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ABSTRACT
Data embedding is used in many machine learning applications
to create low-dimensional feature representations, which preserves
the structure of data points in their original space. In this paper,
we examine the scenario of a heterogeneous network with nodes
and content of various types. Such networks are notoriously diffi-
cult to mine because of the bewildering combination of heteroge-
neous contents and structures. The creation of a multidimensional
embedding of such data opens the door to the use of a wide vari-
ety of off-the-shelf mining techniques for multidimensional data.
Despite the importance of this problem, limited efforts have been
made on embedding a network of scalable, dynamic and heteroge-
neous data. In such cases, both the content and linkage structure
provide important cues for creating a unified feature representation
of the underlying network. In this paper, we design a deep em-
bedding algorithm for networked data. A highly nonlinear multi-
layered embedding function is used to capture the complex inter-
actions between the heterogeneous data in a network. Our goal is
to create a multi-resolution deep embedding function, that reflects
both the local and global network structures, and makes the result-
ing embedding useful for a variety of data mining tasks. In partic-
ular, we demonstrate that the rich content and linkage information
in a heterogeneous network can be captured by such an approach,
so that similarities among cross-modal data can be measured di-
rectly in a common embedding space. Once this goal has been
achieved, a wide variety of data mining problems can be solved
by applying off-the-shelf algorithms designed for handling vector
representations. Our experiments on real-world network datasets
show the effectiveness and scalability of the proposed algorithm as
compared to the state-of-the-art embedding methods.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications–Data Mining.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

Copyright 2015 ACM 978-1-4503-3664-2/15/08 ...$15.00.
http://dx.doi.org/10.1145/2783258.2783296.

Keywords
Heterogeneous embedding, network embedding, feature learning, cross-
domain knowledge propagation, deep learning, dimensionality reduction.

1. INTRODUCTION
Vectorized data representations frequently arise in many data

mining applications. They are easier to handle since each data can
be viewed as a point residing in an Euclidean space [24, 30]. Thus,
similarities between different data points can be directly measured
by an appropriate metric to solve traditional tasks such as classifi-
cation [37], clustering [21, 43, 45] and retrieval [10]. As shown in
[3], learning good representations is one of the fundamental prob-
lems in data mining and Web search, and it often has a stronger
impact on performance than designing a more sophisticated model.

Unfortunately, many networked data sources (e.g. Facebook,
YouTube, Flickr and Twitter) cannot be naturally represented as
vectorized inputs. A combination of graphs and relational data is
commonly used to represent these social networks and social me-
dia data. Current research has focused on either pre-defined feature
vectors [42] or sophisticated graph-based algorithms [48] to solve
the underlying tasks. A significant amount of research has been ac-
complished on various topics, such as collective classification [37],
community detection [44], link prediction [47], social recommen-
dation [35], targeted advertising [22], and so on. The development
of a unified representation for networked data in embedded vec-
tor form is of great importance to encode both content and links.
The basic assumption is that, once the vectorized representation is
obtained, the network mining tasks can be readily solved by off-
the-shelf machine learning algorithms.

Nevertheless, feature learning of networked data is not a triv-
ial task because the data possesses many unique characteristics,
such as its size, dynamic nature, noise and heterogeneity. First,
the amount of multimedia data on social Websites has increased
exponentially. The estimated number of photos on Facebook has
reached 100 billion by mid-2011 and it has been continuously in-
creasing by 350 million new uploaded photos each day1. Given
the varied backgrounds of the users, social media tends to be noisy.
In addition, researchers have noticed that spammers generate more
data than legitimate users [4], which makes network mining even
more difficult. Furthermore, social media data contains diverse and
heterogeneous information. For instance, different model types are
reported when an event takes place. As a Google search example of

1
http://www.businessinsider.com/

facebook-350-million-photos-each-day-2013-9
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Figure 1: Illustration of the heterogeneity of different data sources describing the same topic “MH 17”.

“Malaysia Airlines MH 17” illustrates in Figure 1, relevant results
include not only text documents but also images and videos.

Moreover, social media data does not exist in isolation, but in
combination with various data types [28]. These interactions can
be formed either explicitly or implicitly with the linkages between
them. Images and texts co-occurring within the same Web page
provide explicit linkages between them, whereas text-to-text link-
ages are formed by the hyper-links between different Web docu-
ments. On the other hand, interactive activities by users can be
viewed as implicit feedback, which connect different social media
components. If users describe multiple images with similar tags, it
is reasonable to assume that a semantic relationship exists between
such images. It is evident that such huge amounts of data results
in complex heterogeneous networks that impose tremendous chal-
lenges on learning uniform representations.

To address the aforementioned challenges, we present a novel
idea on network representation learning, termed Heterogeneous Net-
work Embedding (HNE), which jointly considers both the content
as well as the relational information. HNE maps different hetero-
geneous objects into a unified latent space so that objects from dif-
ferent spaces can be directly compared.

Unlike to traditional linear embedding models [29, 44, 50], the
proposed method decomposes the feature learning process into mul-
tiple nonlinear layers of a deep architecture. Both Deep Neural Net-
works (DNN) [1, 14] and Convolutional Neural Networks (CNN)
[12, 18] are aggregated to handle vectorized data (e.g., text docu-
ments) or tensor-based multimedia objects (e.g., color images and
videos). Our model coordinates two mutually reinforcing parts by
iteratively solving an optimization problem with respect to feature
learning and objective minimization. The deep architecture models
both the local and global linkage structures of underlying networks
through the proposed framework. This makes it more powerful
than a shallow embedding solution to capture the network links,
especially when the linkage information plays the key role in re-
vealing semantic correlations between different objects due to the
homophily property. Along this line of research, we utilize the net-
work’s inter-connections to design a proper loss function that en-
forces the similarities between different objects in the embedded
feature space such that they are consistent with network links. The
idea of a network-preserved embedding is illustrated in figure 2.
The key advantages of the proposed HNE framework are the fol-
lowing:
‚ Robust: HNE explores global consistency between different het-

erogeneous objects to learn unified feature representations guided
by network structures.

‚ Unsupervised: HNE is unsupervised and task independent, which
makes it suitable for many network orientated data mining appli-
cations.

‚ Out-of-sample: HNE is able to handle the out-of-sample prob-
lem. This addresses the challenge associated with a dynamic
network in which new nodes may be added over time.

2. RELATED WORK
2.1 Network Embedding

A branch of latent feature embeddings is motivated by applica-

tions such as collaborative filtering and link prediction in networks
that model the relations between entities from latent attributes [16].
These models often transfer the problem as learning an embedding
of the entities, which corresponds algebraically to a matrix factor-
ization problem of observed relationships. Zhu et. al. [50] pro-
posed a joint factorization approach on both the linkage adjacency
matrix and document-term frequency for Web page categorization.
Similar concepts also include [29, 44]. In addition, Shaw et.al. [38]
proposed a structure preserving embedding framwork that embeds
graphs to a low-dimensional Euclidean space with global topolog-
ical properties preserved. Moreover, DeepWalk [31] learns latent
representations of vertices in a network from truncated random
walks. However, these models focus only on single relations that
do not adapt to heterogeneous settings and most of them are hardly
to generate to other unseen samples.

A natural extension of these methods to heterogeneous settings
is by stacking multiple relational matrices together, and then ap-
plying a conventional tensor factorization [26, 29, 39]. The disad-
vantage of such multi-relational embeddings is the inherent shar-
ing of parameters between different terms, which does not scale to
large graphs. A nonlinear embedding model proposed by Yuan et.
al. [46], used Restricted Boltzmann Machines (RBMs) for cross-
model link analysis. However, it did not utilize all of the social in-
formation from the raw data (required a feature vectorization step),
which resulted in suboptimal solutions. Moreover, work in com-
puter vision and speech [18] has shown that layer-wise RBM train-
ing is inefficient for large-scale settings when compared to DNNs
and CNNs.

2.2 Deep Learning
In recent years, machine learning research has seen a marked

switch from hand-crafted [49] features to those that are learned
from raw data, mainly due to the success of deep learning. Deep
learning models have become increasingly important in speech recog-
nition, object recognition/detection, and more recently in natural
language processing. Deep learning techniques are universal func-
tion approximators. However, historically, there has been very lim-
ited success in training deep networks with more than two hidden
layers. The difficulty lies in the high dimensional parameter space
and highly non-convex objective function, where gradient-based
methods are trapped by local minima.

Recent advances in deep learning have benefited from a con-
fluence of factors, such as the availability of large-scale datasets,
computational resources, and advances in both unsupervised and
supervised training algorithms. Unsupervised deep learning, of-
ten referred to as “pre-training,” provides robust initialization and
regularization with the help of unlabeled data, which is copiously
available. For example, Hinton and Salakhutdinov [14] first em-
ployed layer-wise initialization of deep neural networks with the
use of RBMs. A similar approach is weight initialized with auto-
encoders, as proposed by Bengio et. al.. [1]. More recently, super-
vised learning with multilayer neural networks has become possi-
ble. The method of dropout [15] has shown particular promise. A
seven-layer convolutional network developed by Krizhevsky et. al.
[18] achieved state-of-the-art performance on the ImageNet Large
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Figure 2: The flowchart of the proposed Heterogeneous Network Embedding (HNE) framework.

Scale Visual Recognition Challenge [36], one of the most chal-
lenging tasks in computer vision. Later on, features from one of
network’s intermediate layers proved to be a superior feature rep-
resentation for other vision tasks, such as object detection [11].

There has been a growing interest in leveraging data from mul-
tiple modalities within the context of deep learning architectures.
Unsupervised deep learning methods such as auto-encoders [25]
and RBMs [40] are deployed to perform feature learning by joint
reconstruction of audio and video with a partially shared network,
and successfully applied to several multimodal tasks. Alternatively,
there has also been effort on learning the joint representation with
multiple tasks [6]. For image and text, a particular useful sce-
nario is zero-shot learning of image classification on unseen labels
achieved by incorporating the semantically meaningful embedding
space to image labels [9, 27].

To the best of our knowledge, there have been few previous at-
tempts to make use of the linkage structure in a network for repre-
sentation learning. In [19] a conditional temporary RBM was used
to model the dynamics of network links, and the main task was to
predict future links with historical data. The most similar work to
ours is that of [46]. A content RBM was trained on multimedia link
data. We differ from their work in several respects. We use a com-
pletely supervised learning scheme in an unsupervised setting; our
method can scale up to large scale datasets; we perform multi-task
learning to fuse the information from different modalities.

3. PRELIMINARIES
In this section, we introduce our notation as well as the mathe-

matical definitions we will use to describe heterogeneous networks.

3.1 Notation
Throughout this paper, all vectors are column vectors and are

denoted by bold lower case letters (e.g., x and y), while matrices
are represented by bold upper case letters (e.g., X and M ). The
ith row of a matrix X is given by Xi¨, while X¨j represents the
jth column. We use calligraphic letters to represent sets (e.g., V
and E). The notation | ¨ | denotes the cardinality of a given set. The
empty set is denoted by �.

3.2 Heterogeneous Networks
A heterogeneous network [41] is defined as a network with mul-

tiple types of objects and/or multiple types of links. As a math-
ematical abstraction, we define an undirected graph G “ pV, Eq,
where V “ tv1, . . . , vnu is a set of vertices and E is a set of edges.

An edge eij , @i, j P t1, ¨ ¨ ¨ , nu belongs to the set E if and only
if an undirected link exists between nodes i and j. Moreover, the
graph G is also associated with an object type mapping function
fv : V Ñ O and a link type mapping function fe : E Ñ R, where
O and R represent the object and relation sets, respectively. Each
node vi P V belongs to one particular object type as fvpviq P O.
Similarly, each link eij P E is categorized in different relations as
fvpeijq P R. It is worth mentioning that the linkage type of an
edge automatically defines the node types of its end points. The
heterogeneity of a network is reflected by the size of the sets O
and R, respectively. In the case of |O| “ |R| “ 1, the network
is homogeneous; otherwise, it is heterogeneous. An example of a
heterogeneous network is illustrated in the left-hand side of Figure
2, which contains two object and three link types. For further ease
in understanding, we will assume object types of image (I) and text
(T ). The link relationships R correspond to image-to-image (red
dotted line), text-to-text (green dashed line) and image-to-text (blue
solid line), which are denoted by RII , RTT and RIT , respectively.
Therefore, in this case, we have |O| “ 2 and |R| “ 3. While this
simplified abstraction in the text and image domain is both seman-
tically and notationally convenient for further discussion in this pa-
per, this assumption is without loss of generality because the ideas
are easily generalizable to any number of types.

Thus, any vertex vi P V can be categorized into two disjoint
subsets VI and VT corresponding to the text image domains, re-
spectively. Therefore, we have VI Y VT “ V and VI X VT “ �.
Similarly, the edge set E can be partitioned into three disjoint sub-
sets, which are denoted by EII , ETT and EIT , respectively. Fur-
thermore, each node is summarized by unique content informa-
tion. In particular, images are given as a squared tensor format as
Xi P RdIˆdIˆ3 for every vi P VI , while texts are represented by
a dT -dimensional feature vector as zj P RdT for all vj P VT . For
example, the content representations could be a raw pixel format in
RGB color space for images, or it could be the Term Frequency -
Inverse Document Frequency (TF-IDF) [32] scores of a text docu-
ment. We represent linkage relationship as a symmetric adjacency
matrix A P Rnˆn, which the pi, jqth entry of A equals one if
eij P E ; otherwise Aij “ ´1 (for model simplicity).

4. HETEROGENEOUS NETWORK EMBED-
DING

In this section, we present our HNE framework mathematically
by first introducing a novel loss function to measure correlations

121



across networks. Essentially, the embedding process encodes both
heterogeneous content and linkage information to a multidimen-
sional representation for each object. A linkage-guided deep learn-
ing framework is then proposed to jointly model the latent space
embedding with feature learning simultaneously. This can be solved
efficiently by using back propagation techniques. Finally, we dis-
cuss the straightforward extension of the HNE algorithm to the
general case of more than two object types.

4.1 Latent Embedding in Networks
The main goal of the heterogeneous embedding task is to learn

mapping functions to project data from different modalities to a
common space so that similarities between objects can be directly
measured. Assume that the raw content X

i

associated with an
image node can be transformed to a d1

I -dimensional vector rep-
resentation as x

i

. The conversion of the raw input data into this
d1
I -dimensional vector representation will be described in the fol-

lowing subsection. A naive approach to do so is by stacking each
column of an image as a vector or through feature machines [7, 23].
It is worth pointing out that, the values of d1

I and dT need not be the
same, because images and text are defined in terms of completely
different sets of features.

We transform two type of samples to a uniform latent space with
the use of two linear transformation matrices, denoted by U P
Rd1

Iˆr and V P RdT ˆr , for the image and text domains, respec-
tively. The transformed samples are denoted by ˜

x and ˜

z for images
and text documents, respectively, where we have:

˜

x “ U

T
x, and ˜

z “ V

T
z.

(1)

Even though the image and documents may be represented in spaces
of different dimensionality, the transformation matrices U and V
map them into a common r-dimensional space. The similarity be-
tween two data points with the same object type can be presented
as an inner product in the projected space as follows:

spx
i

,x

j

q “ ˜

xi
T

˜

xj “ pUT
xiqTU

T
xj “ x

i

T
MIIxj

,

spz
i

,z

j

q “ ˜

zi
T

˜

zj “ pV T
ziqTV

T
zj “ z

i

T
MTT z

j

,

(2)

Note that the embedding into a common space also enables simi-
larity computation between two objects of different types, such as
text and images, as follows:

spx
i

,z

j

q “ ˜

xi
T

˜

zj “ pUT
xiqTV

T
zj “ x

T
i MIT zj

“ ˜

zj
T

˜

xi “ pV T
zjqTU

T
xi “ z

T
j M

T
ITxi,

(3)

Here, MII P Rd1
Iˆd1

I and MTT P RdT ˆdT are positive semi-
definite matrices while MIT P Rd1

IˆdT . The latent embedding
is closely related to similarity and metric learning that has been
widely studied in the literature [20]. It suggests that the correlations
between two nodes in a network can be either parameterized by the
projection matrices U and V or through a bilinear function defined
by the matrices MII , MTT and MIT . This provides the flexibility
to model the heterogeneous relationship in an application-specific
way.

The heterogeneous objects interact with each other either explic-
itly and implicitly. These interactive pieces of information are rep-
resented as heterogeneous linkages in networks. The assumption is
that if two objects are connected, the similarity measure between
them should reflect this fact by providing a larger value compared
to the ones that are isolated. Consider a pair of images denoted as
xi and xj . To encode the link information, we design a pairwise
decision function dpxi,xjq as follows:

dpxi,xjq
"

° 0 if Aij “ 1,

† 0 otherwise. (4)

Note that to infer d we need not know the respective entry value
of A, or require heterogeneous nodes to be in-sample [34]. This
means that the approach has the generalization ability to embed
samples from unseen nodes. Consider

dpxi,xjq “ spxi,xjq ´ tII , (5)

for all vi, vj P VI , where tII is a relational based bias value. Then,
the loss function can be formulated as follows:

Lpxi,xjq “ log p1 ` exp p´Ai,jdpxi,xjqqq, (6)

which can be seen as a binary logistic regression guided by network
linkages. The loss function of text-text and image-text are similar to
equation (6) by simply replacing sp¨q with that of the corresponding
modality. Similarly, the bias terms, denoted by tTT and tIT , can
be set to the corresponding ones. It leads to our objective functions
in the form of:

min

U ,V

1

NII

ÿ

vi,vjPVI

Lpxi,xjq ` �1

NTT

ÿ

vi,vjPVT

Lpzi,zjq

` �2

NIT

ÿ

viPVI ,vjPVT

Lpxi,zjq ` �3p}U}2F ` }V }2F q,
(7)

where NII , NTT and NIT are the numbers of the three types of
links in the network. Furthermore, �1, �2 and �3 are the three
balancing parameters, in which the first two control the emphasis
among three types of linkages and the last one is used balance the so
called bias-variance trade-off [13]. Moreover, in equation (7), }¨}F
denotes the Frobenius norm. The bias terms in the loss function
can be either treated as learning variables or set to fixed values. For
simplicity, we set these bias terms to constants.

The aforementioned objective function can be efficiently solved
with coordinate descent methods, which solve for each individual
variable while keeping the others fixed:
Solving U :
Fixing parameter V , the objective function (7) can be reduced as
follows:

min

U

1

NII

ÿ

vi,vjPVI

log

´
1 ` e

´Ai,jx
T
i UU

T
xj

¯
` �3}U}2F

` �2

NIT

ÿ

viPVI ,vjPVT

log

´
1 ` e

´Ai,jx
T
i UV

T
zj

¯ (8)

The gradient is given by the following:

Bp¨q
BU “ 1

NII

ÿ

vi,vjPVI

´Ai,jpxjx
T
i ` xix

T
j qU

1 ` e

Ai,jx
T
i UU

T
xj

` 2�3U

` �2

NIT

ÿ

viPVI ,vjPVT

´Ai,jxiz
T
j V

1 ` e

Ai,jx
T
i UV

T
zj

.

(9)

Solving V :
Similarly, the variable V can be handled as follows:

min

V

�1

NTT

ÿ

vi,vjPVT

log

´
1 ` e

´Ai,jz
T
i V V

T
zj

¯
` �3}V }2F

` �2

NIT

ÿ

viPVI ,vjPVT

log

´
1 ` e

´Ai,jx
T
i UV

T
zj

¯
.

(10)

Taking the derivative with respect to V , we obtain:

Bp¨q
BV “ �1

NTT

ÿ

vi,vjPVT

´Ai,jpzjzT
i ` ziz

T
j qV

1 ` e

Ai,jz
T
i V V

T
zj

` 2�3V

` �2

NIT

ÿ

viPVI ,vjPVT

´Ai,jzjx
T
i U

1 ` e

Ai,jx
T
i UV

T
zj

.

(11)
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So far, we have shown that our loss function integrates network
structures that map different heterogeneous components into a uni-
fied latent space. However, such embedding functions are still lin-
ear, which might lack the power to model complex network con-
nections. In the following, we will present how Equation (7) fits
into the deep learning framework.

4.2 The Deep Architecture
In the previous section, we broken things down into two steps:

1) manually construct a feature representation, 2) embed different
modalities into a common space. In this section we tightly integrate
these two steps into a deep learning framework by learning the fea-
ture representation and embedding together.

min
U,V ,DI ,DT

1

NII

ÿ

vi,vjPVI

LppDI
pXiq, pDI

pXjqq ` �3p}U}2F ` }V }2F q

` �1

NTT

ÿ

vi,vjPVT

LpqDT
pziq, qDT

pzjqq

` �2

NIT

ÿ

viPVI ,vjPVT

LppDI
pXiq, qDT

pzjqq,

(12)
Here, pp¨q and qp¨q are two nonlinear functions parameterized by
DI and DT . DI and DT are two sets of parameters associated with
the deep image and text networks, respectively. Specifically, we uti-
lizes the CNNs structure as building blocks to learn image features
while fully connected (FC) layers are used to extract discriminative
representations for pre-processed texts. The feature learning and
information embedding are mutually reinforced by our approach.

The image module exploits spatially local correlations by enforc-
ing a local connectivity between neurons from adjacent layers. The
parameters on each layer are referred to as filters. The architecture
confines the learned filters to reflect the spatial local patterns of im-
ages. In addition, each sparse filter is replicated across the entire
visual field, which share the same parameters (both weights W

k
I

and bias bkI ). The output of each filter is usually termed as “feature
map”, and conceptually, a feature map is obtained by convolving
an input image with a linear filter, adding a bias term and then ap-
plying a non-linear function. We denote the k-th feature map at
a given layer (a given depth) as h

k, which is determined by the
corresponding weights W k and bias bk. Then, the feature map is
obtained as follows:

h

k “ maxt0, pW k ˚ Mq ` b

ku, (13)

Here, ˚ denotes the convolution operation and M is an input from
the previous layer of the deep image module. The definition of
convolution of a filter g with a 2D signal f is as follows:

orm,ns “ f rm,ns ˚ grm,ns

“
8ÿ

u“´8

8ÿ

v“´8
f ru, vsgru ´ m, v ´ ns. (14)

Moreover, the maxt0, ¨u operator, called the rectified linear unit,
provides the non-linearity. To form rich representations of a given
dataset, each layer is composed of multiple feature maps so that
each filter W k forms a three-dimensional tensor for every combi-
nation of source feature map, vertical and horizontal size. A graph-
ical illustration of the image module is provided in figure 3, which
contains five convolution layers and two FC layers. Each input im-
age X P RdIˆdiˆ3 is represented as a 4096-dimensional vector
through a series of nonlinear operations in both the training and
testing phases. Once the set of parameters DI is fixed, the feature
of each individual input images is deterministic.

In contrast, since text documents are unstructured that do not
contain a spatial information, fully connected layers are commonly

128 Feature Maps 
55x55

256 Feature Maps 
27x27

384 Feature Maps 
13x13

384 Feature Maps 
13x13

256 Feature Maps 
13x13

4096 4096

Pretrained on ILSVRC2013 dataset embedding

convolution
pooling
response normalization

convolution
pooling
response normalization

convolution convolution fully
connected

Figure 3: An example of the deep image module which consists of
five convolution layers and two fully connected layers.

used to extract application orientated feature on top of TF-IDF in-
puts. The feature transformation is expressed as follows:

qDT
pzq “ maxt0,WT z ` bT u (15)

This is performed through a single fully connected layer, where
WT P RrˆdT and bT P R. r indicates the number of neurons
in a given layer. Similarly, rich representations can be learned by
stacking multiple fully connected layers with different number of
neurons (r can be set to different values in different layers) to con-
struct the deep text architecture for word documents.

Since the linear heterogeneous embedding in section 4.1 can be
viewed as transforming inputs to a common space, we can achieve
this by cascading an extra linear embedding layer to each deep
module. Define

p̃D1
I

pXq “ U

T
pDI

pXq, and q̃D1
T

pzq “ V

T
pDT

pzq, (16)

where D1
I “ DI YtUu and D1

T “ DT YtV u. Then, the objective
function in equation (12) is equivalent to the following:

min

D1
I ,D1

T

1

NII

ÿ

vi,vjPVI

L

1pp̃D1
I

pXiq, p̃D1
I

pXjqq

` �1

NTT

ÿ

vi,vjPVT

L

1pq̃D1
T

pziq, q̃D1
T

pzjqq

` �2

NIT

ÿ

viPVI ,vjPVT

L

1pp̃D1
I

pXiq, q̃D1
T

pzjqq,

(17)

The problem of over-fitting can be effectively prevented by us-
ing dropout [15] instead of L2 regularizations. The new loss term
L1p¨, ¨q is defined as

L

1pa, bq “ log

´
1 ` exp

´
´Ai,ja

T
b

¯¯
, (18)

for any vector a, b with a same dimensionality. For simplicity, we
refer to both deep image and text modules as a series of nonlin-
ear feature transformations with an additional linear common space
embedding.

To perform end-to-end HNE learning, we connect the deep im-
age and text modules accordingly to the image-image, text-text, and
image-text losses in equation (17). As an example, we illustrate the
text-text module in figure 4, and the other two can be extended in a
similar manner. Figure 4 contains two text modules that comprise
the pairwise text-text module. The illustrated deep text-text mod-
ule contains two FC layers followed by a linear embedding layer. A
pair of text documents are fed from the left and computed in a left-
to-right direction. The outputs from the embedding layer are the
vectorized representation of corresponding objects in the common
latent space. These are further channeled to a prediction layer to
calculate the loss using equation (17). To make the text-text mod-
ule symmetric (feeding the same objects from the top or the bottom
pass of the text-text modules will lead to a same latent represen-
tation), we need to tighten these parameters. In figure 4, if two
neurons have the same color, they share the same weight and bias.
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Figure 4: An example of the deep text-text module by concatenat-
ing a pair of text modules. Same coloring indicates shared weights.

The overall architecture of learning such a heterogeneous em-
bedding function from a given network is visualized in figure 5.
Three modules are shown in the figure, corresponding to image-
image, image-text and text-text from left to right. These are con-
nected to the prediction layer. Pairwise training samples are formed
as mini-batches feeding from the bottom to the top. Once the value
of the loss has been obtained, the gradients of each parameter in the
deep network are calculated using backpropagation techniques.

4.3 Optimization
The objective function in equation (17) can be efficiently min-

imized by stochastic gradient descent (SGD) by sampling mini-
batches from the training set. The advantage of training stochasti-
cally is that each mini-batch can be loaded onto GPU and computed
in a parallel scheme if needed. Popular open-source deep learning
packages using GPU-based implementations include Cuda-convnet
[18], Caffe [17] and Theano [2], etc.. For each input image pair, the
gradient of D1

I is given as follows:

Bp¨q
BD1

I

“ Bp¨q
Bp̃D1

I
pXiq

Bp̃D1
I

pXiq
BD1

I

` Bp¨q
Bp̃D1

I
pXjq

Bp̃D1
I

pXjq
BD1

I

“ cij ¨
˜
p̃D1

I
pXiq

Bp̃D1
I

pXjq
BD1

I

` p̃D1
I

pXjq
Bp̃D1

I
pXiq

BD1
I

¸
,

(19)

where cij “ ´Ai,j

1`e
Ai,j p̃D1

I
pXiqT p̃D1

I
pXiq . It is worth mentioning that

the summation from both Xi and Xj parts is because we tie the
parameters of each image module within the image-image sub-
network (symmetric to pairwise inputs). Moreover, the gradient
Bp̃D1

I
pXiq

BD1
I

and
Bp̃D1

I
pXjq

BD1
I

are dependent only on the structure of the
deep neural network. In other words, once the deep architecture
has been fixed, their gradients are automatically defined. Further-
more, for each input text pair, the gradient is similar but changing
the input and network parameters in equation (19) to that of the
corresponding text case.

We can see that image-image inputs only contribute to learning
discriminative representations for image modules. On the other
hand, the cross-model inputs will affect the learning specific to both
image and text. Their gradients are shown respectively as follows:

Bp¨q
BD1

I

“
´Ai,j p̃D1

T
pzjq

1 ` e

Ai,j p̃D1
I

pXiqT p̃D1
T
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I
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I

, (20)

and

Bp¨q
BD1

T

“
´Ai,j p̃D1

I
pXiq

1 ` e

Ai,j p̃D1
I

pXiqT p̃D1
T

pzjq ¨
Bp̃D1

I
pziq

BD1
T

. (21)

4.4 Discussion
The trained deep neural network assigns different types of data

to some points in a unified space so that similarities can be directly
compared. So far, we have shown the proposed embedding scheme
for heterogeneous networks with only two object types: text and
images. While these two types are a natural representative in many
real settings, it is conceivable to expect more than two types of
inputs. The proposed methods can be easily extended to handle
multiple input types by considering an individual deep module for
each type of data. Then, the objective function in equation (17)
will consider all possible pairs of input types. If there are |O| input
types, the new objective will contain |O| ` `|O|

2

˘
object types.

Because deep learning is highly nonlinear and non-convex, glob-
ally optimal convergence is not assured. The initialization of pa-
rameters are crucial to the final performance. The literature has
shown that well-designed pre-training can significantly improve fi-
nal performances even when the final task is different than the pre-
training task. It is worth mentioning that the proposed embedding
method is unsupervised and can be used as pre-training step for any
further fine-tuning. In other words, if we want to classify network
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Figure 6: Linkage structures between 500 randomly selected nodes
in the BlogCatalog dataset. The node color indicates the label of
each node.

Table 1: Detailed statistics of the BlogCatalog dataset.
Statistics

Number of nodes 5196
Number of links 171,743
Number of classes 6
Content dimensionality 8189
Balanced classes yes

nodes, we can either obtain final features from the embedding layer
and apply off-the-shelf machine learning algorithms or we can re-
place the prediction layer to a soft-max layer, and then fine-tune the
entire deep network to a task-specific one.

5. EXPERIMENTAL RESULTS
In this section, we evaluate our proposed algorithm on several

real-world datasets for both homogeneous and heterogeneous set-
tings. The experimental results show evidence of significant im-
provement over many conventional baselines.

5.1 Datasets and Experiment Settings
We use two publicly available datasets from real-world social

sites. The first one is BlogCatalog which is used in [42] to select
features in linked social media data. The second one is a heteroge-
neous dataset, which is referred to as NUS-WIDE [5]. This dataset
contains both images and text. All experiment results are averaged
over five different runs. The detailed descriptions and statistics for
both datasets are provided below.
‚ BlogCatalog [42]: It is a social blogging site where registered

users are able to categorize their blogs under predefined classes.
Such categorizations are used to define class labels, whereas
“following” behaviors are used to construct linkages between
users. The TF-IDF features are extracted from blogs as a vec-
tor representation of each individual user. Thus, blog users are
represented as different nodes of the constructed networks asso-
ciated with content features. It is worth mentioning that, the user
blogging networks is undirected, where the co-following and co-
followed relationships are the same. Some detailed statistics are
summarized in Table 1.

‚ NUS-WIDE [5]: The dataset was originally collected by the Lab
for Media Search in the National University of Singapore in the
year 2009. The dataset includes 269,648 unique images with
associate tags from Flickr. The total number of tags is 5,018.
Additionally, there are 81 groundtruth attribute labels on each
image and tag. Since the original dataset injected many “noise”
samples that did not originally belong to any of the 81 concepts,
these samples were removed. Moreover, we used the most fre-
quent 1,000 tags as text documents and extracted their TF-IDF
features. We further removed those image-text pairs that did not
contain any considered words. Finally, we randomly sampled
53,844 and 36,352 image-text pairs for training and testing, re-
spectively. We constructed a heterogeneous network as the input
of our proposed framework by treating images and text as sep-

Figure 7: The Linkage reconstruction rate on the BlogCatalog.

arate nodes. In total, the training network contained 107,688
nodes while the testing network had 72,704. The semantic link-
ages between two nodes are initially constructed if they share
at least one concept. We then random sample at most 30 links
per node to construct the sparse matrix A . It is worth men-
tioning that we only evaluate our framework in an out-of-sample
manner. In other words, we ensure the training information ab-
solutely does not appear in any of the testing cases.

5.2 Network Reconstructions
Before proceeding to evaluate the proposed method in the task

of classification, clustering or retrieval, we will first provide a basic
and intuitive evaluation of the quality of network linkage recon-
struction to validate our assumptions. Since the goal of the pro-
posed formulation in equation (17) is that a good latent embedding
brings objects with links closer while it pushes objects without link-
age structures further, the ideal performance of the learned model
can reach perfect network linkage reconstructions using equation
(4). We first visualize the network linkage structure of the Blog-
Catalog dataset by randomly selecting 500 nodes and plotting their
connectivities in figure 6. The color of each node indicates its class.
As we can see, the social “following” relationships tend to connect
users with similar attributes, at least from a relative point of view.
On the other hand, they are noisy from an absolute point of view, in
which 59.89% of links in the entire dataset connect to nodes with
different classes.

We apply the proposed algorithm to learn an embedding func-
tion while monitoring the link reconstruction accuracy as shown
in figure 7. The stochastic learning is conducted by randomly se-
lecting 128 pairs of nodes to use as a mini-batch. The horizontal
axis indicates the index of the epoch. And each epoch contains 500
mini-batches. On average, each mini-batch can be trained in less
than 0.15 seconds on a single Nvidia Tesla K40 GPU. In figure 7,
the reconstruction performance on each mini-batch is recorded, and
the line indicates the median filtered values. As more samples have
been viewed by the deep HNE learner, it is able to correctly recon-
struct more than 80% of the pairwise connections as compared to
the initial number of 55%. Similarities propagate through sparse
links across the whole network to obtain a global consistency.

5.3 BlogCatalog
In this section, we evaluate the performance of the HNE frame-

work and compare it with state-of-the-art algorithms in various
tasks in the field of data mining and Web search.

5.3.1 Classification
To demonstrate the effectiveness of the representation provided

by HNE , we compare our learned features with those of other
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Figure 8: The classification accuracies among different methods
under various size of training sets.

feature learning methods, while keeping the classification scheme
fixed. The other baseline representations are as follows:
‚ Content: Only the content feature from the original space.
‚ Links: We treat the adjacency structures as the features.
‚ Link-content: We combine features from the previous two.
‚ LUFS [42]: Unsupervised feature selection framework for linked

social media data considering both content and links.
‚ LCMF [50]: A matrix co-factorization method that utilizes both

linkage structure and content features.
To ensure a fair comparison, we used the same representation di-
mensionality and used the standard Nearest Neighbor (NN) classi-
fier. In other words, the number of latent factors for LCMF is set to
be the same as our output dimensionality and the first three meth-
ods are projected to a low-dimensional space using the Principal
Component Analysis.

The average classification accuracies for the BlogCatalog dataset
are shown in figure 8, with the output dimensionality fixed to 100.
As shown, the proposed HNE method consistently outperforms to
other baselines under different training set sizes. This is because the
network linkage information encodes useful insights for learning a
low-dimensional embedding space by bridging linked nodes.

The rightmost bar under each setting is achieved by treating la-
tent embedding learning as a pre-training step and fine-tuning the
entire deep network by replacing the loss layer with a multi-class
soft-max layer. It shows that the unsupervised latent spacing learn-
ing provides very good initializations for the supervised classifica-
tion task using deep architectures and also shows that we can also
achieve much higher accuracies.

5.3.2 Clustering
We also compared different feature representations under the

clustering task. Compared to classification, clustering is totally un-
supervised, and it heavily relies on the similarity measure between
different objects. We adopted the commonly used cosine similarity.
The results are reported in table 2 using both accuracy and normal-
ized mutual information (NMI) as evaluation metrics.

The results are similar to those for the classification task. Using
only links provides the worst results. This may be because, with-
out global content information, the similarity measurements tend
to be local and sensitive to noisy links. On the other hand, content
similarities alone are insufficient to capture the relational knowl-
edge. Therefore, a naive combination of the links and content pro-
vides comparable performance with other baselines. The proposed
method of jointly learning the embedded space outperforms other
baselines and achieves the state-of-the-art.

Table 2: The clustering result for BlogCatalog dataset.
Methods Accuracy NMI
content 49.06 % 0.3192

link 40.76 % 0.2482
content-link 51.69 % 0.3457

LUFS 49.88 % 0.3221
LCMF 53.91 % 0.3678
HNE 62.37 % 0.4388

5.4 NUS-WIDE
Compared to the BlogCatalog dataset, the NUS-WIDE dataset

forms a heterogeneous network that contains both images and text.
We illustrate the performance of our framework for the task of clas-
sification and cross-modal retrieval in the following subsections.
Note that the latter application is not possible in the homogeneous
scenario of the previous dataset.

5.4.1 Heterogeneous Classifications
Given the heterogeneous scenario of this dataset, we compared

our proposed method to a different set of unsupervised baselines
that can specifically handle multimodal data inputs:
‚ CCA: The Canonical Correlation Analysis embeds two types of

input sources into a common latent space by optimizing with
respect to their correlations.

‚ DT [33]: A transfer learning method is used to bridge semantic
distances between image and text by latent embeddings.

‚ LHNE: The linear version of HNE solves the optimization func-
tion in equation (7).

Since our proposed method is an end-to-end learning framework,
it does not require feature extraction for image inputs. We extract
4096-dimensional Cuda-convnet [18] features for all other baseline
methods. The output (data in the common space) dimensionality
is set to 400. Since the NUS-WIDE dataset is multi-label with
unbalanced classes, we use the average precision (AP) to evalu-
ate the classification performance for each possible label outcome.
AP uses precision-recall curves for algorithmic quantification for
each label. These curves are used to obtain the mean average pre-
cision (mAP). The mAP in multi-label classification domains is the
standard metric which is widely used in PASCAL challenges [8]
in computer vision communities. To ensure fair comparison, we
use linear support vector machines (SVM) as a common classifica-
tion algorithm for all algorithms. The reason of using SVM is that
calculating AP requires probabilistic interpreted confidence scores,
which is inconvenient to obtain from NN classifiers.

The classification results are illustrated in table 4, which contains
three different settings. The “image only” setting means that we
learn embedding functions from the heterogeneous training set, and
then train an SVM, and test classification performance on image
nodes. Under the “Image + text” setting, we consider all objects in
the testing network. We observe that, for all methods, categorizing
text documents only is the most difficult task. This may be because
of the fact that the input text is sparse compared to images. More-
over, without the deep training, the linear version of our proposed
method obtains comparable results as DT which outperforms CCA.
The deep architecture HNE improves the performance further un-
der all three different settings, which demonstrates the advantage of
jointly optimizing the feature learning and latent embedding with
nonlinear functions.

5.4.2 Multimodal Search
To further demonstrate that the learned features can be leveraged

with many data mining and web search tasks, we compared our
proposed method with the aforementioned baselines in the task of
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Table 3: Some cross-model retrieval results of the proposed HNE method.

Query rank 1 rank 2 rank 3 rank 4 rank 5

Mountain

Sunset

Cow

Leaf

Table 4: The classification result in terms of mAP (mean average
precision) for the NUS-WIDE dataset.

Sample CCA DT LHNE HNE
Image only 51.96 % 52.07 % 53.16 % 54.28 %
Text only 51.37 % 51.88 % 51.34 % 52.76 %

Image + Text 52.54 % 53.22 % 53.32 % 54.99 %

Table 5: The cross-modal retrieval result (p@k) for the NUS-WIDE
dataset.

Method rank 1 rank 5 rank 10 rank 20
CCA 21.05 % 16.84 % 18.95 % 18.68 %
DT 20.53 % 25.26 % 22.63 % 22.37 %

LHNE 26.32 % 21.05 % 21.02 % 22.27 %
HNE 36.84 % 29.47 % 27.89 % 26.32 %

cross-modal retrieval. Among all 81 labels, about 75 of them ap-
pear in the TF-IDF text vector. We manually constructed 75 query
vectors in the original 1000-dimensional text domain by setting the
corresponding label entries to one and the remaining to zero. Using
the learned embedding function, we projected these query vectors
to the common latent space to retrieve all image samples in the test
set using the standard Euclidean distance.

The average precision at rank k (p@k) over all queries is re-
ported in table 5. We observe consistent results as other tasks, and
the proposed method significantly outperforms other baselines. Ta-
ble 3 illustrates some sample retrieval results. For the query “moun-
tain”, the third retrieved result is incorrect. This might due to the
extreme visual similarities between the other mountain images and
the one with a cow. The retrieval results for the query “cow” is not
as good as the others. The first five returned images contain three
deer. This is because these images have multiple labels and are
connected by the concept “animal”. Since our method as well as
the ranking functions are totally unsupervised, these links between
“deer” and “cow” objects confuse our embedding learning. We ex-
pect performance gains by using supervised ranking methods.

5.5 Convergence
In this section, we examine the convergence of the HNE algo-

rithm. For illustrative purposes, we demonstrate the value of objec-

Figure 9: The objective convergence study of proposed method in
the BlogCatalog dataset.

tive function changes for the BlogCatalog dataset in figure 9. The
X-axis is same as the one used in figure 7. As shown in the graph,
the objective value continuously decreases in the first 60 epochs
and then stabilizes. This result shows that that the algorithm usu-
ally converges to a stable result in practice.

6. CONCLUSION
In this paper, we proposed a novel embedding scheme in the

field of network science. This approach transfers different objects
in heterogeneous networks to unified vector representations. The
proposed method jointly considers contents and topological struc-
tures in networks for creating the embedding. We use deep learning
techniques to capture the complex interactions between heteroge-
neous components. Such a highly nonlinear multi-layered embed-
ding architecture is robust, scalable and beneficial to many data
mining and Web search applications. Furthermore, the approach
has generic applicability because a robust feature representation is
useful in many tasks. The experimental studies show that the pro-
posed method significantly outperforms conventional baselines in
various settings.
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