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ABSTRACT
In this paper, we study the problem of author identification in big
scholarly data, which is to effectively rank potential authors for each
anonymous paper by using historical data. Most of the existing de-
anonymization approaches predict relevance score of paper-author
pair via feature engineering, which is not only time and storage
consuming, but also introduces irrelevant and redundant features
or miss important attributes. Representation learning can automate
the feature generation process by learning node embeddings in
academic network to infer the correlation of paper-author pair.
However, the learned embeddings are often for general purpose (in-
dependent of the specific task), or based on network structure only
(without considering the node content). To address these issues and
make a further progress in solving the author identification prob-
lem, we propose Camel, a content-aware and meta-path augmented
metric learning model. Specifically, first, the directly correlated
paper-author pairs are modeled based on distance metric learn-
ing by introducing a push loss function. Next, the paper content
embedding encoded by the gated recurrent neural network is inte-
grated into the distance loss. Moreover, the historical bibliographic
data of papers is utilized to construct an academic heterogeneous
network, wherein a meta-path guided walk integrative learning
module based on the task-dependent and content-aware Skipgram
model is designed to formulate the correlations between each paper
and its indirect author neighbors, and further augments the model.
Extensive experiments demonstrate that Camel outperforms the
state-of-the-art baselines. It achieves an average improvement of
6.3% over the best baseline method.
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1 INTRODUCTION
With the fast growth of academic data collections by various online
services such as Google Scholar, Microsoft Academic and AMiner,
big scholarly data mining problems have gained a lot of attention in
the past decade. Typical examples include scientific impact model-
ing and prediction [4, 23, 24, 31], academic heterogeneous network
analysis [12, 25, 26], personalized recommendation [8, 17, 21].

In this paper, we consider the problem of author identification for
each anonymous paper in big scholarly data, which was proposed
and briefly investigated in [9], and has been further studied in
recent works [1, 19]. Specifically, as illustration in Figure 1, given an
anonymous paper with content/attributes (e.g., abstract), we would
like to design a machine learning model to predict the potential
authors of this paper by using the historical data. Solutions of the
problem bring broad implications to the academic community. Let’s
take the double-blind review process in many conferences (e.g.,
WWW 2018) as an example. Although the authors of the paper
under double-blind review process are invisible to the reviewers,
they sometimes can still be unveiled by the paper content. Thus
our work can serve as a study for helping existing review systems
to answer the question that whether or not double-blind review
process is really effective [1, 29]. In addition, the proposed model
can infer for each query paper the potential authors, which can be
useful for general information retrieval or recommender system
design such as reviewer recommendation [16, 30].

To solve the author identification problem, supervised leaning
models have been applied to predict the correlation between paper
and author, such as the ones used in the top solutions [5, 15, 35]
of 2013 KDD Cup author-paper pair identification challenge and
the multimodal approach in [19]. However, these methods heavily
rely on time consuming and storage intensive feature engineer-
ing, which may extract irrelevant and redundant features or miss
important features. In the past few years, a number of network
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abstract
potential authors

learning model

historical data
Figure 1: Illustration of author identification problem.

embedding models [3, 6, 20, 27] have been proposed to automat-
ically learn node representations that can be further utilized in
various academic mining tasks such as paper-author correlation in-
ference and similar authors/venues search. Although the proximity
among nodes is preserved by dense vectors, these methods learn
general purpose embeddings that are independent of task and not
suitable for the specific problem. To address this drawback, Chen
et al. proposed HetNetE [1], a task-guided heterogeneous network
embedding model, which outperforms the existing baselines. How-
ever, HetNetE mainly uses network structure and ignores semantic
content of paper. In addition, it searches correlations among all
kind of nodes (such as paper, reference and venue) for optimization.

To address above issues and make a further progress in solving
the author identification problem, we develop Camel, a content-
aware and meta-path augmented metric learning model. First,
we model the historical data of direct paper-author relations via
distance metric learning according to the specific task. Next, we
introduce the gated recurrent units to encode paper content and
integrate the semantic embedding into the metric learning model.
Moreover, we use the historical bibliographic data of papers to
construct academic heterogeneous network, wherein we further
design a learning module to augment the model. The augmented
module employs meta-path walks to capture correlations between
each paper and its indirect author neighbors and further formulate
them via a task-dependent and content-aware Skipgram model.
Finally, a sampling based mini-batch gradient descent algorithm is
designed to infer model parameters.

To summarize, the main contributions of our work are:
• We develop amodel, i.e., Camel, to solve the author identification
problem. Camel performs joint optimization of content encoder
based distance metric learning and Skipgram model based meta-
path walk integrative learning.
• We design the corresponding optimization strategy and training
algorithm for Camel. The learned model only needs partial con-
tent (i.e., abstract) of the target paper as the input and effectively
predict the authors for each new paper in big scholarly data.
• We conduct extensive evaluations and analytical experiments
to show the effectiveness of Camel on the well known AMiner
dataset. The results demonstrate that our method outperforms
a number of baseline methods and achieves a 6.3% average im-
provement over the best baseline.

2 PROBLEM DEFINITION
In this section, we first introduce the concepts of heterogeneous net-
works and meta-path, then formally define the author identification
problem in big scholarly data.

author (A) paper (P)organization (O) venue (V)

(a) (b)

(APA)

(APVPA)

Figure 2: Illustrations of (a) academic heterogeneous net-
work and (b) meta-path schemes.

Definition 2.1. (Heterogeneous Networks) A heterogeneous
network (HetNet) [26] is defined as a network G = (V ,E,OV ,RE )
with multiple types of nodes V and links E. OV and RE represent
the sets of objects and relation types. Each node v ∈ V and each
link e ∈ E are associated with a node type mapping functionψv :
V → OV and a link type mapping functionψe : E → RE .

The academic network in big scholarly data can be seen as a
HetNet, as shown in Figure 2(a). The set of node types OV in the
network includes organization (O), author (A), paper (P) and venue
(V), and the set of link types RE includes author-write-paper, author-
affiliate-organization, paper-cite-paper, paper-publish-venue.

Definition 2.2. (Meta-path) Ameta-path [25] inG = (V ,E,OV ,RE )

is defined in the form of o1
r1
→ o2

r2
→ · · ·

rm−1
→ om , where oi ∈ OV ,

ri ∈ RE and r = r1∗r2 · · ·∗rm−1 represents a compositional relation
between relation types r1 and rm−1.

For example, in Figure 2(b), a meta-path “APA” extracted from
HetNet denotes the coauthor relationship on a paper between two
authors, and “APVPA” represents two authors publish papers in the
same venue.

Definition 2.3. (Author Identification Problem) Given a set of
previous papers I<T published before timestamp T , accompanying
with bibliographic information (i.e., authors, abstract content, refer-
ences and venue), the task is to rank all potential authors u ∈ U (U :
set of all authors) for each new anonymous paper v ∈ I≥T (I≥T : set
of papers published in or after T ), such that its top ranked authors
are true authors of v .

3 PROPOSED MODEL
We present the content-aware metric learning model for solving the
problem and use historical bibliographic data to construct HetNet
for modeling multiple indirect paper-author relations captured by
meta-path walks, which benefits and augments the model.

3.1 Metric Learning with Gated Recurrent
Neural Network

We denote each paper v ∈ I<T as embedding Ev ∈ Rd (d : dimen-
sion of embedding) via a content encoder f : Ev = f (pv ), where pv
denotes the word sequence of the paper abstract. Besides, feature
vector qu ∈ Rd is used to represent each author u ∈ U . Consid-
ering distance metric [32] satisfies better triangle inequality and
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Figure 3: Illustrations of (a) paper content encoder based on
gated recurrent neural network and (b) metric learning pro-
cess for author identification.

transition property than inner-product, as demonstrated by CML
[11], we introduce the following push loss function to formulate
triple relations (v,u,u ′):

LMetr ic =
∑

v ∈I<T

∑
u ∈lv

∑
u′<lv

[
ξ + dist (v,u)2 − dist (v,u ′)2

]

+
(1)

where lv denotes the set of true authors of paperv , {x }+ =max (x ,0)
is a standard hinge loss and ξ is a safety margin size. The distance
metric dist (v,u) between paper v and author u is defined as eu-
clidean distance of feature representation:

dist (v,u) = | |Ev − qu | | = | | f (pv ) − qu | | (2)

Hence, minimizing LMetr ic obeys paper v’s relative distances to
different (true/false) authors.

To encode paper abstract content to fixed length embeddings E ∈
R |I |×d (I : set of all papers), we introduce the gated recurrent units
(GRU), a specific type of recurrent neural network, which has been
widely adopted for many applications such as machine translation
[2]. Figure 3(a) gives the illustration of paper content encoder. To
be more specific, a paper is represented as a sequence of words:
{w1,w2, · · · ,wtmax }, followed by the word embeddings sequence:
{x1,x2, · · · ,xtmax } trained by word2vec [18], where tmax is the
maximum length of paper abstract. For each step t with the input
word embedding xt and previous hidden state vector ht−1, the
current hidden state vector ht is updated by ht = GRU(xt ,ht−1),
where the GRU module is defined as:

zt = σ (Azxt + Bzht−1)

rt = σ (Ar xt + Br ht−1)

ĥt = tanh[Ahxt + Bh (rt ◦ ht−1)]

ht = zt ◦ ht−1 + (1 − zt ) ◦ ĥt

(3)

where σ is the sigmoid function, A and B are parameter matrices
of GRU network, operator ◦ denotes element-wise multiplication,
zt and rt are update gate vector and reset gate vector, respectively.
The GRU network encodes word embeddings to deep semantic
embeddings h ∈ Rtmax×d , which is concatenated by amean pooling
layer to obtain the general semantic embedding of each paper. All
of these steps construct the paper content encoder f . We have also
explored other encoding architectures such as LSTM and achieved
the similar result, as the discussion in Section 4.3.2.

According to LMetr ic , the target neighbors of each paper are its
true authors and the model incorporates semantic information of
papers via GRU based content encoder. To infer model’s parameters,
we can minimize LMetr ic via gradient descent approach. For true
authors of a given paper, gradients of loss function pull them inward
to create a smaller radius. As for the false authors, gradients push
them outward until they are out of the perimeter by a safety margin.
Illustration of such process is shown in Figure 3(b). Thereafter the
learned encoder f for inferring the semantic embedding of each
future paper v ∈ I≥T and the optimized author latent features
can be utilized to rank all potential authors for v according to the
relevance score (e.g., the inner product of embedding) between
paper and author. The learned model only needs abstract content
of the target paper as the input for prediction since f and author
latent features are optimized by using historical training data.

3.2 Model Augmentation via Meta-path Walk
Integrative Learning

In Section 3.1, LMetr ic essentially models direct triple relations,
i.e., (v,u,u ′) - (paper-true author-false author), for each paper v ∈
I<T . However, there are multiple indirect relations between paper
and author, which can be inferred from the HetNet of previous
papers’ bibliographic data and beneficial to the model. Hence, we
aim to further augment the content encoder based metric learning
by enforcing the smoothness of representation among indirectly
correlated paper-author neighbors on the academic HetNet.

3.2.1 Meta-pathWalks. Althoughwe can naturally take random
walk on HetNet to capture indirect paper-author relations, as did
in Deepwalk [20] and node2vec [6], such random walks are biased
on highly visible types of nodes and concentrated nodes, as demon-
strated by metapath2vec [3]. Thus we apply meta-path walks to
capture indirect correlations between paper and author. Specifically,
given a meta-path P ≡

{
o1

r1
→ o2

r2
→ · · ·oi

ri
→ oi+1 · · ·

rm−1
→ om

}
on

the academic HetNet G = (V ,E,OV ,RE ), the transition probability
of walk at step t is defined as:

p (vt+1 |vti ,P) =




1
|Ni+1 (v ti ) |

(vt+1,vti ) ∈ E, ψ (v
t+1) = i + 1

0 (vt+1,vti ) ∈ E, ψ (v
t+1) , i + 1

0 (vt+1,vti ) < E
(4)

where vti ∈ oi and Ni+1 (vti ) denotes the set of the oi+1 type of
neighborhood of node vti , which guarantees that vt+1 ∈ oi+1 and
the flow of walk is conditioned on P. In addition, we use symmetric
meta-path whose first node type o1 is the same as the last one om .
Each randomwalk guided byP recursively samples nodes sequence
until it meets the fixed length, leading to its ability in capturing
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Figure 4: Illustration of the joint representation learning
model with metric learning for formulating direct paper-
author relations and meta-path walk integrative learning
for modeling indirect paper-author correlations.

both direct correlations and indirectly transitive relations between
paper and author within the walk of setting P, as illustrated by
Figure 4. In this figure, we take walk wo ≡

{
· · · → A1 → P2 →

A3 → P4 → A4 → · · ·
}
guided by P ≡

{
A

write
→ P

write−1
→ A

}

as an example. Besides the direct paper-author connections, e.g.,
A1 writes P2 or A4 writes P4, wo also captures indirect relations.
For example, A1 may pay attention to P4 since s/he collaborates
withA3 on P2. Therefore, multiple useful indirect relations between
paper and author will be inferred if we generate plenty of walks
guided by different meta-path schemes and collect the surrounding
author context of each paper node within each walk.

3.2.2 Smoothness Constraint as Task-dependent and Content-
aware Skipgram Model. To formulate indirect paper-author rela-
tions within each walk and force the corresponding smoothness
of representation, we design a meta-path guided walk integrative
learning module (MWIL) based on the Skipgram model [18], which
has been widely adopted in recent works [3, 6, 20, 34] for represen-
tation learning on networks. Specifically, given a set of collected
walksWP under the guidance of meta-path P, the loss for predict-
ing indirectly correlated author u of paper v is defined as:

LPMW IL = −
∑

w ∈WP

∑
v ∈w

∑
u ∈w [Iv−τ :Iv+τ ]

u<lv

logp (u |v,P)
(5)

where τ is the window size of surrounding context and Iv indicates
the position of v in walkw . The likelihood probability p (u |v,P) is
defined as content-aware Softmax function:

p (u |v,P) =
exp

[
f (pv )qu

]

∑
u′∈CP exp

[
f (pv )qu′

] (6)

where f is the content encoder defined in Section 3.1, CP denotes
the set of all authors in corpusWP . To train the Skipgrammodel, we
apply the popular negative sampling approach [18] to approximate
the intractable normalization:

logp (u |v,P) ≈ logσ
[
f (pv )qu

]
+

k∑
i=1
Eu′∼PP (u′)

{
logσ

[
− f (pv )qu′

]}
(7)

where σ is the sigmoid function, u ′ is the negative author node
sampled from a pre-defined noise distribution PP (u

′) [18] inCP , k
is the number of negative samples. In our case, k makes little impact
on the performance of propose model. Thus we choose k = 1 and
logp (u |v,P) is degenerated to the cross entropy loss of classifying
pair (u,u ′) for v :

− logp (u |v,P) = − logσ
[
f (pv )qu

]
− logσ

[
− f (pv )qu′

]
(8)

That is, for each positive author u of paper v within walk w , we
sample a negative author u ′ from CP according to PP (u ′).

Comparing to the objective function ofmetapath2vec [3],LPMW IL
has three main differences:
• It forces task-dependent smoothness constraint between paper
and its indirectly correlated author neighbors but not among all
kind of neighbor pairs for general purpose.
• The likelihood probability for predicting surrounding context
is degenerated to cross entropy loss of classifying the posi-
tive/negative authors for each paper.
• More importantly, the paper representations are encoded byGRU
content encoder f for integrating paper semantic information
into model.

3.3 Joint Model Inference
The objective function of joint model is defined as the combination
of LMetr ic and LPMW IL :

LJoint = LMetr ic + γ
∑
P∈S (P)

LPMW IL + λLr eд (9)

where S (P) denotes all meta-path schemes, Lr eд is the regulariza-
tion term for avoiding over-fitting, parameter λ controls penalty of
regularization,γ is a trade-off factor betweenLMetr ic andLPMW IL .
We denote all model parameters including the GRU network coeffi-
cients of paper content encoder and the author latent features as Θ.
Let TMetr ic and T PMW IL be the sets of (v,u,u ′) triples in LMetr ic

and (v,u,u ′) triples in LPMW IL , respectively. Thereafter we can
rewrite LJoint as:

LJoint =
∑

(v,u,u′)∈TMetr ic

[
ξ + | | f (pv ) − qu | |2 − || f (pv ) − qu′ | |2

]

+

+ γ
∑
P∈S (P)

∑
(v,u,u′)∈T PMW IL

−

{
logσ

[
f (pv )qu

]
+ logσ

[
− f (pv )qu′

]}
+ λ ∥Θ∥2

(10)

To minimize LJoint , we design a sampling based mini-batch Adam
optimizer [13]. The pseudocode of learning algorithm is summa-
rized in Algorithm 1. The proposed model performs joint optimiza-
tion of content encoder based metric learning and meta-path walk
integrative learning thus we name it content-aware andmeta-path
augmented metric learning (Camel).

4 EXPERIMENTS
In this section, we conduct extensive evaluations and analytical
experiments to compare Camel with various baselines. Case studies
are also provided to show performance differences of different
methods.
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Algorithm 1: Learninд Framework of Camel

input :TMetr ic in training data, T PMW IL extracted by
meta-path walks on the academic HetNet

output : author latent features q, GRU encoder matrices A and
B (for generating paper embeddings f (p))

1 while not converged do
2 sample a batch of (v,u,u ′) in TMetr ic ;
3 for P ∈ S (P) do
4 sample a batch of (v,u,u ′) in T PMW IL ;
5 end
6 accumulate the loss by Equation (10);
7 update the parameters by Adam;
8 end

Table 1: Statistics of datasets used in this paper.

Statistics AMiner-Top AMiner-Full

# authors 28,646 571,563
# papers 21,044 483,319
# venues 18 492
# citations 245,420 3,154,421

ave. # authors per paper 3.294 3.087

4.1 Experimental Design
4.1.1 Dataset. AMiner [28] is a well known platform for aca-

demic search and mining, which contains millions of author and
paper information from major computer science venues for more
than 50 years. We utilize the AMiner dataset1 of 10 years from 2006
to 2015, and remove the papers published in venues (e.g., work-
shop) with limited publications and the instances without semantic
content (i.e., abstract). In addition, considering most of researchers
pay attention to papers published in top venues and each research
area has its own community, we extract one more subset data of
six domains according to Google Scholar Metrics, namely Artificial
Intelligence (AI), Data Mining (DM), Databases (DB), Information
System (IS), Computer Vision (CV) and Computational Linguistics
(CL). For each domain, we choose three top venues2 that are consid-
ered to have influential papers. The main statistics of two datasets
(AMiner-Top and AMiner-Full) are summarized in Table 1.

4.1.2 Baseline Methods. We consider nine baseline methods
that span four types: (1) citation-based matching, (2) feature en-
gineering based supervised learning, (3) pairwise ranking with
content embedding and (4) heterogeneous network embedding.
• Citation-based matching. The approach was proposed in [9]
and represents each paper and author by citation-based vector,
and further matches potential authors for each query paper
according to the vector similarity (VecS).
• Feature engineering based supervised learning. Such ap-
proaches have been utilized in top solutions [5, 15, 35] for 2013
KDD Cup challenge. It first extracts both author features and

1https://aminer.org/citation
2AI: ICML, AAAI, IJCAI. DM: KDD, WSDM, ICDM. DB: SIGMOD, VLDB, ICDE. IS: WWW, SIGIR,
CIKM. CV: CVPR, ICCV, ECCV. CL: ACL, EMNLP, NAACL.

Table 2: Selected features of supervised learning baselines.

No. Feature description

1 paper number of the author
2 distinct venue number of the author
3 number of the paper’s references being cited by the author before
4 ratio of the paper’s references being cited by the author before
5 ratio of the author’s citations in the paper’s references
6 number of paper’s references in the author’s previous publications
7 ratio of the paper’s references in the author’s previous papers
8 ratio of the author’s publications in the paper’s references
9 number of common keyword between author and paper
10 ratio of the author’s keywords in common keywords
11 ratio of the paper’s keywords in common keywords
12 whether the author attend the paper’s venue before
13 number of times the author attend the paper’s venue before
14 ratio of times the author attend the paper’s venue before
15 number of the author’s papers in 3 years before the paper’s time
16 ratio of the author’s papers in 3 years before the paper’s time

paper-author paired features, and then utilizes supervised learn-
ing algorithms to predict the correlation score of each paper-
author pair. Similar to HetNetE [1], we extract 16 kinds of fea-
tures (as reported in Table 2) based on AMiner data and select
Bayes Regression (BayesR), Random Forest (RandF) and Neural
Network (NeuN) as learning algorithms. In addition, an ensem-
ble approach (MultiM) of three algorithms is introduced for
comparison.
• Pairwise ranking with content embedding. Another possi-
bility to consider content information is to first encode each
paper content embedding via language modeling and then apply
pairwise ranking [22] (BPR, which utilizes the inner product
to measure paper-author correlation) to learn author latent fea-
tures. We apply two popular models Word2V [18] and Par2V
[14] to generate paper embeddings. In addition, the joint learn-
ing model (GRUBPR) of GRU [2] based content encoder and
BPR is also introduced for comparison. As Word2Vec generates
embedding of each word in content, we concatenate the output
with a mean pooling layer to obtain general embedding of each
paper. The learned feature representations of paper and author
are further utilized to predict the authors of each paper.
• Heterogeneousnetwork embedding.Wealso compare Camel
with a recent model HetNetE in [1], which optimizes feature
representations of author and paper via task-guided heteroge-
neous network embedding, and further applies them to identify
authors of each paper.

4.1.3 Evaluation Metrics. As illustrated in problem definition,
papers published before a given timestampT are treated as training
data and papers published in or after T (denoted as set I≥T ) are
left for evaluation. We use four popular metrics, i.e., Recall@k,
Precision@k, F1 score and AUC, to evaluate the performance of
each method.
• Recall@k. It shows the ratio of true authors being retrieved in
the top-k return list, which can be computed according to:

Rec@k =
1
|I≥T |

∑
v ∈I≥T

|l̂v
⋂
lv |

|lv |
(11)
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where lv and l̂v denote the sets of true authors of paper v and
top-k ranked authors by a specific method, respectively.
• Precision@k. It reflects the accuracy of top-k ranked authors
by a specific method and is defined as:

Pre@k =
1
|I≥T |

∑
v ∈I≥T

|l̂v
⋂
lv |

k
(12)

• F1 score. It balances the trade-off between precision and recall,
and is defined as the harmonic average of precision and recall:

F1 = 2 ·
precision · recall

precision + recall
(13)

• AUC. It measures the accuracy of pairwise orders between cor-
related and uncorrelated papers of each author, which is formu-
lated as:

AUC =
1
|I≥T |

∑
v ∈I≥T

1
|E (v ) |

∑
(u,u′)∈E (v )

δ (svu > svu′ ) (14)

where E (v ) ≡ {(u,u ′) |u ∈ lv ,u ′ < lv }.
For all evaluations, we set k = 10. A larger Recall@k, Precision@k,
F1 or AUC value means a better performance.

4.1.4 Experimental Settings. All information utilized for model
training such as triple samples in Camel or the selected features
in supervised learning baselines, are extracted from training data.
We design two different training/test splits by setting T = 2012 and
2013. Besides, there are three key settings of experiments:
• Parameters. The embedding dimension d is set to 128 and the
regularization parameter λ equals 0.001.We fix hinge loss margin
ξ = 0.1 for metric learning and window sizew = 6 for meta-path
walk augmentation. In addition, the trade-off factor γ of the joint
model equals 0.1.
• Meta-path selections. We empirically investigate the perfor-
mance of our model by greedily selecting and combining differ-
ent meta-path walks and find that “APA”, “APPA” and “APVPA”
are the most effective meta-path schemes. Notice that, “APA”
denotes collaboration relationship, “APPA” represents citation
link and “APVPA” indicates correlation in the same publication
venue. The set of node sequences capture multiple correlations
between paper and author under these meta-path settings.
• Evaluation candidates. It is time consuming and memory in-
tensive to extract and store features of all paper-author pairs
(which amounts to over 2.7 × 1011 pairs in AMiner-Full). The
supervised learning algorithms cannot scale up to such large
amount of data. Hence, we adopt the setting in HetNetE [1]
that randomly samples a set of negative authors and combines
it with the set of true authors to form a candidate set of total
100 authors for each paper. The reported results are averaged
over 10 experiments of such setting. For completeness, we also
conduct evaluation of different representation learning models
on the whole authors set.

4.2 Performance Comparison
The performances of all methods are reported in Table 3, where
the best results are highlighted in bold and the best baselines are
indicated by star notation. The last row of table reports the average
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Figure 5: Result comparisons on the whole authors set.
Camel significantly outperforms the others.

improvements (%) of Camel over different baselines. The main
takeaways from this table are summarized as follows:

• The pairwise ranking models with content embedding have bet-
ter average performances than the supervised learning baselines
with one algorithm (i.e., BayesR, RandF and NeuN), which sug-
gests that the feature representations generated by content em-
bedding are better for capturing the complicated paper-author
relations than the simple features extracted directly from data. In
addition, VecS achieves poor performance since there are some
missing citation information in AMiner data.
• HetNetE achieves better results than the supervised learning
methods and the pairwise ranking models with content em-
bedding, showing that the task-guided heterogeneous network
embedding model generates task-specific feature representa-
tions and performs better than the other two for the author
identification problem.
• Camel performs best in all experimental settings. The average
improvements of Camel over different baselines range from
6.3% to 158.7%, demonstrating the effectiveness of our proposed
model.

To make thorough evaluation, we also conduct comparison experi-
ment of Camel and two selected baselines (GRUBPR and HetNetE)
on the whole author candidate set of AMiner-Top dataset. The
results (in terms of Rec@100 and Rec@200) are shown in Figure
5. It can be seen that Camel significantly outperforms the other
two methods (with 39.8% and 28.0% average improvements, respec-
tively), which further shows the effectiveness of Camel.

4.3 Analysis and Discussion
The analytical experiments in this section are based on AMiner-Top
data, results in the other dataset reveal similar conclusion but are
omitted due to page limit.

4.3.1 Parameters Sensitivity. The hyper-parameters play impor-
tant roles in Camel, as they determine how themodel will be trained.
We conduct experiments to analyze the impacts of two key param-
eters, i.e., the window size τ of meta-path augmentation module
and the embedding (latent feature) dimension d of author and pa-
per. We investigate a specific parameter by changing its value and
fixing the others. The performances of Camel (in terms of Rec@10
and Pre@10) on various settings of τ and d are shown in Figure 6.
According to this figure:
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Table 3: Performance comparisons of different methods. The last row shows the average improvements (%) of Camel over
different baselines. HetNetE is the best baseline (indicated by star notation) and Camel has the best performances (highlighted
in bold) in all cases.

Dataset T Metric
citation feature engineering + content embedding + network our

supervised learning pairwise ranking embedding proposed

VecS BayesR RandF NeuN MultiM Word2V Par2V GRUBPR HetNetE Camel+ BPR + BPR

AMiner-Top

2012

Rec@10 0.2577 0.5790 0.6450 0.6388 0.6541 0.6671 0.6423 0.6580 0.6938* 0.7543
Pre@10 0.0636 0.1302 0.1462 0.1442 0.1496 0.1501 0.1454 0.1485 0.1532* 0.1682

F1 0.1020 0.2126 0.2384 0.2353 0.2435 0.2449 0.2371 0.2423 0.2510* 0.2750
AUC 0.6254 0.7835 0.7651 0.8132 0.8267 0.8947 0.8801 0.8815 0.8993* 0.9257

2013

Rec@10 0.3120 0.6070 0.6371 0.6506 0.6612 0.6478 0.6462 0.6612 0.6782* 0.7476
Pre@10 0.0853 0.1497 0.1576 0.1612 0.1628 0.1597 0.1593 0.1620 0.1653* 0.1838

F1 0.1339 0.2402 0.2528 0.2583 0.2613 0.2563 0.2556 0.2602 0.2658* 0.2951
AUC 0.6519 0.8091 0.8339 0.8456 0.8524 0.8872 0.8768 0.8849 0.8938* 0.9205

AMiner-Full

2012

Rec@10 0.2217 0.6994 0.6922 0.7217 0.7302 0.7478 0.7034 0.6842 0.8166* 0.8446
Pre@10 0.0518 0.1636 0.1634 0.1694 0.1735 0.1812 0.1663 0.1658 0.1904* 0.2021

F1 0.0839 0.2651 0.2644 0.2744 0.2804 0.2917 0.2690 0.2670 0.3088* 0.3249
AUC 0.6106 0.8497 0.8129 0.8697 0.8754 0.9204 0.9014 0.8809 0.9346* 0.9526

2013

Rec@10 0.2895 0.7176 0.6977 0.7226 0.7354 0.7612 0.7105 0.6874 0.8127* 0.8392
Pre@10 0.0736 0.1756 0.1719 0.1771 0.1803 0.1891 0.1751 0.1702 0.2065* 0.2197

F1 0.1173 0.2821 0.2758 0.2845 0.2895 0.3029 0.2810 0.2728 0.3293* 0.3482
AUC 0.6445 0.8592 0.8126 0.8628 0.8749 0.9256 0.8940 0.8752 0.9313* 0.9501

Ours v.s. baseline 158.65% 21.55% 19.15% 15.90% 13.83% 10.55% 15.12% 15.70% 6.28% –
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Figure 6: The impacts of window size τ and embedding dimension d on the performance of Camel. Camel achieves the best
result when τ is around 6 and d is around 128.

• With the increment of τ , Rec@10 and Pre@10 increase at first
since a larger window represents more useful indirect paper-
author correlations. But when τ goes beyond a certain value,
the performances decrease with the further increment of τ due
to the possible involvement of uncorrelated noise. The best τ is
around 6.
• Similar to τ , an appropriate value should be set for d such that
the best representations of author and paper are learned. The
optimal value of d is around 128.

Besides d and τ , we have also investigated the impacts of other
hyper-parameters such as regularization parameter λ, and revealed
the similar point. Therefore the certain settings of the hyper-parameters
result in the best performance of Camel.

4.3.2 Performances of Variant Proposed Models. Camel is a joint
representation learning model of content encoder based metric
learning and meta-path walk integrative learning. Whether each
learning component plays a role on the joint model? Howmeta-path

schemes impact the model’s performance? Whether the selection
of recurrent unit or correlation measurement has influence on the
model’s performance? To answer these questions, we conduct ex-
periments to evaluate the performances of variant proposed models
w.r.t. different analytical categories:
• Objective Function. The joint objective function LJoint con-
tains two main components: LMetr ic and LPMW IL . To shows
the effectiveness of meta-path walk integrative learning module,
we conduct evaluation for the model with only content encoder
based metric learning, i.e., LMetr ic , and report its performance
in Table 4 part (a). According to this result, we can find that
Camel significantly outperforms LMetr ic , showing the large
benefit of incorporating LPMW IL into the joint model.
• RandomWalk. We design a meta-path walk integrative learn-
ing module to augment the model. In order to show the larger
benefit of meta-path walk over random walk, we design the
joint learning model (Camel-RW) with random walk integrative
learning module and compare it to Camel. As the result shown
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Table 4: Performance comparisons of various proposed models w.r.t different analytical categories: (a) different components
of the objective function; (b) different choices of random walk; (c) selection of meta-path scheme for random walk sampling
and (d) selection of the recurrent unit for paper content encoder; (e) selection of paper-author correlation measurement.

Analytical Category Variant Proposed Models T = 2012 T = 2013

Rec@10 Pre@10 F1 AUC Rec@10 Pre@10 F1 AUC

(a) Objective Function LMetr ic 0.6856 0.1539 0.2514 0.8901 0.6695 0.1651 0.2649 0.8758

(b) Random Walk Camel-RW 0.7364 0.1656 0.2704 0.9186 0.7242 0.1787 0.2867 0.9132

(c) Meta-path Selection
Camel-APA 0.7122 0.1601 0.2613 0.8939 0.6841 0.1701 0.2725 0.8810
Camel-APPA 0.7371 0.1643 0.2687 0.9194 0.7226 0.1772 0.2847 0.9109
Camel-APVPA 0.7315 0.1622 0.2655 0.9209 0.7075 0.1727 0.2777 0.9099

(d) Recurrent Unit Selection Camel-LSTM 0.7538 0.1680 0.2749 0.9252 0.7472 0.1836 0.2948 0.9203

(e) Correlation Measurement GRUBPR 0.6580 0.1485 0.2423 0.8815 0.6612 0.1620 0.2602 0.8849

Camel 0.7543 0.1682 0.2750 0.9257 0.7476 0.1838 0.2951 0.9205

in Table 4 part (b), Camel has higher identification accuracy
than Camel-RW. Thus the meta-path walk is better than the
random walk for capturing indirect paper-author correlations
on academic HetNet.
• Meta-path Selection. In meta-path augmentation module, we
select three kinds of meta-path schemes: “APA”, “APPA” and
“APVPA”. To study the impacts of different meta-path schemes
on the model’s performance, we design three joint learning mod-
els, i.e., Camel-APA, Camel-APPA and Camel-APVPA, which
are augmented by “APA”, “APPA” and “APVPA” walk integra-
tive learning modules, respectively. The performances of three
models are reported in Table 4 part (c). We can observe that
Camel-APPA achieves relative better performance than the other
two, indicating that an author tends to have stronger correla-
tion/preference to his/her references than co-author’s papers
or papers published in the same venue. In addition, all of three
models have worse performance than Camel, demonstrating
that the combination of different meta-path schemes leads to
better performance.
• Recurrent Unit Selection. We select the GRU as the basic
recurrent unit for paper content encoder of Camel. Besides GRU,
there are various deep architectures constructed by different
recurrent units for sequence modeling, such as long short term
memory networks (LSTM). In order to test the influence of the
recurrent unit selection on model’s performance, we conduct
comparison experiment between Camel and the model with
LSTM (Camel-LSTM). According to the results shown in Table
4 part (d), Camel-LSTM and Camel have close performance. In
other words, the selection of GRU or LSTM has little impact on
the performance. We choose GRU since it has a more concise
structure than LSTM for reducing training time.
• Correlation Measurement. As illustrated in Section 3.1, we
use distance metric rather than inner-product to measure the
correlation between paper and author. To show the rationality of
such a choice, we compare the performances of the model with
LMetr ic and the baseline method GRUBPR since GRUBPR is a
joint learning model of GRU based content encoder and pairwise
ranking, which employs inner-product to measure paper-author
correlation. According to the result shown in Table 4 part (a)

and part (e), LMetr ic has better performance than GRUBPR in
most cases, demonstrating distance metric is better than inner-
product in measuring paper-author correlation for the author
identification problem.
To summarize, according to the above discussion: (1) the meta-

path walk integrative learning module brings large benefits to im-
prove the proposed model; (2) meta-path walk is better than random
walk for capturing indirect paper-author correlations on academic
HetNet; (3) “APPA” is the best meta-path scheme among the three,
while the combination of different meta-path schemes leads to
the best performance of model; (4) the choice of different recur-
rent unit has little influence on model’s performance; and (5) the
distance metric is better than inner-product for measuring direct
paper-author correlation.

4.4 Case Studies
We present two case studies on AMiner-Top dataset to show the
performance differences between Camel and two selected baselines,
i.e., GRUBPR and HetNetE, which achieve relative better perfor-
mances. Table 5 lists the top 10 ranked authors for two query papers
published inWWW2013 andWSDM 2013, respectively. For a better
comparison, we also provide the embedding visualizations3 of the
target papers and top authors ranked by different methods. Com-
paring to the authors set of a given paper, the number of whole
author set is much larger. Besides, there are many false authors
whose feature representations are quite similar to the true authors
of target paper. Thus many of the true authors may not be presented
in the top list. However, according to Table 5, Camel achieves 2/5
and 2/4 w.r.t. Rec@100 in two cases, and predicts true authors more
accurately than the other methods in top 10 lists, as shown by the
authors (i.e., J. Leskovec and Q. Mei) highlighted in red color. In
addition, the embeddings of top authors ranked by Camel cluster
closer to the embeddings of the target paper and its true authors
than those of HetNetE. We remove visualization result of GRUBPR
due to its scattered behavior. Therefore, our model generates more
accurate feature representations of paper and author, and achieves
better performance than the other methods.

3http://projector.tensorflow.org/
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Table 5: Top ranked authors for two query papers and the
corresponding embedding visualizations.

(1) (WWW 2013) No country for old members: User lifecycle and
linguistic change in online communities.

Ground-truth GRUBPR HetNetE Camel

C. Mizil P. Yu J. Han H. Liu
R. West L. Liu P. Yu Y. Koren
D. Jurafsky Q. Yang C. Faloutsos W. Li
J. Leskovec J. Yen L. Chen J. Leskovec
C. Potts G. Weikum D. Srivastava J. Renz

L. Chen Z. Chen L. Backstrom
W. Hsu H. Wang Q. Yang
N. Ramakrishnan R. White W. Fan
K. Visweswariah W. Croft L. Getoor
L. Li W. Wang X. Wang

Rec@100 1/5 1/5 2/5

target paper
W.	Li
Y.	KorenJ.	Leskovec

R.	West

C.	Mizil C.	Potts
D.	Jurafsky

H.	Liu	
W.	Fan

Q.	Yang

L.	Backstrom

L.	Getoor
J.	Renz R.	White

L.	Chen
C.	Faloutsos

J.	Han
P.	Yu

H.	Wang

W.	Wang
L.	Chen D.	Srivastava

W.	Croft

X.	Wang

Camel
Truth

HetNetE
Target

(2) (WSDM 2013) Towards Twitter context summarization with
user influence models.

Ground-truth GRUBPR HetNetE Camel

Y. Chang I. King J. Han Q. He
X. Wang D. P P. Yu A. Tomkins
Q. Mei S. Ma Z. Chen Q. Mei
Y. Liu C. Eickhoff Q. Yang H. Yamamoto

D. Ramage C. Zhai R. Agrawal
Y. Shen C. Faloutsos F. Bonchi
T. Sakaki W. Croft B. Davison
J. Tian W. Wang E. Agichtein
T. Hope T. Li G. Weikum
C. Yeung L. Chen X. Cheng

Rec@100 0/4 2/4 2/4

target paper
Y.	Chang

Q.	Mei

X.	Wang

Y.	Liu

Camel
Truth

HetNetE

A.	Tomkins
E.	Agichtein
G.	Weikum

Q.	He
B.	Davison

X.	Cheng
F.	Bonchi

R.	Agrawal

H.	Yamamoto

Z.	Chen

Q.	Yang
C.	Faloutsos

T.	Li
P.	Yu

J.	Han

C.	Zhai
W.	Croft

L.	Chen
W.	Wang

Target

5 RELATEDWORK
In the past few years, some works have devoted to paper-author
pair identification problem in big scholarly data, such as studies
in [9, 19] and various solutions in [5, 15, 35] for 2013 KDD Cup
author-paper identification challenge. Most of these works focused
on feature engineering and utilized supervised learning algorithms
to infer the correlation between paper and author. However, fea-
ture engineering is time consuming and storage intensive, and the
extracted features can be irrelevant, insufficient or redundant.

The representation learning models for networks have attracted
a lot of attention in recent years. Most of these models [6, 20, 27]
preserve the proximities among nodes by learning vectorized rep-
resentations. Some extended studies have been applied to various
applications in big scholarly data such as node classification [3, 7].
Unlike task-independent attribute of these methods, Chen et al. pro-
posed HetNetE [1], a task-guided heterogeneous network embed-
ding model. Comparing to the existing baselines, HetNetE achieves
better performance for author identification problem. Despite the
consideration of specific task for embedding generation, HetNetE
ignores paper content (e.g., abstract) that contains useful semantic
information and searches indirect correlations among all kind of
nodes for augmentation.

Besides paper-author identification and network embedding,
the loss function of our model for formulating direct paper-author
correlations is based on distancemetric learning [32, 33]. In addition,
we introduce word embedding models [14, 18] and gated recurrent
neural network [2, 10] to generate deep semantic embeddings of
paper. Moreover, the design of meta-path walk integrative learning
module is inspired by heterogeneous network analysis works [3,
25, 26] as well as the Skipgram model [18].

6 CONCLUSION
In this paper, we study the author identification problem in big
scholarly data, and design a representation learning model, i.e.,
Camel, to solve it. The model performs joint optimization of GRU
content encoder based metric learning and Skipgram model based
meta-path walk integrative learning. The extensive experiments on
the well known AMiner data demonstrate that Camel outperforms
a number of baselines. Detail discussions are also provided to show
the effectiveness of different components in Camel. Some poten-
tial future work includes: (1) the dynamics of author embeddings
should be considered for the task since authors keep publishing
new papers; (2) the attention-based RNN can be applied to generate
better semantic embeddings of paper.
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