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ABSTRACT
Network embedding is a method for converting nodes in a net-

work into low dimensional vectors, preserving its structure and the

similarities among the nodes. Embedding is widely used in many

applications, e.g., social network analysis and knowledge discovery.

Because of its wide usage, many studies have been proposed, such

as DeepWalk, LINE and node2vec. These works are designed for

single-layer networks, however, real world networks often possess

not just one, but multiple types of connections. Hence it is more

appropriate to represent them as multiplex networks, which consist

of multiple layers each of which represents one type of relation-

ship. Embedding multiplex networks is difficult because all layer

structures have to be taken into consideration.

In this paper, we propose MELL, a novel embedding method for

multiplex networks, which incorporates an idea of layer vector that

captures and characterizes each layer’s connectivity. This method

exploits the overall structure effectively, and embeds both directed

and undirected multiplex networks, whether their layer structures

are similar or complementary. We focus on link prediction tasks

and test our method and other baseline methods using five data

sets from different domains. The results show that our method

outperforms all of the baseline methods for all of the data sets.
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1 INTRODUCTION
Network embedding aims at converting nodes in a network to

lower dimensional vectors. The embedding vectors are learned in
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Figure 1: A toy image of undirectedmultiplex network. This
multiplex network has three layers, and they share four
nodes. Continuous lines illustrate the edges in each layer.
Two nodes connected by a dashed line are the same corre-
sponding nodes; they are counterparts of each other.

order to preserve some particular information such as structural

connectivity, structural distances or similarities among nodes [8].

Due to its wide usage, many methods are proposed recently, such

as DeepWalk [13], LINE [16], node2vec [9] and APP [18]. The com-

mon tasks to test embedding methods are visualization, multi-class

labeling and link prediction. Link prediction is useful for many

applications, e.g., friend recommendation in online social networks

and knowledge discovery in semantic networks. Thus we focus on

link prediction task in this paper.

Existing embedding methods are mainly for single-layer net-

works, however, networks in real world are often represented as

multiplex networks [7]. Multiplex network is a multi-layer network,

where the layers share the same set of nodes [14]. A multiplex

network represents different types of connectivity between one

single set of nodes. For example, online social networks used by

the same people are expressed as a multiplex network where each

layer illustrates one online social network service. In the case of

genetic networks, the multiple types of interactions among genes

are described as a multiplex network.

In multiplex networks, connectivity in layers affects each other

and that makes it difficult to analyze each layer independently.

Figure 1 shows a toy image of an undirected multiplex network.

This multiplex network has three layers and the layers share four

nodes. The structure of layer 2 and layer 3 are almost equal, so it is

natural to predict a potential link between node A and node B in

layer 3. This prediction is easy and reasonable, however, without
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layer 2, it is difficult to predict that link because of the limited

structural information. Therefore, existing embedding methods for

single-layer networks do not work for multiplex networks.

MTNE [17] is an existing embedding method for multiplex net-

works. This method jointly learns embedding vectors for each node

in each layer via enforcing an extra information-sharing embedding.

It predicts links in multiplex networks, but the problem is that their

model seems to work only for multiplex networks where layers

are similar to each other. Another approach for link prediction

in multiplex networks is generative model. MULTITENSOR [4] is

the one that decomposes adjacency tensor of a multiplex network

using the Poisson distribution. Based on the decomposition, this

method regenerates the adjacency tensor and uses the tensor for

link prediction. However, it is not always the Poisson distribution

that generates multiplex networks.

In this paper, we propose MELL (an abbreviation of Multiplex

network Embedding via Learning Layer vectors). It embeds each

layer into a lower dimensional embedding space, and enforces

these embeddings to be close to each other in order to share each

layer’s connectivity among embeddings. We also incorporate a

novel idea of layer vector that captures and characterizes each

layer’s connectivity. MELL learns embedding vectors and layer

vectors at the same time using all of the layer structures, and based

on these embeddings and layer vectors, this method calculates edge

probabilities for link prediction. Thanks to the enforcing and the

layer vectors, MELL works well for link prediction whether layer

structures are similar or complementary. We test our method and

four other baseline methods for link prediction tasks using five data

sets from different domains : social, co-authorship, transportation,

neuronal and genetic domains. The experimental results show that

our method outperforms all of the baseline methods in all of the

data sets. At maximum, the AUC score of our method is 25% higher

than that of the baseline methods.

2 RELATEDWORK
In this section, we introduce related works: network embedding

and generative model.

2.1 Network Embedding
Network embedding is a method for embedding a network to a

lower dimensional space by converting nodes in the network to

vectors in the embedding space. One of the well-known approaches

is the one based on random walks [3], e.g., DeepWalk [13], LINE

[16], node2vec [9] and APP [18]. These methods use sampled paths

obtained by random walks for updating and optimizing embedding

vectors. We use APP as a representative single-layer embedding

method for the experiments because APP is the latest work among

these works, and APP is the best method for link prediction. Also

APP can embed both undirected and directed networks.

For multiplex networks, MTNE, Multi-Task Network Embedding

method [17] is one of the representative methods. It extends a sim-

ple embedding method to multiplex networks, and jointly learns

embedding vectors for each layer in a multiplex network via en-

forcing an extra information-sharing embedding. The authors of

MTNE assume that the same node will expose similar or comple-

mentary characteristics in layers. Enforcing information-sharing

embedding is the way to share the characteristics in all layers.

The embedding process is as follows: i) MTNE embeds each layer

to the lower dimensional space, ii) it calculates the information-

sharing embedding, iii) it optimizes embedding vectors using the

information-sharing embedding, iv) it repeats the step ii) and iii)

until embedding vectors converge. The authors propose two ways

for the information-sharing embedding: MTNE-C, which shares

a common embedding, and MTNE-R, which shares a consensus

embedding.

They test MTNE methods through network visualization, link

prediction and multi-label classification. MTNE-R and MTNE-C

work better than other methods including DeepWalk and LINE.

They also show that the best method for link prediction is “MTNE-

R Consensus” (MTNE-R Cons. for short), a variant of MTNE-R.

MTNE-R uses the consensus embedding merely for optimizing each

layer’s embedding, and uses each layer’s embedding for predicting

links in each layer. On the other hand, MTNE-R Cons. uses the

consensus embedding to predict links in all layers. The consensus

embedding is similar to the average embedding among all layers’

embeddings, and it predicts links well in the experiments. However,

MTNE-R Cons. ignores the differences among layers because it

uses exactly the same embedding vectors for link prediction in all

layers. For multiplex networks whose layer structures are different,

MTNE-R Cons. does not work well. MTNE-C and MTNE-R also

do not work because the information-sharing embedding cannot

improve the overall embeddings. The problem of MTNE methods is

that they assume similar layer structures. Indeed, social networks

tends to have similar layer structures. So MTNE methods seem to

work well for social networks but not for other networks where the

structural similarity is not guaranteed, e.g., transportation networks

and genetic networks. Another problem is that MTNE methods are

designed only for undirected multiplex networks, so these methods

cannot be used for directed multiplex networks.

2.2 Generative Model
Another approach for link prediction in multiplex networks is gen-

erative model. Generative models regard adjacency matrices for a

multiplex network as one tensor. Then the models try to find the

hidden parameters that generate the tensor assuming a particular

probabilistic distribution.

MULTITENSOR [4] is a generative model used for multiplex

networks. The authors extend the mixed-membership stochastic

block model to multiplex networks. They assume that the layers

share underlying common community structures, which determine

the connectivity in all layers.

Formally, MULTITENSOR is similar to Poisson tensor factoriza-

tion models. MULTITENSOR decomposes the adjacency tensor into

three matrices, two membership matrices and one affinity matrix.

After the decomposition, it regenerates the adjacency tensor, and

uses the tensor for the tasks such as link prediction. This method

can be used for directed and undirected networks. Link prediction

experiments are conducted on three real networks, and MULTI-

TENSOR performs the best in the experiment.

However, there is no guarantee that there are underlying com-

munity structures in any multiplex networks. Also there are no
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guarantee that any multiplex networks are generated based on the

Poisson distribution.

3 OUR METHOD
In this section, we explain our method, MELL. Firstly, we define

notations and terms, and thenwe explain a basic embeddingmethod

for single-layer networks. After that, we illustrate the idea of our

method and its algorithm.

3.1 Notation
In this paper, we usev for nodes, lower case letters (i.e., x except for

v) for scalar values, lower case roman-bold letters (i.e., x) for vectors,
upper case roman-bold letters (i.e.,X) for matrices or tensors, upper

case calligraphic letters (i.e., X) for sets. The notation ∥ · ∥F denotes

the Frobenius norm. A term a · b denotes the inner product of the

vectors a and b. A term aT denotes the transpose of the vector a.

3.2 Terminology Definition
The networks studied in this paper are all multiplex networks.

Multiplex network is defined as Definition 3.1 .

Definition 3.1 (Multiplex Network). A multiplex network consists

of a set of networks. Each of the networks is called a “layer” and all

layers have the same set of nodes. Specifically, a multiplex network

G = {G1, ...,Gl , ...,GL }, whereGl = (Vl , El ) denotes the l-th layer

in G. L is the total number of layers.Vl
denotes the set of nodes

and El denotes the set of edges in the l-th layer. In other words,

El ⊂ Vl ×Vl
andVl = {vl

1
, ...,vli , ...,v

l
N }, where v

l
i denotes the

i-th node in the l-th layer. N denotes the number of nodes. For vli ,

all i-th nodes in all other layers are its counterparts, e.g., v1i , ...,v
L
i

are the counterparts of each other. We use M for the total number

of all existing edges, i.e., M =
∑L
l
���E

l ���. For undirected networks,

(vli ,v
l
j ) = (vlj ,v

l
i ), while for directed networks, (vli ,v

l
j ) , (vlj ,v

l
i ).

We use the term “head” for a node where a directed edge is from,

and we use “tail” for a node where a directed edge is to, e.g., for

(vli ,v
l
j ), v

l
i is the head, and v

l
j is the tail.

In this paper, we study a method for predicting missing or po-

tential edges in multiplex networks. This problem is defined as

follows.

Definition 3.2 (Link Prediction in Multiplex Network Problem).
Given a multiplex network G, “link prediction in multiplex network

problem” aims at inferring the missing or potential edges in any

layers in G. Formally, based on the given multiplex network G, the

objective is to generate an edge probability function p : Vl ×Vl →

[0, 1] (l = 1, ...,L). The output value of p shows how likely the edge

between input nodes will be formed.

3.3 Inner Product Method
We introduce one of the basic embedding methods for single-layer

networks, the inner product method [12] [17], which our method

in this paper is based on. This method is also adopted in MTNE.

In the inner product method, the edge probability that there

exists an edge between node vi and vj is calculated as follows:

p (vi ,vj ) =
1

1 + exp(−viT · vj )
, (1)

where vi and vj denote the embedding vectors forvi andvj respec-
tively. Given a network, output values of p for connected node pairs

should be close to 1, and output values of p for unconnected node

pairs should be 0. Thus this method learns the embedding vectors

to maximize the likelihood of generating the original network. The

likelihood is as follows:

∏
(vi ,vj )∈E

p (vi ,vj )
∏

(vi ,vj )<E

(
1 − p (vi ,vj )

)
, (2)

where E denotes the existing edge set. Usually for easy calculation,

the log likelihood is used for the loss function, and a regularization

term for the embedding vectors is added to it. The final loss function,

which should be minimized, is as follows:

Loss (E; λ) = −
∑

(vi ,vj )∈E

logp (vi ,vj )

−
∑

(vi ,vj )<E

log

(
1 − p (vi ,vj )

)
+ λ∥V∥2F , (3)

where V denotes the matrix for embedding vectors, the i-th row

in V is the embedding vector for vi , λ denotes a regularization

coefficient.

The inner product method embeds all nodes in the given single-

layer network into the d-dimensional embedding space by minimiz-

ing Eq. (3). After the embedding, this method calculates p (vi ,vj )
by Eq. (1) to predict whether the edge between vi and vj will be
formed or not.

3.4 MELL
We propose MELL, a Multiplex network Embedding via Learning

Layer vectors. MELL is based on the inner product method ex-

plained above, and we incorporate the following new ideas:

• MELL embeds nodes in each layer into ad-dimensional space,

and enforces embedding vectors for the same node among

layers to be close to each other in order to share all layer

structures among embeddings.

• MELL learns layer vectors that characterize the layers’ con-

nectivity in order to differentiate the edge probabilities in

each layer.

• For undirected multiplex networks, MELL uses two vectors

for each node; the one is an embedding vector as a head, the

other is an embedding vector as a tail.

The overall processes of our method are shown in Figure 2. MELL

embeds nodes in each layer with learning layer vectors. After the

embedding, it predicts links by calculating the edge probabilities.

The first idea is to embed each layer into the embedding space

and enforce them to be close. By this enforcing, the embedding

vectors are learned not only from one layer’s connectivity but

also from all other layers’ connectivity as well. Specifically, MELL

applies the inner product method to each layer. The standard inner
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Figure 2: The overall processes for predicting links by MELL. Given a multiplex network, MELL embeds nodes in each layer
into a lower dimensional space with learning layer vectors. After learning the embeddings, it predicts links by calculating the
edge probabilities by Eq. (6).

product method merely learns the structural connections in one

layer. Thus, in order to exploit all layers’ connectivity for each

embedding, MELL enforces the embedding vectors for the same

node to be close to each other. MELL realizes this idea by adding

a regularization term to the loss function. Formally, this term is

designed as the variance of embedding vectors. The enforcing term

is as follows:

(The enforcing term) =βV[V], (4)

where V[V] =
1

L

L∑
l=1

∥V[l] − E[V]∥2F ,

E[V] =
1

L

L∑
l=1

V[l],

and β denotes the regularization coefficient, V ∈ RL×N×d denotes

the embedding tensor, which contains all embedding vectors for

the given multiplex network. V[l] denotes the N × d embedding

matrix for the nodes in the l-th layer. L,N ,d denote the number of

layers, nodes and the embedding space’s dimension, respectively.

E[V] calculates the average embedding matrix among layers and

V[V] calculates the variance of embedding vectors.

However, even though layer structures in a multiplex network

are different from each other, the enforcing prevents the embedding

vectors from being different. This causes poor link predictions

because even if some layers have different structures, a method

based on the embedding will predict an edge between the same pair

of nodes in all layers with almost the same probabilities. In order

to differentiate edge probabilities in each layer, we incorporate the

idea of layer vector. Layer vector is a vector which determines the

edge probabilities for all node pairs in the layer. Formally, the edge

probability between vli and v
l
j is calculated as follows using a layer

vector rl :

p (vli ,v
l
j ) =

1

1 + exp

(
−(vli + rl )

T
· vlj
) , (5)

where vli and vlj denote the embedding vector for vli and vlj re-

spectively. rl denotes the layer vector for the l-th layer. The layer

vectors actually learn the layers’ connectivity. By the enforcing and

Eq. (5), if layers are similar to each other, the layer vectors are also

similar to each other, and if they are different, the layer vectors are

different as well. Therefore, layer vectors capture and characterize

connectivity in each layer, comparing the structure with other layer

structures.

The disadvantage of the layer vector is its asymmetric nature.

The original inner product method is for undirected network be-

cause p in Eq. (1) is symmetric, i.e., p (vi ,vj ) = p (vj ,vi ). In Eq. (5),

p (vli ,v
l
j ) is not equal to p (v

l
j ,v

l
i ) because the layer vector is added

to the head embedding vector. This asymmetric nature is not a

problem for directed networks because they require an asymmetric

edge probability. To make our method applicable to undirected

networks as well, we introduce two vectors for each node, one is as

a head and the other is as a tail. This idea is inspired by APP [18],

which employ an asymmetric edge probability like Eq. (5). Since

two embedding vectors should be used in order to incorporate this

idea, we redefine p (vli ,v
l
j ) as follows:

p (vli ,v
l
j ) =

1

1 + exp

(
−(vH l

i + rl )
T
· vT lj

) , (6)

where vH l
i denotes the head embedding vector for vli and vT lj

denotes the tail embedding vector for vlj . In directed networks, a

vector as a head and that as a tail are always the same, i.e., vH l
i =

vT li in any l and any i .
Considering these three ideas: enforcing, incorporating layer

vector, and using two vectors for undirected multiplex networks,

the loss function to optimize the embedding vectors and layer

vectors is designed as follows:
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Loss (Epos , Eneд ; λ, β ,γ ) = −
∑

(v li ,v
l
j )∈Epos

logp (vli ,v
l
j )

−
∑

(v li ,v
l
j )∈Eneд

log

(
1 − p (vli ,v

l
j )
)

+ β (V[VH ] + V[VT ])

+
λ

N
(∥VH ∥

2

F + ∥VT ∥
2

F ) + γ ∥R∥
2

F , (7)

where VH ,VT ∈ RL×N×d denote the head and tail embedding

tensor respectively, which contain all head and tail embedding

vectors. R ∈ RL×d denotes the layer vectors. Epos denotes the all

existing edges in the given multiplex network, i.e., Epos = E
1∪ ...∪

EL . Eneд is the set of negative samples. They are uniformly and

randomly sampled from all unconnected node pairs in the given

multiplex network. The number of negative samples is k |Epos |
using a parameter k . The third term is basically designed as the

enforcing term in Eq. (4), but is modified for using VH and VT .
β denotes the regularization coefficient for this enforcing term. λ
and γ denote regularization coefficients for embedding vectors and

for layer vectors respectively. The fourth term is divided by N to

normalize the impact of λ.
In order to minimize Loss , our method learns the optimalVH ,VT

and R. After learning, we use Eq. (6) to predict edges. Due to the

layer vectors, our method is basically for directed multiplex net-

works. Thus we introduce additional processes for undirected net-

works; we regard one undirected edge as two directed edges. Firstly,

for learning embedding vectors, Epos is set as E
1 ∪ ...∪EL ∪E ′1 ∪

...∪E ′L , where E ′l =
{
(vlj ,v

l
i )
���(v

l
i ,v

l
j ) ∈ E

l
}
. Secondly, after learn-

ing embedding vectors, we use the average value of p (vli ,v
l
j ) and

p (vlj ,v
l
i ) for predicting an edge (vli ,v

l
j ).

Our method has five parameters altogether: embedding space’s

dimension d , a negative sampling rate k , regularization coefficient

for embedding vectors λ, regularization coefficient for the variance

β and regularization coefficient for layer vectors γ . These parame-

ters should be decided by a grid search.

We implement our method using Python and TensorFlow.We use

Adam [10] for fast optimizing, but the other standard optimization

methods, such as gradient descent, can be used as well. The overall

MELL processes to learn VH ,VT and R are shown in Algorithm
1.

3.5 Complexity Analysis
The total time complexity of MELL is O (td (kM + NL)), where t
denotes the number of iterations, k denotes the negative sampling

rate, L,N ,M denotes the number of layers, nodes, edges in a given

multiplex network, respectively.

4 EXPERIMENTS
In this section, we explain the experiments we conducted. First, we

explain details of data sets, experimental setting, baseline methods

to be compared and the evaluation metric. After that we show the

experimental results. We also report the parameter sensitivity of

our method.

Algorithm 1 MELL algorithm

Input: Multiplex network G = {G1, ...,GL }, embedding space’s

dimension d , negative sampling rate k , regularization coeffi-

cient for embedding vectors λ, regularization coefficient for the

variance β , regularization coefficient for layer vectors γ

Output: embedding tensors for head and tail VH ,VT ∈ RL×N×d ,
layer tensor R ∈ RL×d

1: function MELL(G,d,k, λ, β,γ )
2: initialize VH ,VT ,R with random values

3: Epos ← E
1 ∪ ... ∪ EL

4: while (not converge) do
5: Eneд ← negative samples, |Eneд | = k |Epos |
6: Calculate Loss (Epos , Eneд ; λ, β ,γ ) by Eq. (7)

7: update VH ,VT ,R
8: end while
9: return VH ,VT ,R
10: end function

4.1 Data Set
We test our method and baseline methods using five data sets from

different domains: social, co-authorship, transportation, neuronal

and genetic domains. The basic statistics of the data sets are shown

in Table 1. L, N, M denotes the number of layers, nodes and all

exiting edges, respectively. All data sets are obtained from CoMuNe

lab’s web site
1
. Explanations of the data sets are as follows:

• CS-Aarhus [11] : This undirected multiplex social network

consists of five kinds of online and offline relationships (Face-

book, Leisure, Work, Co-authorship, Lunch) between the

employees of Computer Science department at Aarhus.

• Pierre Auger Collaboration [5] : This undirected co-authorship

multiplex network consists of 16 types of different work-

ing tasks within the Pierre Auger Collaboration. The lay-

ers represent Neutrinos, Detector, Enhancements and other

tasks. This network is originally weighted, but we ignore

the weights for our experiments.

• EU Air Transportation [1] : This undirected transportation

multiplex network is composed by 37 different layers each

one corresponding to a different airline operating in Europe.

The nodes are airports, and the edges are routes, respectively.

• C.Elegans Connectome [2] [6] : This directed neuronal mul-

tiplex network, Caenorhabditis Elegans Connectome, con-

sists of three different synaptic junctions: electric, chemical

monadic, and polyadic.

• Xenopus [15] [6] : This directed genetic multiplex network

consists of five types of different interactions for organisms:

association, direct interaction, physical association, colocal-

ization, and suppressive genetic interaction defined by in-

equality. The authors use the Biological General Repository

for Interaction Data sets 3.2.108 (BioGRID, thebiogrid.org,

updated 1 Jan 2014) for Xenopus laevis.

1
https://comunelab.fbk.eu/data.php
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Table 1: Properties of the data sets. L, N, M denotes the number of layers, the number of the nodes, the total number of all
existing edges, respectively. Type shows the type of the data set.

Data set L N M type directed

CS-Aarhus 5 61 620 social undirected

Pierre Auger Collaboration 16 514 7153 co-authorship undirected

EU Air Transportation 37 450 3588 transportation undirected

C.Elegans Connectome 3 279 5863 neural directed

Xenopus 5 461 620 genetic directed

4.2 Experimental Setting
Given a multiplex network from the data sets, first we randomly

split all existing edges into five parts each of which has 20% of the

edges of each layer. We vary training edge rate αt from 20% to 80%

in 20% increments. Based on αt , we pick one to four parts of the

split edge parts and use them as training edges. The other parts

are used as positive testing edges. This positive testing edges are

hidden with other unconnected node pairs, so that methods can

not tell the testing edges and truly unconnected node pairs apart.

For testing, we sample truly unconnected node pairs as negative

testing edges. These edges are sampled uniformly and randomly,

and the number of positive testing edges and negative testing edges

are the same. We use both the positive and negative testing edges

for testing. We change the picking combination for the training

edge parts uniformly five times, and report the average score as the

final results. When αt is 20%, this experimental setting is the same

as the five-fold cross validation.

For the evaluation, we use AUC score, a well-known and standard

metric for link prediction tasks.

4.3 Baseline Method
In this experiments, we test 4 existing methods and our method:

APP, MTNE-R, MTNE-R Cons., MULTITENSOR and MELL. Except

for MULTITENSOR, which is not an embedding method, we use

the same dimension for embedding, d = 128 for fair comparison.

For other parameters, such as regularization coefficient, we do grid

search for each data set to find optimal parameters. The explana-

tions of the baseline methods are as follows:

• APP [18] : This method embeds directed and undirected

single-layer networks. In this experiment, we naively apply

this method to each layer, and thus this method only uses

one layer, ignoring the other layers.

• MTNE-R [17] : This method is for embedding undirected

multiplex networks. It embeds each layer to the embedding

space, and then it calculates a consensus embedding. Using

the consensus embedding, it optimizes each layer’s embed-

ding, and uses each embedding for link prediction in each

layer. We use all unconnected node pairs as negative samples

for learning.

• MTNE-R Cons. [17] : This method is a variant of MTNE-R.

Different from MTNE-R, this method uses the consensus em-

bedding for link prediction for all layers, ignoring differences

among layers.

• MULTITENSOR [4] : This is a generative model based on

the Poisson distribution. It decomposes the adjacency tensor

and uses obtained matrices for link prediction. Originally, it

uses a part of layers for link prediction, however, all layers

are used in this experiment for a fair comparison.

4.4 Results
We set αt to 20%, 40%, 60% and 80%. For each αt , we test baseline
methods and our method using all data sets. Experimental results

are shown in Table 2. The values in the table are AUC scores. For

MTNE-R and MTNE-R Cons., the results on C.Elegans Connectome

and Xenopus are set to “-” because they are directed multiplex

networks.

First of all, APP, which totally ignores other layer structures,

shows the worst scores in all data sets. For EU Air Transportation

network, APP predicts links almost randomly. On the other hand,

other methods, that use structural connectivity in other layers,

performs better than APP.

MELL outperforms all existing methods, APP, MTNE-R, MTNE-

R Cons. and MULTITENSOR. For directed networks, C.Elegans

Connectome and Xenopus, MELL shows significantly higher AUC

scores, compared to only one baseline method for multiplex net-

works. Especially for Xenopus data sets, the AUC scores of MELL

are at least 20% higher than MULTITENSOR, and 25% higher at

αt = 80%. For undirected network, MELL also shows the higher

AUC scores. These results show that MELL effectively exploits the

structural connectivity in all layers in the multiplex networks.

We expect that MTNE models do not work on multiplex net-

works where the layer structures are not similar with each other.

As we expected, MTNE-R and MTNE-R Cons. shows comparable

AUC scores on CS-Aarhus and Pierre Auger Collaboration. They

are a social network and a co-authorship network, respectively.

Probably they have similar layer structures. On the other hand,

AUC scores for EU Air Transportation are significantly inferior

to MULTITENSOR and MELL. This is because transportation net-

works are different from social networks, and their layer structures

are complementary. MTNE-R Cons., which performs better than

MTNE-R in original paper’s experiments, shows almost the same

AUC scores with MTNE-R, and they are not remarkably different.

4.5 Parameter Sensitivity
We vary parameters of MELL, in order to test the sensitivity of

the parameters. MELL requires five parameters; embedding space’s

dimension d , negative sampling rate k , and three regularization

coefficients : λ for embedding vectors, β for the variance, and γ for

layer vectors. We set d = 128,k = 4.0, λ = 10.0, β = 1.0,γ = 1.0

as default parameters, and pick up one parameter and vary that
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Table 2: Experimental Results. The values in the table are AUC scores. αt is the rate of training edges to all existing edges.
Since MTNE-R and MTNE-R Cons. are for undirected multiplex networks, the scores are set to “-” in the table. The bold face
is the best value for the same αt in each data set.

training rate αt
data set method 20% 40% 60% 80%

APP 0.5461 0.6630 0.7376 0.7757

MTNE-R 0.6977 0.7788 0.7921 0.8492

CS-Aarhus MTNE-R Cons. 0.6943 0.7645 0.8189 0.8370

MULTITENSOR 0.6645 0.7827 0.8862 0.9071

MELL 0.8173 0.8877 0.9224 0.9417
APP 0.6060 0.7913 0.8894 0.9434

MTNE-R 0.9214 0.9525 0.9765 0.9873

Pierre Auger Collaboration MTNE-R Cons. 0.9217 0.9542 0.9775 0.9874

MULTITENSOR 0.9451 0.9705 0.9817 0.9893

MELL 0.9811 0.9918 0.9956 0.9979
APP 0.4364 0.4904 0.5536 0.5828

MTNE-R 0.5535 0.6891 0.7446 0.7817

EU Air Transportation MTNE-R Cons. 0.5550 0.7010 0.7440 0.7683

MULTITENSOR 0.8516 0.9041 0.9344 0.9463

MELL 0.9806 0.9897 0.9941 0.9944
APP 0.5875 0.6800 0.7287 0.7518

MTNE-R - - - -

C.Elegans Connectome MTNE-R Cons. - - - -

MULTITENSOR 0.7167 0.8019 0.8434 0.8836

MELL 0.8360 0.9144 0.9430 0.9701
APP 0.5135 0.5260 0.5536 0.5442

MTNE-R - - - -

Xenopus MTNE-R Cons. - - - -

MULTITENSOR 0.5469 0.5921 0.6441 0.6664

MELL 0.7575 0.8159 0.8818 0.9130

parameter fixing others to check the parameter impact to the link

prediction. The results are shown in Figure 3. The training rate

αt is fixed to 60% in this experiment. The same as the previous

experiment, the AUC scores are the averages of five times results.

The embedding dimensiond does not affect much for AUC scores

compared to other parameters. The negative sampling rate k affects

AUC scores of Xenopus. Xenopus prefers higher k because Xenopus

is the sparsest network in the data sets. Thus in order to increase

the true negatives of the link prediction results, Xenopus requires

higher k . The regularization coefficient λ greatly affects the AUC

scores of CS-Aarhus, C.Elegans Connectome and Xenopus. They

show the highest AUC scores at 10, 100 and 1.0 respectively.

The regularization coefficient β controls how much MELL en-

forces the embedding vectors among layers to be close. Too small β
makes embeddings not to learn the other layer structures, and too

big β prevents the embeddings from being different. The results

show the highest AUC scores from β = 1 to β = 100, and show

lower scores at β = 0.1 and β = 1000. The regularization coeffi-

cient γ is for layer vectors, and it affects the results of Xenopus

significantly. Xenopus shows the highest at 10, but the score hugely

decreases at 100.

However, no parameters affect the AUC scores for Pierre Auger

Collaboration and EU Air Transportation much. Their AUC scores

are nearly 1.0, so that MELL can stably predict links in them, re-

gardless of the changes of parameters.

5 CONCLUSION
In this paper, we propose a novel embedding method for multiplex

networks, named MELL, which incorporates an idea of layer vector

that characterizes the connectivity in a layer. MELL embeds nodes in

each layer into the lower embedding space using all layer structures,

and incorporates layer vectors to differentiate edge probabilities

in the layers. We test our method for link prediction tasks, using

five data sets from different domains. We evaluate our methods and

baseline methods by AUC scores. The experimental results show

that our method outperforms all of the baseline methods for all of

the data sets, indicating that MELL learns the overall structures

of multiplex networks more effectively than the existing methods.

For future work, we will extend our method for visualization and

multi-label classification tasks.
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Figure 3: Parameter sensitivity of MELL. These graphs show the AUC scores for link prediction with different parameters,
d,k, λ, β ,γ . The default parameters are d = 128,k = 4.0, λ = 10.0, β = 1.0,γ = 1.0, and we vary one parameter fixing others.
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