4.72

Assuming that there are n0 points {xi }n0
i=1 in an existing cluster

and n′ new points {x ′i }
n′
i=1 at time-stamp T ′ to be absorbed by this

cluster, the centroid c can be updated in the following way

c =
αc0n0 + (1 − α)∑n′

i=1 x
′
i

αn0 + (1 − α)n′ , (15)

where c0 is the previous cluster center. The decay factor α is chosen
as 0.5 and used to ignore older instances, which is analogous to an
exponentially-weighted moving average.

Computational Analysis. With k clusters signified by k cen-
ter vectors, finding the nearest cluster takes only O (kd) time. It
takes O (d) time to compute the anomaly score for each data point.
Updating the centers takesO (d) time with respect to the dimension
of vertex/edge representations. Thus the total time complexity of
anomaly detection is O (kd) for each incoming data point.

5 EVALUATION

Datasets. To verify the performance of the proposed NetWalk
model, we conduct experiments on a variety of dynamic networks
from different domains as shown in Table 3. The UCI Messages [28]
network is based on an online community of students at the Univer-
sity of California, Irvine. Each vertex represents a user, and an edge
represents a message interaction. Digg5 is the reply network of the
news aggregator website digg.com. Each node is a website user, and
each edge denotes the reply between two users. The arXiv hep-th
data [21] is a collaboration network from High Energy Physics
- Theory category (hep-th). Each Node represents an author, and
edges represent collaborations. The DBLP data is also a collaboration
network of authors from the DBLP computer science bibliography.
Similar to arXiv hep-th, the nodes in this network represent the
authors, and edges represent co-authorship among authors.

Baselines. The competing methods used in this paper are sum-
marized as follows. We include four network embedding baselines
and two streaming anomaly detection baselines.
• Spectral Clustering [38]: Spectral Clustering learns latent
vertex features in the network by generating representations

5http://konect.uni-koblenz.de/networks

in Rd from the d-smallest eigenvectors of the normalized
Laplacian matrix.
• DeepWalk [31]: DeepWalk is an approach for learning latent
representations of vertices in a network by treating graph
random walks as the equivalent of sentences.
• node2vec [15]: This approach combines the advantage of
breadth-first traversal and depth-first traversal algorithms.
The random walks generated by node2vec can better repre-
sent the structural equivalence.
• Structural Deep Network Embedding (SDNE) [39]: SDNE
is a deep learning based network embedding model which
uses autoencoder and locality-preserving constraint to learn
vertex representations that capture the highly non-linear
network structure.
• GOutlier [3]: GOutlier uses a structural connectivity model
in order to define outliers in dynamic network. It designs a
sampling method to maintain structural summaries of the
underlying network.
• CM-Sketch [32]: CM-Sketch is an outlier detection model
based on global and local structural properties of an edge
stream. It utilizes Count-Min sketch for approximating these
properties.

5.1 Identifying Anomalies

In this section, we evaluate NetWalk in two settings: static and
streaming. In the static setting, the first 50% edges of the network is
used for training, and the rest incoming edges are used for testing.
The vertex representations are learned offline. We then use the
representations to encode and cluster the training edges. The test
edges are scored and ranked based on their distances to the closest
cluster centers. The goal is to quantify the effectiveness of network
representations of NetWalk in the anomaly detection task. Due to
the challenges in collecting data with ground-truth anomalies, we
use anomaly injection method to create the anomalous edges [7].

The area under curve (AUC) score is used to measure the predic-
tive power of all methods. We rank and score all encoded testing
edges by calculating the distance to the closest center in the cluster
generated from the training edges based on their representations,
as presented in Table 2. The parameters of NetWalk are tuned by
5-fold cross-validation on a rolling basis using the initial network.
Here we set nl , the layers of the autoencoder network, to 6. The
latent dimension of vertex representation is set to 200, 200, 20 for
each encoding layer. The walk length l is set to 3. The number of
samples per vertex isψ = 20. The other parameters are chosen as

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2678

http://konect.uni-koblenz.de/networks

1 2 3 4 5 6
0.55

0.6

0.65

0.7

0.75

0.8

AU
C

UCI Messages

2 4 6 8 10
0.55

0.6

0.65

0.7

0.75

0.8
arXiv hep-th

1 2 3 4 5 6 7
Snapshot

0.55

0.6

0.65

0.7

0.75

0.8

AU
C

Digg

2 4 6 8 10
Snapshot

0.55

0.6

0.65

0.7

0.75

0.8

0.85
DBLP

SCs SCo DeepWalks DeepWalko GOutlier CM-Sketch NetWalk

Figure 6: Accuracy of anomaly detection on dynamic net-

work with 5% anomalies

follows: the weight of reconstruction constraintγ = 5, sparsity ratio
ρ = 0.1, the weight of sparsity β = 0.2, weight decay term λ = 5e−4,
number of clusters k = 10. The maximum iteration of NetWalk is
set to 500. For the first four network embedding methods Spectral
Clustering, DeepWalk, node2vec and SDNE, we use the same
clustering and ranking method for anomaly detection based on
the learned representations. The testing edges of all datasets are
injected 1%, 5% and 10% anomalies, respectively. It is evident from
Table 2 that, 1) network embedding-based approaches (e.g. Deep-
Walk, node2vec and SDNE) outperform traditional sketch-based
models (GOutlier and CM-Sketch), 2) NetWalk obtains a higher
AUC than other baselines on all datasets. And even if 10% anomalies
are injected, the performance of NetWalk is still acceptable.

In the streaming setting, we again use the first 50% edges for
training to build the initial network representations and clusters.
The testing edges arrive sequentially and are processed online. In
other words, all testing edges are only partially visible at any given
time. For convenience of comparison, we split the streaming edges
into several snapshots. The number of edges for each snapshot are
set to 1k , 10k , 6k , 30k respectively for different dataset based on
their test set sizes. For each arriving snapshot, NetWalk updates
the corresponding network representations, clusters, and anom-
aly scores. For the network embedding baselines, we only include
Spectral Clustering (SC) and DeepWalk since the performance
of node2vec and SDNE are close to DeepWalk. These two embed-
ding baselines are designed for static network (DeepWalk has to
generate the new random walks based on the entire network), thus
we adopt two versions in the evaluation. 1)The static version SCs
and DeepWalks : the latent vertex representations are learned only
based on the initial network, and there are no updates upon re-
ceiving new edges; 2) The online version SCo and DeepWalko : the
algorithm is repeated using all previous t − 1 snapshots and tested
with the t th snapshot. The anomaly percentage for all datasets is set
to 5%. Other parameters are chosen similarly as mentioned above.
The accuracies are reported in Figure 6. We observe that 1) the
online versions SCo and DeepWalko achieve better accuracy than

0.66

0.68

0.7

0.72

0.74

0.76

0.78

AU
C

1 2 3 4 5 6
Snapshot

0

5

10

15

20

25

30

Se
co

nd
s

Walk generation time of DeepWalk
Walk generation time of node2vec
Walk generation time of NetWalks

Walk generation time of NetWalk
AUC score of NetWalks

AUC score of NetWalk
Average AUC score of NetWalks

Average AUC score of NetWalk

Figure 7: Dynamic maintenance performance evaluation on

UCI Messages dataset

the corresponding static ones, 2) NetWalk outperforms other base-
lines by a large margin. Note that the online version of DeepWalk
needs to store the entire network in memory and repeats the walk
generation at each snapshot. So our method is much more efficient
on this aspect (see Section 5.2).

5.2 Dynamic Maintenance Performance

Wewill show that the proposed NetWalk delivers both accurate
and efficient solution in a streaming setting on UCI Messages. Note
that NetWalk leverages the reservoir sampling technique to main-
tain network representations incrementally. Specifically, NetWalk
creates a reservoir for each vertex which contains its neighbors,
and new network walks are generated based on these reservoirs
without storing the entire network in memory. In this part, we
test the performance of dynamic representation maintenance by
comparing it with a version of NetWalks which needs to keep the
network in memory and generate walks based the entire network
at the current timestamp on UCI Messages with 5% anomalies.

It can be seen from Figure 7 that the average AUC score of Net-
Walk is 0.7329 which is higher than NetWalks (0.7307). However,
the walk generation time of NetWalks is 5.0 to 10.2 times longer
than NetWalk. Similar to NetWalks , DeepWalk and node2vec
need to keep the entire network in memory to update the walks.
Therefore, DeepWalk and node2vec take longer time (5× to 11×) to
generate walks than our model. As for SDNE, the calculation of the
first-order proximity on the network level is very time consuming
compared with other baselines.

5.3 Parameter Sensitivity

The NetWalk framework involves a number of parameters that
may affect its performance. We examine such changes in perfor-
mance on two anomaly detection tasks (UCI Messages and Digg).
We vary the number of samples per vertex (ψ), the dimensions of
vertex representation (d), the training data percentage and the walk
length (l) to determine their impacts on anomaly detection. Except
for the parameters being tested, all other parameters assume default
values.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2679

0.5
50

0.6

60

AU
C

0.7

25

d

30

0.8

5 10

0.55
50

0.6

60
25

0.65

d

30

0.7

5 10

Figure 8: Anomaly detection AUC of UCI Messages (left) and
Digg (right) with different parameter pairs

10% 20% 30% 40% 50% 60%
Training Percentage

0.66

0.68

0.7

0.72

0.74

0.76

0.78

AU
C

3 4 5 6 7
Walk Length

0.65

0.7

0.75

0.8

AU
C

Figure 9: Stability over the training percentage of the initial

network (left), and the length of networkwalk (right) on UCI
Messages with 5% anomalies

We first examine different choices of parameters ψ and d . We
choose values ofψ from 5 to 50, and let d vary from 10 to 60 with an
interval 10. The results are summarized in Figure 8. It is evident that
AUC initially improves withψ but further improvements are slower
beyond a certain threshold (ψ > 20). It indicates that NetWalk
is able to learn meaningful vertex representations with a small
number of network walks. The performance is relatively stable
across different values of d . For both datasets, the AUC increases
slightly as d increases, and then drops after d reaches 40. It is
because, when d is small, information from the input data may
be partially missing in the representation learning phase; while
when d is too high, the performance of the clustering phase will be
weakened.

The training percentage of the initial network and the length
of network walk are also important in the anomaly detection task.
Figure 9 examines the effects of varying the training percentage and
the length of network walk. We observe from Figure 9(a) that the
AUC increases sharply when the training percentage of network
goes from 10% to 30%, and then the performance stays relatively sta-
ble. It demonstrates that our model can learn a better representation
even trained with a small number of data instances. The perfor-
mance slightly increases when l goes from 3 to 4; after that, the
AUC decreases. This is because the clique constraint in Eq. (7) forces
all the vertices in the same walk to have similar representations,
which is too restrictive for longer walks. Taking both prediction
performance and computational time into consideration, we will
choose a relative small walk length.

6 RELATEDWORK

Anomaly detection has been extensively studied in the context of
multi-dimensional data [1, 10, 16] and structured networks [6, 7,
13, 14, 19, 33], including attributed networks [29, 30, 35]. Massive
networks arise in many applications such as social media and public
health, thus numerous algorithms have been developed for process-
ing networks in the data stream model [2, 3, 32]. In this section, we
briefly review anomaly detection algorithms in dynamic networks,
as well as network embedding techniques.

Anomaly detection on streaming networks. In streaming
networks, a number of methods perform anomaly detection in the
context of edge streams [3, 16, 32, 33]. For instance, GOutlier
introduced a structural connectivity model to define anomalies,
and proposed a reservoir sampling method to maintain structural
summaries of the underlying graph streams. The anomalies can
then be identified as those graph objects which contain unusual
bridging edges. The recent work [32] proposed an anomaly detec-
tion method based on edge scoring. The score of an incoming edge
was based on historical evidence and vertex neighborhood. There
is a new type of anomalies in graph streams: anomalous graph
snapshots [16, 23, 33]. The StreamSpot [23] introduced a new
similarity function to compare two heterogeneous graphs based
on their relative frequency of local substructures, and leveraged
a centroid-based clustering methods to capture the normal behav-
iors. Graph stream clustering algorithms like GMicro [2] created
sketch-based micro clusters which using a hash-based compres-
sion of the edges to a lower-dimensional domain space in order to
reduce the size of representation. Variants include graph streams
with attributes [24, 43]. The communities evolve across snapshots.
The evolutionary community anomalies can be defined as those
objects which evolve in a very different way rather than following
the community change trends [17, 18].

Network embedding. Recent advances in word embedding [8,
9, 22, 25, 26, 39, 41] open a new way to learn representations for
words. In particular, the Skip-gram model learns word features
by preserving the neighborhood structure extracted from words
in each sentence [25, 26]. Inspired by this feature learning strat-
egy, recent developments such as DeepWalk [31], LINE [36] and
Node2Vec [15] learn vertex representations using the same way
as word embedding. These methods extract “walks” which are
sequences of vertices from the graph, and then learn the vertex rep-
resentations by maximizing the likelihood of preserving network
neighborhoods of vertices. The main difference among these meth-
ods is in the way they generate the “walks”. The DeepWalk [31]
created the local “walks” by truncated random walks similar to a
depth-first search. The LINE [36] preserved both first-order (ob-
served tie strength) and second-order proximities (shared neigh-
borhood structures of the vertices). The node2vec [15] argued that
different sampling strategies for vertices will result in different
feature representations. It defined a flexible notion of a vertex’s
network neighborhood by interpolating between two extreme sam-
pling strategies: breadth-first sampling and depth-first sampling.
Some work also exists for representation learning based on novel
graph-specific network architectures [9, 37, 39, 44]. Finally, work on

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2680

graph sketches and compact representations focused on construct-
ing approximate graph descriptions in order to detect graph-based
anomalies [23, 32].

7 CONCLUSION

We have presented NetWalk to detect anomalies in dynamic net-
works, by learning faithful network representations which can be
updated dynamically as the network evolves over time. We first
learn the latent network representations by using a number of net-
work walks extracted from the initial network. The representations
are obtained by clique embedding, which jointly minimizes the pair-
wise distance of vertex representations from each network walk,
and the auto-encoder reconstruction error that serves as a global
regularization. Based on the low-dimensional vertex representa-
tions, a clustering-based technique is employed to incrementally
and dynamically detect network anomalies. Quantitative validation
on anomaly detection task using four read-world datasets shows
that NetWalk is computationally efficient and outperforms state-
of-the-art techniques in anomaly detection.

ACKNOWLEDGEMENT

The work has been partially supported by NSF IIS-1313606, NIH
U01HG008488, NIH R01GM115833 and NIH U54GM114833. Re-
search of the third author was sponsored by the Army Research
Laboratory and was accomplished under Cooperative Agreement
Number W911NF-09-2-0053. The views and conclusions contained
in this document are those of the authors and should not be in-
terpreted as representing the official policies, either expressed or
implied, of the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright
notation here on. We thank the anonymous reviewers for their
careful reading and insightful comments on our manuscript.

REFERENCES

[1] Charu C Aggarwal. 2013. Outlier Analysis. Springer.
[2] Charu C Aggarwal, Yuchen Zhao, and S Yu Philip. 2010. On Clustering Graph

Streams.. In SDM. SIAM, 478–489.
[3] Charu C Aggarwal, Yuchen Zhao, and S Yu Philip. 2011. Outlier detection in

graph streams. In ICDE. IEEE, 399–409.
[4] Nir Ailon, Ragesh Jaiswal, and Claire Monteleoni. 2009. Streaming k-means

approximation. In NIPS. 10–18.
[5] Leman Akoglu and Christos Faloutsos. 2013. Anomaly, event, and fraud detection

in large network datasets. InWSDM. ACM, 773–774.
[6] Leman Akoglu, Mary McGlohon, and Christos Faloutsos. 2010. Oddball: Spotting

anomalies in weighted graphs. In PAKDD. Springer, 410–421.
[7] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anomaly

detection and description: a survey. Data Mining and Knowledge Discovery 29, 3
(2015), 626–688.

[8] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A
neural probabilistic language model. JMLR 3, Feb (2003), 1137–1155.

[9] Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C Aggarwal, and
Thomas S Huang. 2015. Heterogeneous network embedding via deep archi-
tectures. In SIGKDD. ACM, 119–128.

[10] Wei Cheng, Kai Zhang, Haifeng Chen, Guofei Jiang, andWeiWang. 2016. Ranking
Causal Anomalies via Temporal and Dynamical Analysis on Vanishing Correla-
tions. In SIGKDD.

[11] Graham Cormode and S Muthukrishnan. 2005. An improved data stream sum-
mary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[12] Aaron Defazio, Francis R. Bach, and Simon Lacoste-Julien. 2014. SAGA: A Fast
Incremental Gradient MethodWith Support for Non-Strongly Convex Composite
Objectives. In NIPS. 1646–1654.

[13] William Eberle and Lawrence Holder. 2007. Anomaly detection in data repre-
sented as graphs. Intelligent Data Analysis 11, 6 (2007), 663–689.

[14] Jing Gao, Feng Liang, Wei Fan, Chi Wang, Yizhou Sun, and Jiawei Han. 2010.
On community outliers and their efficient detection in information networks. In
SIGKDD. ACM, 813–822.

[15] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. (2016).

[16] Manish Gupta, Jing Gao, Charu C Aggarwal, and Jiawei Han. 2014. Outlier
Detection for Temporal Data: A Survey. TKDE 9, 26 (2014), 2250–2267.

[17] Manish Gupta, Jing Gao, Yizhou Sun, and Jiawei Han. 2012. Community trend
outlier detection using soft temporal pattern mining. In ECML/PKDD. Springer,
692–708.

[18] Manish Gupta, Jing Gao, Yizhou Sun, and Jiawei Han. 2012. Integrating commu-
nity matching and outlier detection for mining evolutionary community outliers.
In SIGKDD. ACM, 859–867.

[19] Manish Gupta, Arun Mallya, Subhro Roy, Jason HD Cho, and Jiawei Han. 2014.
Local Learning for Mining Outlier Subgraphs from Network Datasets. In SDM.
73–81.

[20] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards
removing the curse of dimensionality. InACMSymposium on Theory of Computing.
ACM, 604–613.

[21] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution:
Densification and shrinking diameters. TKDD 1, 1 (2007), 2.

[22] Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix
factorization. In NIPS. 2177–2185.

[23] Emaad A Manzoor, Sadegh Momeni, Venkat N Venkatakrishnan, and Leman
Akoglu. 2016. Fast Memory-efficient Anomaly Detection in Streaming Heteroge-
neous Graphs. In KDD.

[24] Ryan McConville, Weiru Liu, and Paul Miller. 2015. Vertex clustering of aug-
mented graph streams. SDM (2015).

[25] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[26] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
NIPS. 3111–3119.

[27] Andrew Ng. 2011. Sparse autoencoder. CS294A Lecture notes 72, 2011 (2011),
1–19.

[28] Tore Opsahl and Pietro Panzarasa. 2009. Clustering in weighted networks. Social
networks (2009), 155–163.

[29] Bryan Perozzi and Leman Akoglu. 2016. Scalable anomaly ranking of attributed
neighborhoods. In SDM. SIAM, 207–215.

[30] Bryan Perozzi, Leman Akoglu, Patricia Iglesias Sánchez, and Emmanuel Müller.
2014. Focused Clustering and Outlier Detection in Large Attributed Graphs. In
SIGKDD. 1346–1355.

[31] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In SIGKDD. ACM, 701–710.

[32] Stephen Ranshous, Steve Harenberg, Kshitij Sharma, Nagiza F Samatova, et al.
2016. A Scalable Approach for Outlier Detection in Edge Streams Using Sketch-
based Approximations. In SDM.

[33] Stephen Ranshous, Shitian Shen, Danai Koutra, Steve Harenberg, Christos Falout-
sos, and Nagiza F Samatova. 2015. Anomaly detection in dynamic networks:
a survey. Wiley Interdisciplinary Reviews: Computational Statistics 7, 3 (2015),
223–247.

[34] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. 1988. Learning
representations by back-propagating errors. Cognitive modeling 5, 3 (1988), 1.

[35] Jimeng Sun, Huiming Qu, Deepayan Chakrabarti, and Christos Faloutsos. 2005.
Neighborhood formation and anomaly detection in bipartite graphs. In ICDM.
IEEE, 8–17.

[36] Jian Tang,MengQu,MingzheWang,Ming Zhang, Jun Yan, andQiaozhuMei. 2015.
Line: Large-scale information network embedding. In WWW. ACM, 1067–1077.

[37] Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. 2014. Learning Deep
Representations for Graph Clustering.. In AAAI. 1293–1299.

[38] Ulrike Von Luxburg. 2007. A tutorial on spectral clustering. Statistics and
computing 17, 4 (2007), 395–416.

[39] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embed-
ding. In SIGKDD. ACM, 1225–1234.

[40] Wenchao Yu, Charu C Aggarwal, and Wei Wang. 2017. Temporally factorized
network modeling for evolutionary network analysis. InWSDM. ACM, 455–464.

[41] Wenchao Yu, Guangxiang Zeng, Ping Luo, Fuzhen Zhuang, Qing He, and
Zhongzhi Shi. 2013. Embedding with autoencoder regularization. In ECML/PKDD.
Springer, 208–223.

[42] Wayne W Zachary. 1977. An information flow model for conflict and fission in
small groups. Journal of Anthropological Research (1977), 452–473.

[43] Yuchen Zhao and Philip Yu. 2013. On graph stream clustering with side informa-
tion. In SDM. SIAM, 139–150.

[44] Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dynamic
Network Embedding by Modeling Triadic Closure Process. (2018).

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2681

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Encoding network Streams
	3.1 Network Walk Generation
	3.2 Learning Network Representations
	3.3 Edge Encoding
	3.4 Maintaining Network Representations Incrementally

	4 Anomaly Detection
	5 Evaluation
	5.1 Identifying Anomalies
	5.2 Dynamic Maintenance Performance
	5.3 Parameter Sensitivity

	6 Related Work
	7 Conclusion
	References

