
Higher-order Network Representation Learning
Ryan A. Rossi

Adobe Research

rrossi@adobe.com

Nesreen K. Ahmed

Intel Labs

nesreen.k.ahmed@intel.com

Eunyee Koh

Adobe Research

eunyee@adobe.com

ABSTRACT
This paper describes a general framework for learningHigher-Order

Network Embeddings (HONE) from graph data based on network

motifs. The HONE framework is highly expressive and flexible

with many interchangeable components. The experimental results

demonstrate the effectiveness of learning higher-order network

representations. In all cases, HONE outperforms recent embedding

methods that are unable to capture higher-order structures with

a mean relative gain in AUC of 19% (and up to 75% gain) across a

wide variety of networks and embedding methods.

1 INTRODUCTION
Roles represent node (or edge [2]) connectivity patterns such as

hubs, star-centers, star-edge nodes, near-cliques or nodes that act

as bridges to different regions of the graph. Intuitively, two nodes

belong to the same role if they are structurally similar [8]. Many

network representation learning methods (including random-walk

based methods such as node2vec [4]) seek to capture the notion of

structural similarity (roles) [8] by defining node similarity locally

based on neighborhood properties and/or proximity (e.g., near one
another in the graph). However, such methods are insufficient for

roles [8] as they fail to capture the higher-order connectivity pat-

terns of a node. For instance, instead of representing hub nodes in a

similar fashion, methods using random-walks (proximity/distance-

based) would represent a hub node and its neighbors similarly

despite them having fundamentally different connectivity patterns.

In this work, we propose higher-order network representation
learning and describe a general framework called Higher-Order

Network Embeddings (HONE) for learning such higher-order em-

beddings based on network motifs. The termmotif is used generally

and may refer to graphlets or orbits (graphlet automorphisms) [1, 6].

The HONE framework expresses a general family of embedding

methods based on a set of motif-based matrices and their powers.

In this work, we investigate HONE variants based on the weighted

motif graph, motif transition matrix, motif Laplacian matrix, as

well as other motif-based matrix formulations. The experiments

demonstrate the effectiveness of higher-order network embeddings.

2 HIGHER-ORDER NETWORK EMBEDDINGS
This section describes theHigher-Order Network Embedding (HONE)
framework. Given a network G = (V ,E) with N = |V | nodes

and a set H = {H1, . . . ,HT } of T network motifs, form the motif
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(weighted) adjacency matrices: W =
{
W1,W2, . . . ,WT

}
where

(Wt )i j = number of instances of motifHt ∈ H that contain nodes i
and j . To generalize HONE for any motif-based matrix formulation,

we define Ψ as a function Ψ : RN×N → RN×N
over a (k-step)

weighted motif adjacency matrixWk
t . For convenience, we use W

below to denote a weighted adjacency matrix for an arbitrary motif.

We summarize the motif matrix functions Ψ investigated below.

• Motif Weighted Graph: In the case of using HONE directly

with a weighted motif adjacency matrix W, then

Ψ : W → IW (1)

The number of paths weighted by motif counts from node i to
node j in k-steps is given by

(Wk )i j =
(
W · · · W︸     ︷︷     ︸

k

)
i j (2)

• Motif Transition Matrix: The random walk on a graph W
weighted by motif counts has transition probabilities Pi j =

Wi j
wi

where wi =
∑
jWi j is the motif degree of node i . The random

walk motif transition matrix P for an arbitrary weighted motif

graph W is defined as:

P = D−1W (3)

where D = diag(We) is a N × N diagonal motif degree matrix
with the motif degreewi =

∑
jWi j of each node on the diagonal

and e = [ 1 1 · · · 1 ]T ∈ RN is the vector of all ones. The motif

transition matrix P represents the transition probabilities of a

non-uniform random walk on the graph that selects subsequent

nodes with probability proportional to the connecting edge’s

motif count. Therefore, the probability of transitioning from

node i to node j depends on the motif degree of j relative to the

total sum of motif degrees of all neighbors of i . The probability of

transitioning from node i to node j in k-steps is given by (Pk )i j .

• Motif Laplacian: The motif Laplacian for a weighted motif
graph W is defined as:

L = D −W (4)

where D = diag(We) is the diagonal matrix of motif degrees.

• Normalized Motif Laplacian: Given a graphW weighted by

the counts of an arbitrary network motifHt ∈ H , the normalized
motif Laplacian is defined as

L̂ = I − D−1/2WD−1/2
(5)

where I is the identity matrix and D = diag(We).

Notice that all variants are easily formulated as functions Ψ in terms

of an arbitrary motif weighted graph W. Next, we derive all k-step
motif-based matrices for all T motifs and K steps:

S(k )t = Ψ(Wk
t ), for k = 1, 2, . . . ,K and t = 1, . . . ,T (6)
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These k-stepmotif-basedmatrices can densify quickly and therefore

we recommend usingK ≤ 4. Given a k-step motif-based matrix S(k )t
for an arbitrary network motif Ht ∈ H , we learn node embeddings

by solving the following objective function:

argmin

U(k )
t ,V(k )

t ∈C

D
(
S(k )t ∥ Φ⟨U(k )

t V(k )
t ⟩

)
(7)

where D is a generalized Bregman divergence with matching linear

or non-linear function Φ and C denotes constraints (e.g., UTU = I,
VTV = I). We use Eq. 7 to learn a N × Dℓ local embedding U(k )

t
from S(k )t for all t = 1, . . . ,T and k = 1, . . . ,K .1 Afterwards, we

scale each column of U(k)
t using the Euclidean norm. Next, we

concatenate the k-step embedding matrices for all T motifs and all

K steps:

Y =
[
U(1)

1
· · · U(1)

T︸           ︷︷           ︸
1-step

· · · U(K )

1
· · · U(K )

T︸             ︷︷             ︸
K -steps

]
(8)

where Y is a N ×TKDℓ matrix. Given Y, we learn a global higher-
order network embedding by solving the following:

argmin

Z,H∈C

D
(
Y ∥ Φ⟨ZH⟩

)
(9)

where Z is a N × D matrix of node embeddings. In Eq. 9 we use

Frobenius normwhich leads to the following minimization problem:

min

Z,H

1

2

Y − ZH
2
F =

1

2

∑
i j

(
Yi j − (ZH)i j

)
2

(10)

A similar minimization problem is solved for Eq. 7.

3 EXPERIMENTS
We compare the proposed HONE variants to five recent state-of-

the-art methods (see Table 1). All methods output (D = 128)-

dimensional node embeddings Z =
[
z1 · · · zN

]T
where zi ∈ RD .

For node2vec, we perform a grid search overp,q ∈ {0.25, 0.5, 1, 2, 4}

as mentioned in [4]. All other hyperparameters for node2vec [4],

DeepWalk [5], and LINE [9] correspond to those mentioned in [4].

In contrast, the HONE variants have only one hyperparameter,

namely, the number of steps K which is selected automatically via

a grid search over K ∈ {1, 2, 3, 4} using 10% of the labeled data. We

use all 2-4 node connected orbits [6] and set Dℓ = 16 for the local

motif embeddings. All methods use logistic regression (LR) with an

L2 penalty. The model is selected using 10-fold cross-validation on

10% of the labeled data. Experiments are repeated for 10 random

seed initializations. Data was obtained from [7].

We evaluate the HONE variants for link prediction. Given a par-

tially observed graph G with a fraction of missing edges, the link

prediction task is to predict these missing edges. We generate a la-

beled dataset of edges. Positive examples are obtained by removing

50% of edges randomly, whereas negative examples are generated
by randomly sampling an equal number of node pairs (i, j) < E.
For each method, we learn embeddings using the remaining graph.

Using the embeddings from each method, we then learn a model to

predict whether a given edge in the test set exists in E or not.

1
For the motif Laplacian matrix formulations proposed above, we also investigated

using the eigenvectors of the Dℓ smallest eigenvalues of Ψ(Wk
t ) as node embeddings.

Table 1: AUC results comparing HONE to recent embedding
methods. See text for discussion.
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Rank

HONE-W (Eq. 1) 0.841 0.843 0.811 0.862 0.726 0.910 0.979 1
HONE-P (Eq. 3) 0.840 0.840 0.812 0.863 0.724 0.913 0.980 2
HONE-L (Eq. 4) 0.829 0.841 0.808 0.858 0.722 0.906 0.975 3
HONE-̂L (Eq. 5) 0.829 0.836 0.803 0.862 0.722 0.908 0.976 4

Node2Vec [4] 0.810 0.635 0.721 0.804 0.701 0.844 0.894 5
DeepWalk [5] 0.796 0.621 0.710 0.796 0.696 0.837 0.863 6

LINE [9] 0.752 0.706 0.734 0.800 0.630 0.837 0.780 7
GraRep [3] 0.805 0.672 0.743 0.829 0.702 0.898 0.559 8

Spectral [10] 0.561 0.699 0.593 0.602 0.516 0.606 0.629 9

To construct edge features from the node embeddings, we use

the mean operator defined as (zi + zj )
/
2. The AUC results are

provided in Table 1. In all cases, the HONE methods outperform the

other embedding methods with an overall mean gain of 19.24% (and

up to 75.21% gain) across a wide variety of graphs with different

characteristics. Overall, the HONE variants achieve an average gain

of 10.68% over node2vec, 12.56% over DeepWalk, 13.79% over LINE,

17.17% over GraRep, and 41.99% over Spectral clustering across all

networks. We also derive a total ranking of the embedding methods

over all graph problems based on mean relative gain (1-vs-all).

Results are provided in the last column of Table 1.

4 CONCLUSION
In this work, we introduced higher-order network representation

learning and proposed a general framework called higher-order
network embedding (HONE) for learning such embeddings based

on higher-order connectivity patterns. The experimental results

demonstrate the effectiveness of learning higher-order network

representations. Future work will investigate the framework using

other useful motif-based matrices.
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