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Abstract

Spectral clustering is one of the most popular, yet still incompletely understood,
methods for community detection on graphs. This article studies spectral cluster-
ing based on the Bethe-Hessian matrix Hr = (r2 − 1)In + D − rA for sparse
heterogeneous graphs (following the degree-corrected stochastic block model) in a
two-class setting. For a specific value r = ζ , clustering is shown to be insensitive to
the degree heterogeneity. We then study the behavior of the informative eigenvector
of Hζ and, as a result, predict the clustering accuracy. The article concludes with
an overview of the generalization to more than two classes along with extensive
simulations on synthetic and real networks corroborating our findings.

1 Introduction

Network theory studies the interaction of connected systems of agents. Real networks tend to be
structured in affinity classes and the problem of clustering consists in retrieving these unknown
classes from the observed network pairwise interactions [1]. Belief propagation (BP) is an efficient
way to reconstruct communities and – under certain conditions (see [2]) – was proved to give optimal
reconstruction. On the negative side, BP suffers from a possibly long convergence time and a
non-trivial implementation. Among the alternative clustering algorithms, spectral techniques proved
particularly efficient in terms of speed and analytical tractability [3–6]. In the dense regime, in
particular, where the average node degree scales like the size of the network, random matrix theory
[4, 7, 8] manages to predict the asymptotic spectral clustering performances and to identify transition
points beyond which asymptotic non trivial classification is achievable. This is however not the
typical condition for real networks that tend instead to be sparse. For a graph G(V, E) with |V| = n
nodes, the condition of sparsity means that the average degree d does not depend on the size of the
network and in particular d� n.

Both standard spectral clustering methods and their associated random matrix asymptotics collapse
in this regime. As an answer, many intuitions emerged from statistical physics and led to important
seminal steps. Notably, two deeply connected matrices recently proved to overcome the problem of
sparsity: the n×n Bethe-Hessian [9]Hr with r ∈ R a parameter to be fixed – the study of which is the
object of the present article–, and the non symmetric non backtracking operator B ∈ {0, 1}2|E|×2|E|

[10]. Both matrices were introduced and studied under the homogeneous degree stochastic block
model (SBM). Narrowing to the case of two communities it was proved both experimentally and
theoretically [11, 2, 12, 13] that, if there exists an algorithm able to detect communities better then
random guess, then these two matrices can be used to give non-trivial node partition. It is said that
both algorithms work down to the detectability threshold.
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However, real networks are rarely homogeneous and typically follow a power law degree distribution
[14]. The results of [15, 16] generalize the above studies to heterogeneous networks, generated
by degree-corrected stochastic block models (DC-SBM) [17] and suggest that both B and Hr

provide also in this case non trivial clustering down to the detectability threshold. Yet, a precise
characterization of their behavior and performances is still lacking; the present article shows that
some aspects of the behavior of B and Hr have indeed been overlooked.

Spectral clustering in sparse heterogeneous networks has also been tackled using various regularized
Laplacian matrices [18–20] but, to our knowledge, these are not proved to operate down to the
detectability threshold. These structurally different methods are discussed in concluding remarks.

The main message of the present communication is that, under a DC-SBM setting, the choice of r
in Hr proposed in [9] for the SBM setting is suboptimal. We propose and theoretically support an
improved parametrization r = ζ that allows the Bethe-Hessian Hζ to efficiently detect communities
in sparse and heterogeneous graphs. In detail, under the DC-SBM setting, a) we propose a spectral
algorithm on Hζ which performs efficiently down to the detectability threshold, with an informative
eigenvector not tainted by the degree distribution (unlike in [9]); b) the algorithm is generalized to k-
class clustering with a consistent estimation procedure for k; c) substantial performance improvements
on the originally proposed Bethe-Hessian are testified by simulations on synthetic and real networks.

The remainder of the article is organized as follows: Section 2 argues on the optimal value r = ζ
for Hr and, based on heuristic arguments, studies the behavior of the informative eigenvector of
Hζ , concluding with an explicit expression of the clustering performance; Section 3 provides an
unsupervised method to estimate ζ, drawing on connections with the non-backtracking matrix B;
Section 4 extends the algorithm to a k-class scenario; numerical supports are then provided in
Section 5 on both synthetic and real networks; concluding remarks close the article.

Reproducibility. A Python implementation of the proposed algorithm along with codes to reproduce
the results of the article are available at lorenzodallamico.github.io/codes.

2 Model and Main Results

2.1 Model setting

Consider an undirected binary graph G(E ,V), with nodes V = {1, . . . , n} (|V| = n) and edges
E ⊂ V × V (|E| = m). Let σ ∈ {−1, 1}n be the vector of class labels, both classes being of equal
size (i.e.,

∑
i σi = 0), and C = ( cin cout

cout cin ). These assumptions are meant to set the problem in
a more readable symmetric scenario. Section 4 extends the results to multiple classes of possibly
different sizes. In order to account both for sparsity and heterogeneity, we consider the DC-SBM as a
generative model for G. Denoting A ∈ {0, 1}n×n the adjacency matrix defined by Aij = 1(i,j)∈E ,
the DC-SBM generates edges independently according to:

P(Aij = 1|σi, σj , θi, θj) = θiθj
Cσi,σj
n

, (1)

where θ = (θ1, . . . , θn) is the vector of random intrinsic connection “probabilities” of each node.
The θi’s are assumed i.i.d. and independent of the class labels, and we impose E[θi] = 1, E[θ2

i ] = Φ.
The 1/n term bounds the degree of each node to an n-independent value, making the network sparse.
Denoting c = (cin + cout)/2, the detectability condition [16] reads:

α ≡ cin − cout√
c

≥ 2√
Φ
≡ αc. (2)

For α < αc, no algorithm can partition the nodes better than by random guess. LettingD = diag(A1)
be the degree matrix, the Bethe-Hessian is defined as

Hr = (r2 − 1)In +D − rA, r ∈ R. (3)

This matrix was originally proposed in [9] for r =
√
cΦ, which asymptotically provides non trivial

clustering down to the detectability threshold (for α > αc). The informative eigenvector of Hr is
associated with the second smallest eigenvalue and we denote it x(2)

r . The components of x(2)√
cΦ

are
however strongly tainted by the θi’s, sensibly altering the algorithm performance.
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We show here that for α ≥ αc there exists a value ζ ≤
√
cΦ for which the components of the second

eigenvector x(2)
ζ ofHζ align to the labels irrespective of the θi’s, thus largely improving the algorithm

performance while maintaining detectability down to the threshold.

2.2 Informative eigenvector of Hr

In the sequel we assume that: (i) being sparse, we can locally approximate the graph by a tree [21]
and therefore P(σ∂i |σi) '

∏
j∈∂i P(σj |σi), with ∂i the neighbourhood of i; (ii) n → ∞ and c is

bounded by an n-independent value while being arbitrarily larger than one, i.e., n� c� 1.

For ease of notation we work here with D − rA rather than Hr, both having the same eigenvectors.
The core of our proposed method lies in the following observation, related to the action of Hr on σ:

[(D − rA)σ]i = diσi

[
1− r

(
|∂(s)
i |
di
− |∂

(o)
i |
di

)]
(4)

where |∂(s)
i | (resp., |∂(o)

i |) stands for the number of neighbors of i belonging to the same (resp.,
opposite) class as i. We show next that a proper choice of r can annihilate the right-hand side of (4)
“on average” or whenever the typical degrees di are not too small, turning (4) into an eigenvector
equation. To this end, we need to quantify the random variables |∂(s)

i | and |∂(o)
i |.

From a Bayesian perspective,σ and θ are unknown parameters andA (and thus di) known realizations.
We may thus write

P(σi|σj , Aij = 1) =
P(σi, σj |Aij = 1)

P(σj |Aij = 1)
= 2

∫∫
P(σi, σj , θi, θj |Aij = 1)dθidθj

∝
∫∫

P(Aij = 1|σi, σj , θi, θj)P(σi, σj , θi, θj)dθidθj ∝ C(σi, σj),

where we used the facts that the classes are of equal size (P(σi) is constant), and the θi are i.i.d.,
independent of the classes with E[θi] = 1. Normalizing, one finally obtains P(σi|σj , Aij = 1) =
C(σi, σj)/(cin + cout), which is independent of the degree distribution. We further know that
|∂(s)
i |+ |∂

(o)
i | = di, which is a deterministic observation. Given the locally tree-like structure of the

graph, neighbors of the same node are conditionally independent – see (i) – so that |∂(s)
i | is the sum

of di i.i.d. Bernoulli random variables with parameter p = cin/(cin + cout). We thus obtain

E[[(D − rA)σ]i | A] = diσi

(
1− r cin − cout

cin + cout

)
. (5)

This equation suggests that, for the expectation of (4) to be an eigenvector equation in the large (but
finite) di regime, r should be taken equal to

r =
cin + cout

cin − cout
=

2
√
c

α
≡ ζα. (6)

with α as in (2) the proper control parameter for the clustering problem (as shown e.g., in [7, 15, 16,
22]). For simplicity of notation the dependence on α of ζ = ζα will be made explicit only when
relevant. Intuitively, this calculus suggests that ζ is the only value of r that ensures that Hr has an
informative eigenvector not significantly tainted by the degree distribution. This claim is supported
by the following two remarks.
Remark 1 (Consistency of ζ for trivial classification). In the limit of trivial clustering where cout → 0,
|∂(s)
i | and |∂(o)

i | tend to their mean. In particular, for cout = 0, ζ = 1 and (D−ζA)σ = (D−A)σ =
0, so that σ is an exact eigenvector of Hζ=1 associated with its zero eigenvalue.
Remark 2 (Mapping to Ising). The original intuition behind the Bethe-Hessian matrix arises from a
mapping of the community labels into the spins of a Ising Hamiltonian. The “temperature-related”
parameter r guarantees a correct mapping only for r = ζ. This is elaborated in details in Section A
of the supplementary material.

Although one commonly assumes an assortative model for the communities, by which cin > cout,
the Bethe-Hessian matrix is oblivious of the sign of cin − cout.
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Remark 3 (Disassortative networks). The case where cout > cin does not invalidate the above
analysis which results in ζ < 0. Clustering with Hζ is thus also valid in disassortative networks.

In practice, for a given (non averaged) realization of the σi’s, σ is not an exact eigenvector of Hζ .
By a perturbation analysis around σ, we next analyze the behavior of the corresponding informative
eigenvector of Hζ and theoretically predict the overlap performance.

2.3 Performance Analysis

To generalize the averaged analysis of (5), we perturb σ by a “noise” term δ and write x(2)
ζ ≡ σ + δ.

Since ζ is however maintained, the associated eigenvalue of D − ζA, which is zero in (5), now
possibly deviates from zero; this eigenvalue is denoted λα, i.e.,

(D − ζαA)(σ + δ) = λα(σ + δ). (7)

From Remark 1, we already know that limα→
√

2cin
λα = 0.

In the following, expectations are taken for a fixed realization of the network, i.e. E[·] ≡ E[·|A].
Writing |∂si | = E[|∂si |]+∆i and |∂oi | = E[|∂oi |]−∆i, where we exploited the relation |∂si |+|∂oi | = di,
we obtain:

[(D − ζαA)(σ + δ)]i = −2ζασi∆i + diδi − ζα
∑
j∈∂i

δj . (8)

The random variable ∆i is a sum of di independent (centered) Bernoulli random variables, tending in
the large c limit to a zero mean Gaussian, i.e.,

∆i ∼ N (0, dicincout/(cin + cout)
2) ≡ N (0, dif

2
α/ζ

2
α), fα ≡

√
cincout

cin − cout
=

1

α

√
c− α2

4
. (9)

Our analysis of (8) relies on the following claim that we shall justify next.
Assumption 1. The random variables δi, 1 ≤ i ≤ n, are distributed as δi ∼ N (−µασi, f2

αβ
2
i ) for

some µα ∈ R depending on α only, and βi ∈ R depending on i only. Besides, the δi’s are “weakly
dependent” in the sense that E[δiδj ] = E[δi]E[δj ] +O(1/c).

The elements of Assumption 1 rely on the following observations:

• Weak dependence: This claim follows from the weak dependence of the ∆i’s, which results from
the sparse (and thus locally tree-like) nature of the graph.
• Gaussianity: The right-hand side of (8) features 3 random variables, the leftmost being Gaussian

and rightmost the sum of di variables tending to an (asymptotically independent) Gaussian. It is
thus reasonable that δi be Gaussian (so to ensure (7)) yet not independent of ∆i or

∑
j∈∂i δj .

• Mean of δi: The symmetry of the problem at hand (equal class sizes, same affinity cin for each
class), along with the fact that the right-hand side of (4) vanishes in its first order approximation in
di, suggest that the mean of δi does not depend in the first order on di but only on σi. The amplitude
of the mean then depends on α characterized here through µα.
• Variance of δi: The variance appears as the product of two terms: one that depends on i (βi) and

one that depends on α. This follows from assuming that the fluctuations of δi follow the fluctuations
of ∆i for which the variance is similarly factorized.

Imposing the norm of the eigenvector x(2)
ζ = σ+δ to be constant with respect to α and the boundary

condition µαc = 1 (i.e., there is no information about the classes at the detectability threshold), we
find the following explicit expressions for µα and βi.

1− µα =

√
cΦ− ζ2

α

cΦ− 1
, βi =

2√
di
.

Details are provided in Section B of the supplementary material. Figure 1-(a) supports the analysis by
comparing this prediction to simulations for a synthetic network with power law degree distribution.

The previous line of argument provides a large dimensional approximation for the performance
of spectral clustering based on the eigenvector x(2)

ζ . The performance measure of interest is the

4



Figure 1: (a) Theoretical values of mean and variance (red line indicates 1− µα ± 2fα/
√
c) vs

simulation (green dots) for power-law distributed θi’s (θi ∼ Z−1[U(3, 10)]4). (b) Theoretical (10) vs
simulated overlap, averaged over 10 realizations, for θi constant (left), and power-law distributed
(right). For both figures, n = 5000, cout = 6, cin = 7→ 36.

overlap, defined as Ov ≡ 2 maxPσ̂

[
1
n

∑n
i=1 δσi,σ̂i −

1
2

]
where σ̂ denotes the vector of estimated

labels, Pσ̂ the set of permutations of the labels, and δ the Kronecker symbol (δij = 1 if i = j, and
0 otherwise). In this particularly symmetric setting only σ̂i = sign[(x

(2)
ζ )i] where sign is the sign

function. (Remark 5 underlines the necessity not to cluster based on sign in asymmetric scenarios).
From the expression of µα and βi, we find that, conditionally to A,

E[Ov] ' 1

n

n∑
i=1

erf

[√
α2di

8c− 2α2

(
cΦ− ζ2

α

cΦ− 1

)]
(10)

(proof details are provided in Section B of the supplementary material). Figure 1-(b) compares the
prediction of Equation (10) to simulations on networks with θi = 1 constant (left) or power-law
distributed (right). The observed match on this 5 000-node synthetic network is close to perfect.

As a side remark, our analysis reveals an interesting connection between Hζ and D−1A.

Remark 4 (Relation to the random walk Laplacian). Similar to A, D − A, and D−
1
2AD−

1
2 , the

matrix D−1A is claimed inappropriate as a spectral community detection matrix for sparse graphs.
This is in fact a slight overstatement: as already observed in [20], as the graph under study gets
sparser, D−1A still possesses one or possibly more informative eigenvectors, however not necessarily
corresponding to dominant isolated eigenvalues (it was in particular noted that for the real network
polblogs [23] the informative eigenvector is associated to the third and not the second largest
eigenvalue). This observation is easily explained in our analysis framework. Similar to our derivation
for D − ζA, the average action of D−1A on the class vector σ reads E[[D−1Aσ]i|A] = σi/ζ
and thus, for large di, σ is a close eigenvector to D−1A, correctly predicting the existence of an
informative eigenvalue also for this matrix. However, the associated eigenvalue 1/ζ decays with
increasing ζ and thus with harder detection tasks, hence explaining why the informative eigenvectors
are associated with eigenvalues found deeper into the spectrum of D−1A.

3 Estimating ζ

While r = ζ is more appropriate a choice than r =
√
cΦ, ζ is not readily accessible (as it depends on

cin− cout), unlike
√
cΦ that is easily estimated from the di’s. To estimate ζ , we elaborate on the deep

relations between the Bethe Hessian Hr and the non-backtracking operator B ∈ R2|E|×2|E| defined,
for all (ij), (lm) ∈ ED the set of directed edges of G, as B(ij)(lm) = δjl(1− δim).

When r is an eigenvalue of B, then detHr = 0 [11, 24]. This is convenient as B only has a few
isolated real eigenvalues (B is non symmetric) that can send the associated isolated eigenvalues of
Hr to zero. This provides us with two alternative methods to estimate ζ.

3.1 Exploiting the eigenvalues outside the bulk of B

It is proved in [15] that, for the DC-SBM and beyond the phase transition (α > αc), the eigenvalues
γ1, . . . , γ2m ofB, decreasingly sorted in modulus, satisfy in the large n setting: γ1 → Φ(cin+cout)/2,
γ2 → Φ(cin − cout)/2 >

√
γ1 and, for i > 2, lim supn |γi| ≤

√
γ1, almost surely.
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Since ζ = limn γ1/γ2, denoting νi(r) the eigenvalues of Hr sorted in increasing order, this result
conveys the following first method to estimate ζ.

Figure 2: Superposed spectra of B for 3 values of α: n = 4000, cin = 12, 11, 10 and cout = 1, 2, 3
(cin + cout is fixed); θ with power law distribution; all eigenvalues displayed in blue except top three
dominant real displayed in colors for each (cin, cout) pair.

Method 1 (First estimation of ζ). Under the previous notations ζ ' γ1/γ2. The eigenvalues γ1 and
γ2 of B can be estimated by a line search over r ∈ (

√
ρ(B),∞) on changing signs of ν1(r) and

ν2(r) that correspond to r = γ1 and r = γ2, respectively.1

3.2 Exploiting the eigenvalues inside the bulk of B

The matrix B can be obtained from the linearization of the belief propagation (BP) equations (see
[10] for details). In particular, the linear expansion to first order of the beliefs around their fixed points
yields Bw ' ζw. According to this argument, one expects the matrix B to have a real eigenvalue
equal to ζ with2 ζ ≤

√
cΦ. Figure 2 visually emphasizes this eigenvalue for three different values of

α, maintaining c constant. The matrix B thus has four eigenvalues inside its main bulk: −1, 0, 1 and
ζ. As the community detection problem gets harder, both ζ and γ2 shift towards the edge of the bulk
(from the left for the former and from the right for the latter) and then meet exactly at

√
cΦ when

α = αc. Then, for α < αc, they reach the complex part of the bulk.

More fundamentally, simulations further suggest that the eigenvector associated with the null eigen-
value of Hζ is precisely x(2)

ζ = σ + δ studied in Section 2.3. This indicates that the informative
eigenvalue λα of D − ζαA = Hζα − (ζ2

α − 1)In in Equation (7) coincides with −(ζ2
α − 1). It

further explains why H√cΦ, initially proposed in [9], works well close to the detectability threshold
as ζ →

√
cΦ when α→ αc. We thus expect most of the improvement of the choice r = ζ to emerge

in the easier scenarios.

Note that, as was already observed in [9], if |r| > 1, then the eigenvalues of the bulk of Hr are strictly
positive for |r| 6=

√
cΦ. As a consequence, x(2)

ζ is necessarily isolated when α > αc and so spectral
clustering on Hζ works down to the detectability threshold. To the best of our knowledge, this
property is not formally proved, but we point out that it agrees with the shape of the spectrum of B: if
the bulk of Hr was negative for some |r| > 1, then there would be a ‘continuum’ of real eigenvalues
in [1,

√
cΦ] if r > 1 (in the assortative case). As this is not the case, the smallest eigenvalue in the

bulk of Hr cannot be negative.
Claim 1 (Informative eigenvalue of Hζα ). The eigenvalue associated to the informative eigenvector
of Hζα is equal to zero. Equivalently, the eigenvalue λα associated to the informative eigenvector of
D − ζαA is given by λα = −(ζ2

α − 1) = −4f2
α which vanishes for cout → 0.

This claim gives rise to a second method to estimate ζ.
1The spectral radius of the matrix B, ρ(B), can be estimated as ρ(B) '

∑
i d

2
i /
∑

i di.
2This eigenvalue is visible in [10, 11] but not commented.
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Figure 3: Overlap comparison as a function of α, using the second smallest eigenvector of Hr, for
different values of r. In color code the values of r ranging from r = 1 (blue) to r = cΦ (yellow).
The red squares indicate r = (cin − cout)Φ/2, that is equivalent to clustering with the matrix B [10],
the purple hexagons represent the Bethe-Hessian of [9], the green diamonds are the proposed
Algorithm 1 and the blue crosses are the graph Laplacian. In the top left corner, a zoom of the
overlap close to the transition. For these simulations, n = 5000, cin : 15→ 9.4, cout : 1→ 6.6
(while keeping c fixed), θi ∼ [U(3, 10)]4.

Method 2 (Second estimation of ζ). Under the previous notations ν2(ζ) = 0. The parameter ζ then
corresponds to the position of change of sign of ν2(r) in the set r ∈ (1,

√
ρ(B)).

4 Extension to multiple uneven-sized classes

The analysis performed in the previous sections is resilient to heterogeneous degree distributions
and can be generalized to k uneven-sized classes, with last clustering step by k-means. To this
end, let Π ∈ Rk×k be diagonal with Πii the fraction of nodes in class i and assume CΠ1 = c1.
This assumption is a standard hypothesis [10, 22, 11, 25] which ensures that the averaged node
connectivity is independent of the class. For 1 ≤ p ≤ k, let (τp,v

(p)) be the p-th largest eigenpair
of CΠ, and u(p) ∈ Rn defined as u(p)

i = v
(p)
`i
∀ 1 ≤ i ≤ n for `i the class of node i. The vector

u(p) contains plateaus with heights corresponding to the values of v(p). Repeating the arguments of
Section 2 (see details in Section C of the supplementary material), we obtain k choices for r:

E[[(D − rA)u(p)]i] = diu
(p)
i

[
1− r τp

c

]
and thus r =

c

τp
≡ ζp, 1 ≤ p ≤ k. (11)

Since the largest eigenpair (c,1) of CΠ is not informative of the class structure, only the k − 1
next largest eigenvectors v(p) of CΠ are informative. The vector u(p) (corresponding to the p-th
largest eigenvalue τp) is in one-to-one mapping with v(p) and corresponds to the p-th smallest value
of ζp = c/τp. Considering r =

√
cΦ, all the informative eigenvalues of Hr are negative [9]. By

decreasing r they progressively become positive: for r = ζk (the largest among ζp) the k-th smallest
eigenvalue is the first to hit zero. By further decreasing r, all the informative eigenvalues follow, until
r = ζ1 = 1 for which the smallest eigenvalue is null. We conclude that u(p) is associated with the
p-th smallest eigenvector x(p)

ζp
of Hζp .

Method 1 and Method 2 both generalize to this scenario. In particular the outer eigenvalues of B
converge as γp → τpΦ and the linearization of BP retrieves the fixed points as ζp = c/τp.

For k > 2, the value r =
√
cΦ still plays an important role. It was chosen in [9] because, asymp-

totically, for this value of r only the informative eigenvalues of H√cΦ are negative. The number of
classes is then directly obtained from counting the number of negative eigenvalues of H√cΦ. The
relation between Hr and B further guarantees that the number of isolated eigenvalues of B (hence of
Hr) is asymptotically equal to the number of detectable classes.

7



Figure 4: (a) Comparison of spectral clustering for θi = 1 (left) and with power law distribution
θi ∼ Z−1[U(3, 10)]4. “D−1A best” indicates spectral clustering on the best (among the first 25)
eigenvector of D−1A. Here, n = 5000, cout = 1, cin = 2→ 16. Averaged over 10 samples. The
error bars indicate one standard deviation. (b) x(2)

ζ (top) and x(2)√
cΦ

(bottom) for power law
distributed θi (left) and for θi = θ0, i ≤ n/4 and n/2 ≤ i ≤ 3n/4, and θi = 4θ0 otherwise (right).

Remark 5 (On k-means versus signed-based clustering). Under a symmetric 2-class of even size
setting, the classification of the entries of the informative eigenvector of Hr can be performed based
on their signs. This sign-based method first does not generalize to more than two or uneven sized
classes, where k-means or expectation-maximization based clustering is required. But it also hinders
the fact that the eigenvector entries may be quite concentrated around zero (close to 0+ or 0−

according to the class) and thus not clustered, a situation where k-means has no discriminative power.

Simulations (and reported results in [9] based on signs rather than k-means) suggest that the
informative eigenvector of H√cΦ precisely suffers this condition. We have demonstrated here instead
that the informative eigenvector of Hζ has the convenient feature of being genuinely clustered.

5 Experimental validation

Our results can be summarized by Algorithm 1, where we recall that νp(r) is the p-th smallest
eigenvalue of Hr and where x(p)

r indicates the corresponding eigenvector.

Figure 3 depicts the overlap, as a function of α, of the output of a two-class k-means on the informative
eigenvector of Hr, for different values of r, ranging from 1 to cΦ. When α is large enough, small
values of r lead to better partitions than large values of r that are more affected by degree heterogeneity.
However, for r small, the informative eigenvector is not necessarily corresponding to the second
smallest eigenvalue, leading to a meaningless partition. On the contrary, larger values of r show
isolated eigenvectors also in the "hard regime". We recall that r = ζ is an α-dependent parameter:
for α→ αc, ζ is "large enough" so that the informative eigenvalue is isolated, while for α→

√
2cin

it is "small enough" to give good partitions. Also the value of r = (cin − cout)Φ/2 is α-dependent
and it corresponds to clustering with B as indicated in [10]. While it gives good partitions very close
to the transition, this choice of r seems largely sub-optimal for easier tasks.

Figure 4-(a) compares the overlaps obtained with Algorithm 1 versus related spectral clustering
methods based on H√cΦ, D−1A and A. Accordingly with Remark 5, k-means clustering (rather than
sign-based) on the informative eigenvectors is systematically performed. For θi = 1, the left display
recovers the results of [9], evidencing a strong advantage for Hr versus Laplacian methods. Since the
degrees are similar, both r =

√
cΦ and r = ζ induce similar Hr performances. The improvement

provided byHζ arises in the right display for power-law distributed θi, with most of the gain appearing
away from the detection threshold. On both displays is also depicted the performance of D−1A
based on its second largest eigenvector and on an oracle choice of the informative eigenvector with
maximal overlap. These curves confirm Remark 4 on the non-dominant position of the informative
eigenvector of D−1A in hard tasks.3 Figure 4-(b) depicts the informative eigenvectors of H√cΦ and
Hζ , demonstrating the negative impact of θi on H√cΦ, in stark contrast with the resilience of Hζ .

3The low performance ofD−1A, even in an oracle setting, can be attributed to the high density of eigenvalues
in the bulk of the spectrum which induces a “dispersion” of the informative eigenvectors to the eigenvectors
associated to neighboring eigenvalues. The class information is thus “spread” across several eigenvectors.
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Algorithm 1 Improved Bethe-Hessian Community Detection
1: Input : adjacency matrix of undirected graph G
2: Detect the number of classes: k̂ ← |{i, νi(

√
cΦ) < 0}|.

3: for 2 ≤ p ≤ k̂ do
4: ζp ← r such that νp(r) = 0

5: Xp ← x
(p)
ζp

6: Estimate community labels ˆ̀as output of k̂-class k-means on the rows of X = [X2, . . . , Xk̂].
return Estimated number k̂ of communities and label vector ˆ̀.

Table 1 next provides a comparison of the algorithm performances on real networks, both labelled
and unlabelled, confirming the overall superiority of Algorithm 1, quite unlike H√cΦ which fails on
several examples.4

L n k Alg.1 H√cΦ A U n k Alg.1 H√cΦ A

Karate [28] 34 2 1.00 1.00 1.00 Mail 1133 21 0.50 0.40 0.32
Dolphins [29] 62 2 0.97 0.87 0.65 Facebook 4039 65 0.77 0.48 0.38
Polbooks [30] 105 3 0.77 0.74 0.57 Power grid 4941 53 0.92 0.61 0.31
Football [31] 115 12 0.92 0.92 0.92 Nutella 6301 5 0.34 0.15 0.14
Polblogs [23] 1221 2 0.91 0.32 0.26 Wikipedia 7115 21 0.21 0.18 0.15

Table 1: Performance comparison on real networks. Labelled datasets with k known and overlap
comparison: (left). Unlabelled networks [32] with k estimated and modularity comparison. Only
assortative features are kept into account.

6 Concluding Remarks

Beyond the demonstration of superiority of Hζ to H√cΦ, originally proposed in [9], the article
provides a consistent understanding of the natural limitations and strengths of the wide class of
spectral clustering methods involving combinations of A and D.

Yet, other methods, the performances of which cannot always be compared on even grounds, have
been proposed in the literature that marginally relate to the present study. This is notably the case
of [18] which performs spectral clustering on Lτ = (D + τIn)−

1
2A(D + τIn)−

1
2 (with a proposed

choice τ = c) which aims at neutralizing the deleterious effects of small di. Although evidently
affecting the spectrum (and thus the informative structure) of A by the non-linear normalization,
simulations on Lτ suggest competitive performances to Hζ in almost all studied examples. A
systematic analysis of this and similarly proposed methods in the literature is clearly called for.

Despite its demonstrated significant performance improvement, Algorithm 1 suffers from a slightly
larger computational cost than most competing methods (O(nk3) instead of the usual O(nk2)
complexity in the case of sparse graph) due to the successive estimations of ζ. We are currently
working on improving this computation time.

From a theoretical standpoint, the request for c� 1 is still inappropriate to many practical networks.
A first consequence of smaller values for c is the loss of Gaussianity of the eigenvector entries as
already evidenced in Figures 1 and 4 where Gaussianity is clearly lost in the easiest tasks in profit of
a “one-sided” distribution. This suggests further improvement of our analysis framework along with
the development of algorithms more appropriate than k-means to handle the last clustering step.
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Supplementary material

A Mapping to Ising

As introduced in [22] for the SBM (θ = 1n), the probability to realize a graph under the sparse
DC-SBM hypothesis reads:

P(A|σ,θ) =
∏
i,j<i

(
θiθj

Cσi,σj
n

)Aij (
1− θiθj

Cσi,σj
n

)1−Aij
=
∏
i,j<i

(
θiθj

Cσi,σj
n

)Aij
+ o

(
1

n

)

=
∏

(ij)∈E

θiθj
Cσi,σj
n

+ o

(
1

n

)
.

By making use of the Bayes theorem we can map the probability distribution of the labels to a
physical analogue of spins interacting on the graph.

P(σ|A) =

∫
dθ P(σ,θ|A) =

∫
dθ P(A|σ,θ)

P(σ)P(θ)

P(A)

∼
n→∞

1

P(A)2n

∏
(ij)∈E

Cσi,σj
n

∫
dθ P(θ)θiθj =

1

Z

∏
(ij)∈E

Cσi,σj =
1

Z
e−H̃(σ)

where we recovered the Boltzmann distribution with dimensionless Hamiltonian given by

H̃(σ) = −
∑

(ij)∈E

log
[
Cσi,σj

]
≡ −

∑
(ij)∈E

ath

(
1

r

)
σiσj + const (A.1)

where const is a constant that will be absorbed in the normalization factor. This last step gives rise to
an Ising Hamiltonian. The following system of equations must then hold for some r:

log[cin] = ath

(
1

r

)
+ const. (A.2a)

log[cout] = −ath

(
1

r

)
+ const. (A.2b)

It is easy to check that r = ζ is the solution to this system of equations. From this result, one can
then follow the derivation of the Bethe-Hessian matrix proposed in [9].

It has to be remarked that to obtain Equation (A.1) we neglected terms coming from non-nearest
neighbours, in the limit for n → ∞. The mapping is therefore not exact, but it still constitutes a
useful tool to analyze and understand the problem.

Further note that, for disassortative networks, cin < cout and thus ζ < 0 as commented in Remark 3
in the main article. This would correspond to an anti-ferromagnetic interaction between the spins, in
complete agreement with the mapping provided.

B Mean and variance of the eigenvector

We need to identify the terms βi and µα introduced in Assumption 1 to track the behavior of δ and
thus of the eigenvector σ + δ. A first constraint on δ follows from imposing the normalization of the
eigenvector which, in the trivial limit equals σ, the norm of which is

√
n. As such,

‖(1− µα)σ + fαβ �N‖2 = n (B.1)

where β = (βi)
n
i=1, and N is a vector of zero mean and unit variance Gaussian random variables.

Denoting nβ̃2 ≡ ‖β �N‖2 and observing that β̃ = O(βi) – i.e. they have the same scaling with
respect to c –, we can rewrite this equation under the form:

(1− µα)2 + f2
αβ̃

2 = 1. (B.2)

This provides a first relation between µα and β̃. To obtain our next equations, we now explore
boundary conditions on the model parameters in the limit of trivial clustering and at the phase
transition where clustering becomes impossible.
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It is established in [16] that there exists a critical value αc ≡ 2/
√

Φ for α below which community
detection is (asymptotically) impossible. In particular, for α = αc, the eigenvector σ + δ does not
contain any information about the classes and thus µαc = 1. From Equation (9), we then find that
fαc =

√
cΦ− 1/2. Also, from (B.2), we get β̃ = 1/fαc . Updating (B.2), we now have an explicit

expression for µα for all α. Recalling that 4f2
α = ζ2

α − 1 (from (6) and (9)) then gives

1− µα =

√
cΦ− ζ2

α

cΦ− 1
. (B.3)

Getting back to (7) and (8), it now remains to estimate βi, which we shall perform in the limit
α→

√
2cin of trivial clustering. To this end, combining both equations, we have

2fα(1− µα)
√
diÑi − ζα

∑
j∈∂i

fαβjNj + difαβiNi = λα[(1− µα)σi + fαβiNi]

for Ñ1, N1, . . . , Ñn, Nn all (non necessarily independent) standard normal random variables. The
second left-hand side term is proportional to

√
di (and thus of order O(

√
c)) as per the weak

independence assumption of the Nk’s (Assumption 1). Dividing both sides by fα
√
di to equate terms

of order O(1), the right-hand side now scales as λα/(fα
√
di). As noted in Remark 1, in the trivial

clustering limit where α →
√

2cin, λα → 0, but it is not clear whether the right-hand side (after
division by fα

√
di) vanishes; we now investigate this term in detail. One may at first observe that,

if cout = εcin for ε� 1, since c typically scales like di, we obtain that fα
√
di =

√
εcin/2 +O(ε).

Hence, if cin ' ε−1, the right-hand side vanishes. But imposing this growth condition is in fact not
even necessary. If λα ∝ fηα for some η > 1, we directly obtain a vanishing right-hand side term; in
Section 3 we argued that η = 2 (see Claim 1).
Denoting

∑
j∈∂i βjNj ≡ 〈β〉N

√
di for some 〈β〉 > 0, we may then rewrite

2(1− µα)Ñi − ζα〈β〉N +
√
diβiNi → 0 (B.4)

in the limit α→
√

2cin. Besides, µα → 0 while ζα → 1. We already argued that βi (and thus 〈β〉),
which is of the order of β̃, scales as 1/fαc = O(c−1/2). Thus, in the limit of large degrees, the
second term in (B.4) is negligible and the third of order O(1). Equating the large degree limiting
variances of the resulting equation finally gives

βi =
2√
di
.

We now have the mean and the variance of each vector component and we can estimate the expression
of the overlap. Considering a node with σi = 1 without loss of generality, in the large c limit, we
have the approximate classification error for node i:

Pierr '
1√

2π[fαβi]2

∫ ∞
(1−µα)

e−x
2/(2[fαβi]

2)dx =
1

2

[
1− erf

(
1√

2[fαβi]
(1− µα)

)]
.

From this, the expression of the overlap follows.

C Extension to more than two classes

In order to generalize the argument carried on for two classes, first we look into the following quantity

P(`i|`j , Aij = 1) =
P(`i, `j |Aij = 1)

P(`j |Aij = 1)
=

∫∫
dθidθjP(`i, `j , θiθj |Aij = 1)

P(`j)

=

∫∫
dθidθjP(Aij = 1|θi, θj , `i, `j)P(`i)P(`j)P(θi)P(θj)

Zπ`j

=
π`iC`i,`j

c
=

(ΠC)`i,`j
c

=
(CΠ)`j ,`i

c

By repeating the same argument on the average behavior of the adjacency matrix we obtain:

〈(Au(p))i〉 =
∑
j∈∂(i)

〈u(p)
j 〉 =

∑
j∈∂(i)

〈v(p)
`j
〉 = di

∑
`j

P(`j |`i, Aij = 1)v
(p)
`j

=
di
c

∑
`j

(CΠ)`i,`jv
(p)
`j

=
di
c

(CΠv(p))`i =
di
c
τpv

(p)
`i

= di
τp
c
u

(p)
i

13



from which the result unfolds. In the simulations on synthetic networks, the off-diagonal terms of
the matrix C are drawn from a uniform distribution U(cout − f, cout + f), the element C11 is fixed
to cin and all the other diagonal terms are determined to ensure CΠ1k = c1k. The randomness
will make the eigenvalues of CΠ non degenerate and there will not be a unique transition. The line
cin − cout = k

√
c indicates the approximated position of the transition.

In Figure 5 we report the spectrum of B in the case of four classes, that shows that the largest isolated
real eigenvalues of the matrix B are τp for 1 ≤ p ≤ k, followed by c/τp for 2 ≤ p ≤ k. This result
can be obtained analytically from the linearization of the belief propagation equations (see [10]).

Figure 5: Spectrum of B. In green the isolated real eigenvalues outside the bulk corresponding to
{τpΦ}, in red those inside the bulk, corresponding to {ζp = c/τp}; in blue all the others. We used 4
clusters of equal size, n = 5000, cin = 20, cout = 5, f = 1.5 and θi ∼ θ = U(3, 13)4.

Figure 6(a) displays the overlap as a function of the hardness of the problem and of the number of
classes comparing our algorithm with [9], evidencing a strong advantage in terms of performance for
our algorithm. The red square underlines the fact that the two methods coincide only at the transition
when k = 2 and the latter algorithm pays a lot in terms of performance for k > 2, even close to the
transition. Figure 6(b) shows how k̂ = |{p, vp(

√
cΦ) < 0}| is a good estimator of the number of

classes. With kd = |{p, τp >
√
c/Φ}| we denote the number of theoretically detectable clusters and

plot the quantity 2(k̂ − kd)/(k̂ + kd), showing small disagreement only close to the transition. The
recovery being asymptotically exact, this can be interpreted as a finite size effect.

Figure 6: (a) Overlap (color scale) as a function of the number of classes (k) and hardness of the
problem for the proposed algorithm (left) and H√cΦ (right). Here, n = 10 000, cin = 4→ 40,
cout = 3, f = 2/k, θi ∼ [U(3, 13)]4. Averaged over 10 samples.
(b) Recovery (2(k̂ − kd)/(k̂ + kd)) as a function of k and the hardness of the problem for the same
parameters as (a).
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