
IntentGC: a Scalable Graph Convolution Framework Fusing
Heterogeneous Information for Recommendation
Jun Zhao
Zhou Zhou

jun.zhaozj@alibaba-inc.com
xiaoyuan.zz@alibaba-inc.com

Alibaba Group

Ziyu Guan∗
zyguan@xidian.edu.cn

Xidian University

Wei Zhao
ywzhao@mail.xidian.edu.cn

Xidian University

Wei Ning
wei.ningw@alibaba-inc.com

Alibaba Group

Guang Qiu
guang.qiug@alibaba-inc.com

Alibaba Group

Xiaofei He
xiaofei.he@cad.zju.edu.cn

Zhejiang University

ABSTRACT
The remarkable progress of network embedding has led to state-
of-the-art algorithms in recommendation. However, the sparsity
of user-item interactions (i.e., explicit preferences) on websites re-
mains a big challenge for predicting users’ behaviors. Although
research efforts have been made in utilizing some auxiliary informa-
tion (e.g., social relations between users) to solve the problem, the
existing rich heterogeneous auxiliary relationships are still not fully
exploited. Moreover, previous works relied on linearly combined
regularizers and suffered parameter tuning.

In this work, we collect abundant relationships from common
user behaviors and item information, and propose a novel frame-
work named IntentGC to leverage both explicit preferences and
heterogeneous relationships by graph convolutional networks. In
addition to the capability of modeling heterogeneity, IntentGC can
learn the importance of different relationships automatically by the
neural model in a nonlinear sense. To apply IntentGC to web-scale
applications, we design a faster graph convolutional model named
IntentNet by avoiding unnecessary feature interactions. Empirical
experiments on two large-scale real-world datasets and online A/B
tests in Alibaba demonstrate the superiority of our method over
state-of-the-art algorithms. We also release the source code of our
work at https://github.com/peter14121/intentgc-models.

KEYWORDS
Graph Convolutional Networks, Recommendation, Heterogeneous
Information Network
ACM Reference Format:
Jun Zhao, Zhou Zhou, Ziyu Guan, Wei Zhao, Wei Ning, Guang Qiu, and Xi-
aofei He. 2019. IntentGC: a Scalable Graph Convolution Framework Fus-
ing Heterogeneous Information for Recommendation. In The 25th ACM

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00
https://doi.org/10.1145/3292500.3330686

SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’19),
August 4–8, 2019, Anchorage, AK, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3292500.3330686

1 INTRODUCTION
With the ever-growing volume of online information, recommender
system has become an effective key solution on a variety of web-
sites (e.g., Amazon, Youtube, Alibaba) for helping users discover
interesting products or contents. Due to successes of deep learning
and network embedding in recent years, the algorithms that power
these recommender systems are generally based on the idea that
user preferences or item semantics can be learned by neural models
in the form of low-dimensional representations, which in turn can
be used for recommendation by searching the closest embeddings
in the low-dimensional space.

Among different information that could be obtained on web-
sites, user interactions with items (clicks, etc.) are the most com-
mon and explicit indicators of user preferences. Many algorithms
have been proposed by utilizing these explicit behaviors to predict
users’ preferred items [12, 21]. However, a major downside is that,
these explicit preferences are quite sparse, which severely limits
the model capability for recommendation. On the other hand, there
are usually rich auxiliary relationships that imply user preferences
and item semantics, which could help overcome the sparsity issue.
Several research works have explored such auxiliary relationships
and demonstrated their effectiveness [6, 7, 20]. To list a few, Wang
et al. [6] proposed a cross-domain solution that preserve user-user
social relationships from a social domain and user-item relation-
ships from a content domain. The authors in [20] modeled items
in a homogeneous graph and adopted a DeepWalk approach to
preserve item co-occurrences (clicked in the same session). These
auxiliary relationships widely exist and can be used to improve the
performance of recommendation.

However, we find that all previous works only captured one type
of auxiliary information for users and/or one type for items in the
model (see Fig. 1), while ignoring a plenty of additional heteroge-
neous relationships on the graph. We provide an illustrative exam-
ple on an e-commerce website in Fig. 2. We can see that, besides
explicit user interactions on items, there is rich auxiliary informa-
tion such as user submitted query words, visited shops, preferred
brands and properties. These auxiliary relationships are potentially
useful in capturing more semantics and relevance. For instance,

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2347

https://github.com/peter14121/intentgc-models
https://doi.org/10.1145/3292500.3330686
https://doi.org/10.1145/3292500.3330686

r

r

Figure 1: Examples of previously utilized auxiliary relation-
ships

the query words contain content information of user requirements
which are effective to link users with similar interests as well as
to find items with similar content. Likewise, the brands link users
with similar taste of fashion styles and provide complementary
information to content similarity. However, these heterogeneous
auxiliary relationships are not fully considered in recommendation.
In this work, we are concerned with studying a unified framework
to capture both explicit preferences and all heterogeneous auxiliary
relationships of users and items.

To this end, we extend Graph Convolutional Network (GCN)
to achieve the goal. The core idea behind GCN is to generalize
the convolutional neural networks on graph-structured data [11,
13], which has presented capabilities of content propagation and
high-level expressiveness, and demonstrated great success in node
classification tasks. More recently, researchers in Pinterest have
adopted GraphSage (a state-of-the-art GCNmodel) on an item graph
to recommend related items [22]. However, both their problem and
solution are intrinsically different from our work due to:

1) Their model considers only item information, while ignoring
users and auxiliary objects.

2) To scale up, GraphSage needs to sample many clustered mini-
graphs of items for embedding reuse. However, it is hard to find
such clustered mini-graphs that contain both users and items, due
to the sparsity issue mentioned above. It is very likely that the mini-
graph sampling algorithm ends up with a very large subgraph (or
even the whole graph). Thus, the idea of GraphSage is not suitable
for large-scale user-item graphs in our context.

3) Their method is proposed for homogeneous networks, while
user-item graphs studied in this work are heterogeneous.
OurWork. In this work, we propose a novel GCN-based framework
called IntentGC for large-scale recommendation which captures
both explicit user preferences and heterogeneous relationships of
auxiliary information by graph convolutions. There are mainly
three innovative points of IntentGC:

1) Fully exploiting auxiliary information: We capture plenty of
heterogeneous relationships to boost the performance of recommen-
dation. To facilitate modeling and improve robustness, we translate
auxiliary relationships of first order proximity into more robust
weighted relationships of second order proximity. For instance, if
user1 submits a query word “Spiderman”, we think there is a con-
nection between user1 and “Spiderman” (first order proximity). If
user1 and user2 both submit query words “Spiderman”, “Ironman”,
“Thor”, we think there is a more robust relationship between user1

Properties

Buy

Figure 2: Examples of heterogeneous auxiliary relationships
on e-commerce websites

and user2 (second order proximity), as they are probably fans of
Marvel movies. With different types of auxiliary objects, we can
generate heterogeneous relationships of second-order proximity.
IntentGC automatically determines the weights of different types of
relationships in training. We find these heterogeneous relationships
are useful and complementary to each other in practice, and can
significantly improve the performance.

2) Faster graph convolution: To remove the limitation of training
on clustered mini-graphs for large-scale graphs, we propose a novel
convolutional network named IntentNet, which is not only more
efficient but also more effective than GraphSage. The IntentNet
takes a faster graph convolution mechanism. The key idea of In-
tentNet is to avoid unnecessary feature interactions by dividing the
functionality of graph convolution into two components: a vector-
wise convolution component for neighborhood feature propagation
and a fully-connected network component for node feature inter-
action. Benefiting from this mechanism, we deploy a distributed
architecture for simple mini-batch training (sampling nodes).

3) Dual graph convolution in heterogeneous networks: To pre-
serve the heterogeneity of users and items, we design a dual graph
convolutional model for network representation learning. First,
we take advantage of two independent IntentNets that separately
operate on user nodes and item nodes. After nonlinear projection
through the fully-connected network in the respective IntentNet,
the obtained embeddings of users and items can be deemed to form
a common space. Then, with training guided by explicit preferences,
relevance can be assessed between users and items in the space.

It is worth to note that, unlike previous works of capturing auxil-
iary relationships in the objective function with a regularizer [6, 7],
which is linear and heavily depends on handcraft parameter tuning,
our method can automatically learn the importance of different
auxiliary relationships through non-linear neural network. We note
that auxiliary information could also be designed as node input
features. However, nodes sharing some input features would not be
near in the high-level embedding space due to the complex neural
network projection. By further modeling auxiliary information as
relationships in translated affinity graphs, IntentGC can directly
learn from node relationships, which could significantly improve
the performance. Experiments also confirm it.

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2348

The main contribution of this work is summarized in the follow-
ing:

1) We propose IntentGC, an effective and efficient graph convo-
lution framework. To our best knowledge, this is the first work to
model explicit preferences and heterogeneous relationships in a
unified framework for recommendation.

2) We design a novel graph convolutional network named Intent-
Net with a faster graph convolution mechanism. It leads to 22.1%
gain in MRR and 75.6% reduction of running time.

3) We conduct extensive offline experiments on two large-scale
datasets and deploy an online system with production A/B tests
at Alibaba. In offline evaluation, we improve MRR by 95.1%, and
in online A/B tests IntentGC shows 65.4% improvement in click-
through-rate (CTR), compared to the best baseline.

2 RELATEDWORK
2.1 Network Embedding
Network embedding aims to represent graph nodes in a low dimen-
sional space where the network structure and properties are pre-
served. It can benefit a variety of tasks including recommendation.
Many effective network embedding algorithms have been proposed
[10, 15, 17, 19, 25]. We briefly review some of these methods here.
Readers can refer to [4, 9] for a comprehensive survey. DeepWalk
[15] deployed truncated random walks on nodes to learn latent
representations by treating walks as the equivalent of sentences.
Following this pioneer work, node2vec [10] extended DeepWalk
with more sophisticated random walks and breadth-first search
schema. SDNE [19] exploited the first-order proximity and second-
order proximity in a joint approach to capture both the local and
global network structure. DVNE [25] learned a Gaussian distri-
bution in the Wasserstein space for each node to preserve more
properties such as transitivity and uncertainty.

While extensive works have been made for representation learn-
ing in homogeneous networks, the graphs in real-world applications
are more likely to be heterogeneous information networks (HINs).
To take advantage of the rich information in HINs, a couple of
algorithms have also been proposed to deal with the heterogeneity
[3, 5, 16, 24]. Metapath2vec++ exploited meta-path based random
walks to maximize the biased transition probabilities according to
human expertise [5]. HEER embeded HINs via an additional edge
representation to bridge the semantic gap between heterogeneous
nodes [16]. Although these methods can be applied to general HINs,
they treat each type of relationships with equal importance in the
model, which is not appropriate to boost recommender systems
since the user-item relationships are the main objective to predict.
Currently, little attention has been paid to utilizing heterogeneous
information to strengthen the performance of recommendation.

2.2 Graph Convolutional Networks
In recent years, more attention was paid to applying convolutional
neural networks on graph-structured data [2, 11, 13, 18]. Bruna
et al. defined the convolution operation in the Fourier domain by
computing the eigendecomposition of the graph Laplacian [2]. To
reduce the complexity of convolution, Kipf and Welling proposed
the GCN model by simplifying previous methods via first-order
approximation of localized spectral filters on graphs [13]. To be

specific, they considered a convolution operation for each node
as a mean-aggregation of all the adjacent feature vectors, with a
transformation by a fully connected layer and a nonlinear activa-
tion function. However, in their model, the representations of the
central node and neighbor nodes were aggregated with the same
weight and non-trainable. More recently, Hamilton et al. proposed
GraphSage that extends the GCN approach further in an inductive
manner [11]. This technique sampled a fixed-size neighborhood of
each node to avoid operating on the entire graph Laplacian. They
also improved GCN by concatenating each node’s representation
with the aggregated neighborhood vector for learning interaction
weights. Although there is remarkable progress, previous research
works in GCN are mainly focused on homogeneous graphs. In this
work, we propose a novel algorithm that extends GCN to hetero-
geneous information networks, and significantly improves both
effectiveness and efficiency in recommendation.

2.3 Recommendation
Recently, deep learning based algorithms have achieved significant
successes in the recommendation literature [23]. Based on whether
capturing user information in the model, there are mainly two
types of methods: 1) item-item recommendation and 2) user-item
recommendation. The motivation of item-item recommendation
is to find similar items to a user’s historically interacted items. In
this line of works, Wang and Huang et al. [20] adopted a DeepWalk
approach with side information to obtain vector representations
on an item graph. Ying et al. [22] proposed a random walk based
GraphSage algorithm (named PinSage).

Different from the above works, our method falls into the user-
item recommendation group [12, 14, 21]. This group of methods
aims to predict a user’s preferred items directly, which is generally
more related to satisfaction of users and also more challenging
due to the sparsity issue. To alleviate the problem of sparsity, sev-
eral works attempt to utilize additional auxiliary relationships. For
example, Gao et al. [7] designed a biased random walk method
to utilize deduced user-user and item-item relationships from the
user-item bipartite graph. Wang et al. [6] incorporated social re-
lationships in a cross-domain setting. However, existing methods
consider only one type of auxiliary relationships for users and/or
items, while ignoring abundant heterogeneous auxiliary relation-
ships on the graph. Moreover, previous methods usually capture
auxiliary relationships via regularizers, which limits the capability
of the model and also heavily depends on handcraft parameter tun-
ing. In this work, we propose a novel framework IntentGC to exploit
both explicit preferences and a rich set of heterogeneous auxiliary
relationships. It can automatically determine the importance of
different kinds of auxiliary relationships by graph convolutions.

3 PROBLEM DEFINITION
Wemathematically formulate the problem of recommendation. First,
let us consider a typical scenario on an e-commerce website: Last
week, Jack has queried about a couple of keywords with some de-
mands. From the lists of returned items, he clicked some attractive
items for detailed information. During this week, he also visited
some online shops for checking out new books. Finally on Sat-
urday, he purchased several books with the bestseller property

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2349

and a T-shirt of his favorite brand. Based on Jack’s behaviors, the
platform has collected rich information (submitted query words,
clicked items, visited shops, preferred properties and brands) for
recommending potential interesting items to him in a personalized
manner.

This kind of recommendation scenario could also be observed on
other websites. Generally, multiple kinds of objects and historical
user behaviors on a website form a heterogeneous information
network, as defined in the following:

Definition 1. Heterogeneous Information Network (HIN) is
an undirected graph G = (V, E), where V is the set of nodes and
E ⊆ V ×V is the set of edges between nodes inV . G is associated
with a node type mapping φ : V → Γv and an edge type mapping
ψ : E → Γe , where |Γv | > 1 and / or |Γe | > 1.V can be written as
V = V1 ∪ V2 ∪ · · · ∪ Vr ∪ · · · ∪ VR , where Vr denotes the set of
nodes with type r and R = |Γv |.

User-Item Recommendation. Particularly, in recommendation
we denoteV1 as the set of user nodes andV2 as the set of item nodes,
withV3, . . . ,VR representing the other objects’ nodes (querywords,
brands, etc.).We also denote E = Elabel∪Eunlabel , where Elabel ⊆
V1 ×V2 represents the set of edges between user nodes and item
nodes, and Eunlabel = E \ Elabel represents the other edges.
Since a typical recommendation setting in real-world is to pre-
dict a user’s preferred items according to previous behaviors, we
use G = (V, E) to denote the graph constructed by historical data,
and Gp = (Vp , Ep) to denote the graph of the real future. Then
we can formulate the user-item recommendation problem as a link
prediction problem on graph in the following:

Input: A HIN G = (V, E) based on historical data.
Output: A predicted edge set Êplabel , which is the prediction of

the real edge set Eplabel on Gp .

4 METHODOLOGY
In this section, we propose a novel framework for user-item rec-
ommendation on HIN. Our approach has three key characteristics:
i) Network Translation, which translates the original graph into
a special kind of HIN; ii) Faster Convolutional Network, which
takes the advantage of vector-wise convolution for scaling up and
synthesizes heterogeneous relationships in an optimal sense; iii)
Dual Graph Convolution, which learns representations for both
users and items on the translated HIN. Finally, we summarize the
framework of our solution.

4.1 Network Translation
The heterogeneous nodes and relationships as the ones in Fig. 2
provide us with not only rich information but also incompatible
semantics and more challenges. Although modeling each type of
edges using a type-specific manifold is a possible solution [16],
the high complexity and computational cost is infeasible for large
data when dealing with many types of nodes and edges. Fortu-
nately, in recommendation we only care about the representations
of users and items. Motivated by this, we adapt a method similar
to [7, 24] to translate original auxiliary relationships to user-user
relationships or item-item relationships. Intuitively, if users u1 and
u2 are both connected by an auxiliary node in Vr (r > 2), there

is also an indirect relationship between u1 and u2. In this paper,
we utilize the second-order proximity [9] to capture the similarity
between two users (or items), which is measured by the number
of common auxiliary neighbors of the same type shared by them.
In this way, we can encode the semantic information brought by
auxiliary nodes into a set of heterogeneous user-user relationships
and/or item-item relationships, and translate the HIN accordingly.
Other generation method like meta-path based random walk is also
applicable for network translation, but our approach leads to robust
neighborhoods and simple implementation.

For clarity and ease of derivation, we first consider the case
V = V1∪V2∪V3. I.e., we only have one type of auxiliary nodes. By
adding new second-order relationships to and removing the original
auxiliary relationships and nodes from the HIN G, we obtained
a new and simplified HIN G = (U ,V ,EU ,EV ,Elabel), where U
and V denote the sets of user nodes and item nodes, respectively.
Elabel ⊆ U × V is exactly the same as Elabel before translation.
EU ⊆ U × U and EV ⊆ V × V are the sets of generated edges
between users and between items, respectively. Note for clarity, we
assume there is only one type of edges between V1 (or V2) and
V3. Nevertheless, our framework is general and allows multiple
edge types. Each eu (i, j) ∈ EU is associated with a similarity weight
su (i, j), which represents the second-order proximity in the origin
graph. sv (i, j) for ev (i, j) is defined with the same notion as su (i, j).
Therefore, we can use SU = [su (i, j)] and SV = [sv (i, j)] to represent
the weight matrices for EU and EV , respectively. We also define
N(ui) (or N(vi)), the set of neighbors of each node ui (or vi), as
the top ρ within-type similar nodes according to SU (or SV).

Now we consider the caseV = {V1,V2, . . . ,VR } with R types
of nodes. For each auxiliary node type, we follow the process above
for generating user-user/item-item edges. In this way, we can finally
get 2R − 4 types of heterogeneous relationships where each can be
denoted as E(r)U (or E(r)V) with a weight matrix S(r)U (or S(r)V). Likewise,
the corresponding neighborhoods for u and v can be denoted by
N (r)(u) and N (r)(v), respectively.

We call the translated graph G as user-item HIN. Then the prob-
lem becomes predicting E

p
label (i.e., E

p
label) given the user-item

HIN G.

4.2 Faster Convolutional Network: IntentNet
Motivation. The core idea of GCNs is iteratively aggregating fea-
ture information from neighborhood by local filters. However, a
major downside of it is the high complexity of computation. For
instance, a 3-stacked GCN model with only 10 truncated neighbors
involves 100+ convolution operations for each node on the graph,
which is unacceptable for web-scale applications as the whole graph
usually has hundreds of millions of nodes. In previous works, a
common method for scaling up is to use a mini-subgraph sampling
strategy, as did in [22]. They develop a producer-consumer dis-
tributed training method. In each iteration, it samples a clustered
subgraph M by producer, and performs forward propagation on
M to get all the nodes’ representations by consumer. A clustered
subgraph is produced in a breadth-first-search style on item-item
graph. In this way, GCN is performed only once for each sampled
subgraph with embedding vectors being reused during updating (all
training pairs should be contained in the subgraph). However, for

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2350

user-item HING , it is difficult to generate such clustered subgraphs
for representation reusing. This is because the user-item preference
links are quite sparse. If we follow the producer in their method for
sampling, we would get a very huge subgraph, or even the whole
graph. Hence, in order to apply our approach on large-scale graphs,
we develop a faster convolution operation which allows ordinary
node sampling.

Vector-wise convolution operation. For clarity, we first con-
sider only one type of auxiliary relationships, and then extend
our method to handle heterogeneous relationships. We only use
user nodes for illustration since user nodes and items nodes are
symmetric onG . A layer of graph convolution contains two parts: 1)
aggregation and 2) convolution function. The aggregation is a pool-
ing layer for aggregating the feature information from neighbors,
which can be formulated as:

hk−1
N(u) = AGGREGATE(hk−1a ,∀a ∈ N(u)) (1)

where hk−1a denotes the embedding vector of user a after the (k−1)-
th convolutional layer, and AGGREGATE is a pooling function
(mean, etc.). The neighborhood vector hk−1

N(u) incorporates feature
information from u’s neighborhood into the representation.

After aggregation, we need to combine the utility of self node
and neighborhood by a convolution function. A typical convolution
function is [11]:

hku = σ (W
k · CONCAT(hk−1u , hk−1

N(u))) (2)

This function first concatenates the current node’s vector hk−1u and
its neighborhood vector hk−1

N(u). Then, it feeds the concatenated
vector through a fully-connected neural network layer with non-
linear activation σ , so as to learn feature interactions during the
representation transformation. We call this conventional function
“bit-wise” in this paper.

However, we observe that it is not necessary to learn all feature
interactions between every pair of features in the concatenated vec-
tors. During representation learning, there are mainly two tasks in
the convolution operation: One is to learn the interactions between
self node and its neighborhood, which determines how neighbor-
hood boosts the results; the other one is to learn the interactions
between different dimensions of the embedding space, which will
extract useful combinatory features automatically. A key insight
is that the interaction between feature hi in hk−1u and hj (j , i)
in hk−1

N(u) is less informative. For instance, the age and career of a
user (feature interaction in the same node) might suggest some
preferred categories. Incorporating the rating feature of a user’s
neighborhood into his representation (interaction between nodes
w.r.t the same feature) might be helpful to recommend related items.
However, combining the age of a user and the rating feature of his
neighborhood would probably result in meaningless guesses. Based
on this observation, we designed a vector-wise convolution func-
tion in the following:

gk−1u (i) = σ (wk−1
u (i, 1) · hk−1u +wk−1

u (i, 2) · hk−1
N(u)) (3)

hku = σ (
L∑
i=1

θk−1i · gk−1u (i)) (4)

Self

Neighbors

hu
k-1

N (u)
k-1h

u
k-1
h

(a) Bit-wise

Self

Neighbors

u
k-1h

N (u)
k-1

h

ugk-1(1)

ugk-1(2)

ugk-1
(3)

u
k

h

(b) Vector-wise

Figure 3: Bit-wise and vector-wise graph convolution

wherewk−1
u (i, 1) andwk−1

u (i, 2) denote the i-th local filter’s weights
for self node and neighborhood, respectively. Each local filter in
Eq. (3) can be viewed as learning how self node and neighborhood
interact in a vector-wise manner. With all local filters being learned,
we use another vector-wise layer as in Eq. (4) to encode them into
the representation of hku for the next convolutional layer. The multi-
ple local filters here ensure a rich information extraction capability,
following the spirit of CNN [8]. All these weights are shared on
the graph. A comparison of vector-wise convolution and bit-wise
convolution is depicted in Fig. 3. For either bit-wise or vector-wise
approach, the graph convolution can be viewed as operations on
Xk ∈ RN×M×C , where N denotes the number of nodes,M denotes
the number of neighbors, andC denotes the dimensionality of node
representation. If we viewC as the number of channels of the tensor
Xk , by basic mathematical derivation, bit-wise convolution is equiv-
alent to 1-D CNN and our vector-wise convolution is equivalent to
a variant of 1-D CNN where local filters’ weights are shared among
channels. We omit the detailed proof due to space limitation.

IntentNet. With the proposed convolution operation, we then can
build stacked convolutional layers to form a network, which is
highly efficient and capable of learning useful interactions from
neighborhood propagation. However, this only achieves one task
of graph convolution, so we further feed the output representa-
tion of the last convolutional layer through three additional fully-
connected layers, in order to learn the feature interactions among
different dimensions of the embedding space. We name this method
as IntentNet, with the core idea of dividing the work of graph convo-
lution into two components: vector-wise convolution for learning
the neighborhood’s utility, and fully-connected layers for extracting
the node-level combinatory features. In practice, IntentGC is not
only more efficient than conventional GCNs but also more effec-
tive in performance. A probable reason is that IntentGC can avoid
useless feature interactions and is more robust to overfitting. More
details will be presented in Section 5.3.

Complexity. Generally, we usem to denote the sizes of represen-
tation vectors in different layers since they are similar in order
of magnitude. Firstly, we analyze the complexity of the convolu-
tion operation. For ρ-neighborhood, each convolution operation
of IntentNet needs an aggregation with O(m ∗ ρ) complexity, a
vector-wise scanning with O(m ∗ L) complexity (L is the number

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2351

...

Convolve
Pool

(U-Brand-U)

...

(1)from NA

Pool
(U-Shop-U)

Pool
(U-Word-U)

...

0

 A

CONVOLVE
(1)

…
…

…
…

…

Convolve

…

CONVOLVE
(2)

A

...

Self

Pool
(U-Brand-U)

...

Pool
(U-Shop-U)

Pool
(U-Word-U)

...

Convolve

1hA

2hA

…
…

Share local filters’
weights in layer 1

Share local filters’
weights in layer 2

Dense
Network

1h 2h

Self

(2)from NA

(3)from NA

from N

from N

from N

(1)

(2)

(3)

A

A

A

h

Figure 4: Overview of our IntentNet model

of local filters) and a local filters merge with O(m ∗ L) complexity.
Putting them together, the time cost is O(m ∗ (ρ + L)). Since ρ ≪m
and L ≪ m are typically small integers1, they can be regarded as
constants. Then we have O(m ∗ (ρ + L)) ≈ O(m). In comparison,
GraphSage (using ordinary node sampling for training) needs an ag-
gregation with O(m∗ρ) complexity and a dense convolution (Eq.(2))
with O(m2) complexity. The total cost is O(m ∗ (ρ +m)) ≈ O(m2)
for each convolution operation. Now we analyze for q-stacked
graph convolution. Both algorithms will run q iterations, where
the r -th iteration needs (1 + ρ + · · · + ρq−r) =

ρq−r+1−1
ρ−1 num-

ber of graph convolutions. For q iterations, both algorithms need
ρ+ρ2+· · ·+ρq−q

ρ−1 ≈ ρq−1 number of graph convolutions. In summary,
IntentNet’s time cost is O(ρq−1 ∗m+m2) (them2 term corresponds
to the cost of the fully-connected layers after the q convolutional
layers), while GraphSage’s cost is O(ρq−1 ∗m2). We conclude that
IntentNet is more efficient than GraphSage.

Heterogeneous relationships. We now extend IntentNet to cap-
ture more heterogeneous relationships of auxiliary information in
the model. Consider EU = E

(1)
U ∪E

(2)
U ∪ · · ·∪E

(R−2)
U with R−2 types

of user-user relationships. In this case, the vector-wise convolution
operation in Eq. (3) can be generalized as follows:

gk−1u (i) = σ (wk−1
u (i, 1) · hk−1u +

R−2∑
r=1

wk−1
u (i, r + 1) · hk−1

N(r)(u)) (5)

where hk−1
N(r)(u)

denotes the aggregated vector through the r -th

type of neighborhood according to S(r)U . Likewise, the weights
{wk−1

u (i, r + 1)}r=R−2r=0 of local filter i are shared on the graph. The
purpose of these weights is to learn the contribution of different
types of neighborhoods. For instance, how does the user-user (by
query words) relationship affects the final representation?

An intuitive overview of the generalized IntentNet model with
two convolutional layers is provided in Fig. 4. A “Convolve” box
performs the convolution function for one node on the graph (De-
tailed structure of a convolve box is shown in the second layer). It
takes the node itself and its pooled heterogeneous neighborhoods as
input. In each layer, convolution weights are shared among nodes.

1In our case, ρ = 10 and L = 3, whilem is at least several hundred, in order to well
consume large-scale training data

4.3 Dual Graph Convolution in HIN
To handle the heterogeneity between users and items, we propose
a dual graph convolution model to learn their embeddings. We use
xu and xv to represent the input feature vectors of user u and item
v , respectively. In addition, we also sample a negative item for each
user-item link to form a complete training tuple as (xu , xv , xneд),
where the negative item is served as a contrast for the positive item
in the training process.

We employ two IntentNets, IntentNetu and IntentNetv , for users
and items respectively. By iteratively running q times of convolu-
tional forward propagation as in Eq (1), Eq (5) and Eq (4) and ad-
ditional dense forward propagation via the fully-connected layers,
we can obtain the final user and item representations zu , zv , by
IntentNetu and IntentNetv respectively. Although there is semantic
gap between user space and item space, the additional three dense
layers of IntentNet can play a role in projecting both users and items
into a common embedding space. Besides, we also obtain zneд for
the sampled negative item in a training tuple by IntentNetv .

For training the parameters of the model, we minimize the fol-
lowing triplet loss function:

J(xu , xv , xneд) = max{0, zu · zneд − zu · zv + δ } (6)

This triplet loss is designed as a max-margin approach, where δ
denotes the margin hyper-parameter, and inner product is used to
measure the similarity score between a user node and an item node.
The core idea is that the score between the user and the linked
item should be higher than that between the user and a sampled
negative item. Minimizing Eq. (6) can actually maximize the margin
of these two scores, which results in a model where high scores
can probably lead to real connections.

Moreover, in order to train a robust model to distinguish positive
items from negative items that are similar, we sample negative items
in the same root category as the corresponding positive items to
ensure “hardness” of the learning. More details of negative sampling
are described in Appendix A.5.

4.4 The IntentGC Framework
We now summarize our solution in a framework for user-item
recommendation, as illustrated in Algorithm 1.

The IntentGC framework has three main components: 1) Net-
work Translation, 2) Training, 3) Inference. We provide more details
in the following:

Network Translation. The input of our algorithm is a heteroge-
neous information network G which is constructed by historical
records. Following the method described in Section 4.1, we gener-
ate second-order relationships by auxiliary nodes and translate the
origin HIN G into the user-item HIN G (line 2).

Training. Given the translated graphG , we train our model in four
steps: 1) Initialization. We initialize all parameters of the model and
obtain feature vectors for users and items (lines 4-5). For clarity,
Ωu (or Ωv) denotes the matrix of all parameters of IntentNetu
(or IntentNetv). Xu = [xu] and Xv = [xv] denotes the feature
matrices for all users and items, respectively; 2) Sampling. We
generate <xu , xv , xneд> tuples in a mini-batch manner, where
each <xu , xv> pair is sampled from user-item edges and xneд

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2352

Algorithm 1 IntentGC

1: Network Translation:
2: Translate the original HIN G = (V, E) into user-item HIN
G according to Section 4.1

3: Training:
4: Initialize all parameters of IntentNets: Ωu and Ωv
5: Obtain feature matrices Xu = [xu] and Xv = [xv]
6: For i = 1 to batchnum:
7: Sampling mini batch of tuples <xu , xv , xneд>
8: Generate representations for each tuple according to Sec-

tion 4.2. In real implementation, this is computed via matrix
operation:

9: Set zu = IntentNet(xu ,Ωu)

10: Set zv = IntentNet(xv ,Ωv)

11: Set zneд = IntentNet(xneд ,Ωv)

12: Update Ωu and Ωv by minimizing the triplet loss in Eq. (6)
13: Inference:
14: Zu = IntentNet(Xu ,Ωu) using trained Ωu
15: Zv = IntentNet(Xv ,Ωv) using trained Ωv
16: Obtain Ê

p
label by approximate K-nearest search according

to Zu and Zv

is a negative item sampled in the same root category (line 7); 3)
Forward propagation. We feed the mini-batch to IntentNetu and
IntentNetv and obtain the output representation vectors (lines 8-11).
Each IntentNet contains q graph convolutional layers for content
propagation and three fully-connected layers for capturing feature
interactions; 4) Parameter Updating. We update the parameters of
model by performing gradient descent to minimize the triplet loss
function in Eq. (6) (line 12). Steps 2-4 are performed iteratively until
stopping condition is met.

Inference. After training, we can process all users and items to get
their Z vectors (lines 14-15), and perform approximate K-nearest
neighbors search [1] accordingly for recommendation (line 16).

5 EXPERIMENTS
To demonstrate the effectiveness of our methods for user-item
recommendation, we conduct a comprehensive suite of experiments
on two large-scale datasets for offline evaluation (Section 5.3), and
also via online A/B test on the advertising platform of Alibaba
(Section 5.4). We aim to answer the following questions: i) How does
IntentGC perform compared to state-of-the-art recommendation
algorithms? ii) Is the proposed IntentNet model more efficient and
effective than GraphSage on billion-scale graph? iii) Can multiple
kinds of auxiliary relationships further improve the performance?

5.1 Datasets
We use two real-world datasets with timestamps in offline evalua-
tion: 1) a dataset of 9 days’ records extracted from Taobao App of
Alibaba, denoted as Taobao; 2) a public dataset with product reviews
provided by Amazon, denoted as Amazon2. In Taobao dataset, we
treat user clicks on items as explicit preferences, so the task is to
recommend a user a list of items that he would probably click. In
2http://jmcauley.ucsd.edu/data/amazon/

Table 1: Statistics of two datasets

dataset #users #items #labeled edges #auxiliary edges
Taobao 278M 250M 1.8 billion 44.1 billion
Amazon 14M 6M 12 M 37 M

Amazon dataset, we consider high ratings as explicit preferences on
items, so the prediction task is to recommend a user a list of items
that would probably receive high ratings from him. The statistics of
the two datasets are shown in Table 1. In online evaluation, for each
day we will use a dataset with similar format of Taobao, except that
it contains the latest records of the last week. We leave the details
of data preparation in Appendix A.3.

5.2 Compared Methods
The compared algorithms in our experiments include:
DeepWalk: This is a classic homogeneous network embedding
method. We implement a similar approach like [20] for item-item
recommendation.
GraphSage: This is a state-of-the-art method of GCN. Like PinSage
in [22], we implement it for item-item recommendation.
DSPR: This method is a Deep Semantic Similarity Model (DSSM)
based algorithm adopted by many companies [21], including Al-
ibaba. It utilizes only explicit preferences in the model.
Metapath2vec++: This is a widely used heterogenous network
embedding algorithm [5]. We implement it on the translated graph
G and utilize user-user-item-item as the meta-path to obtain repre-
sentations.
BiNE: This method preserves both explicit preferences and one
type of auxiliary relationships by joint optimization (regularization)
[7]. We implement it with the deduced user-user/item-item relation-
ships as in [7], which can also be viewed as auxiliary relationships.
IntentGC(Single): This is a simple version of IntentGC that we
propose in this paper. In this version, we capture only one type of
auxiliary relationships (the same one with BiNE) for comparison.
IntentGC(All): This is the full version of IntentGC. In this version,
we incorporate all kinds of heterogeneous auxiliary relationships.

There are actually three types of methods in our experiments: 1)
DeepWalk and GraphSage are item-item recommendation methods
which do not capture user information in the model. 2) DSPR is
a user-item recommendation method that directly predicts user
preferred items but consider no auxiliary relationships. 3) Meta-
path2vec++, BiNE, and our methods not only take advantage of
explicit preferences but also auxiliary relationships. This setting
provides us a comprehensive study of our methods as well as in-
sights of progress in recommendation.

5.3 Offline Evaluation
To evaluate the performance, we employ two metrics: 1) area under
the ROC curve (AUC) and 2) mean reciprocal rank (MRR), which
takes into account the rank of item i among recommended items
for user u:

MRR =
1
|L|

∑
(u,i)∈L

1
⌈Ru,i/100⌉

(7)

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2353

Table 2: Offline performance of compared methods

dataset Taobao Taobao Amazon Amazon
algorithm AUC MRR AUC MRR

DeepWalk 0.622829 0.0822 0.675525 0.6230
GraphSage 0.653121 0.1186 0.716853 0.7847

DSPR 0.672956 0.1881 0.778336 1.2102

metapath2vec++ 0.673261 0.1893 0.783334 1.3325
BiNE 0.674835 0.1920 0.789051 1.4693

IntentGC(Single) 0.689367 0.2718 0.826094 2.2249
IntentGC(All) 0.701740 0.3746 0.837589 2.7981

where Ru,i is the rank of the item i in the recommended item list
for user u, L is the set of positive user-item pairs (i.e., clicks in
Taobao, high ratings in Amazon) in the test dataset. Due to the large
scale of testing instances (over 3 billion in Taobao), we employ a
scaled-version of the MRR in Eq. (7) by the factor 100 as in [22].

Performance Comparison. The performance results of all the
methods are presented in Table 2. In Taobao dataset, it shows that
our proposed IntentGC algorithms outperform state-of-the-art al-
gorithms significantly in both AUC and MRR. There are four impor-
tant observations in Table 2: 1) from DeepWalk to GraphSage, the
AUC increases 0.030 and MRR increases 44.2%, indicating that the
content propagation power of GCN is quite useful for recommen-
dation; 2) from GraphSage to DSPR, the AUC increases 0.0198 and
MRR increases 58.6%. It presents the fact that predicting user-item
link directly is much more appropriate than homogeneous network
embedding methods in the task of user-item recommendation. 3)
from BiNE to IntentGC(Single), the AUC increases 0.015 and MRR
increases 41.5%. This demonstrates that, with the same type of
auxiliary relationships (deduced user-user/item-item relationships),
IntentGC can learn better than BiNE, which confirms our analy-
sis in the beginning. 4) from IntentGC(Single) to IntentGC(All),
the AUC increases 0.012 and MRR increases 37.8%, which demon-
strates that modeling heterogeneous auxiliary relationships can
further improve the performance. Moreover, IntentGC(ALL) also
outperforms DSPR. Because information of all auxiliary objects
are also designed in the input features shared among the methods,
IntentGC(ALL) could be viewed as reducing to DSPR when no aux-
iliary relationships are used. This suggests that further employing
the information of auxiliary objects as heterogeneous auxiliary
relationships in IntentGC can boost the performance. From these
observations, we can gain some insights of progress in the recom-
mendation literature. Similar results are also observed in the public
Amazon dataset in Table 2.

IntentNet vs. GCN. In order to scale up the graph convolution for
billion-scale user-item graphs, we propose IntentNet with the idea
of dividing the functionality of GCN into two separate components
(vector-wise convolutional network on graphs and dense network
on nodes). In this way, time complexity can be reduced dramatically.
Moreover, by avoiding unnecessary interactions in the model, less
parameters in IntentNet would better resist overfitting. To test these
ideas, we evaluate two IntentGC variants to model only one type
of auxiliary relationships in the experiment: one with IntentNet as
the model and the other with GraphSage (a state-of-the-art GCN

Table 3: IntentNet vs GCN in Taobao

algorithm Training Time AUC MRR

IntentGC(Single) with GraphSage 78h 0.680296 0.2226
IntentGC(Single) with IntentNet 19h 0.689367 0.2718
IntentGC(All) with IntentNet 21h 0.701740 0.3746

Table 4: IntentNet vs GCN in Amazon

algorithm AUC MRR

IntentGC(Single) with GraphSage 0.808307 1.7212
IntentGC(Single) with IntentNet 0.826094 2.2249

model) as the model. We denote them as “IntentGC(Single) with
IntentNet” and “IntentGC(Single) with GraphSage”, respectively.
Based on the same number of training epochs, it can be seen from
Table 3 that IntentGC(Single/All) with IntentNet takes 19/21 hours
while IntentGC(Single) with GraphSage takes 78 hours. Thus, In-
tentGC(Single/All) with IntentNet can accomplish training in one
day with a dataset of records from the past 7 days (i.e., the size
of the training set in Taobao dataset) in order to serve online for
tomorrow. However, IntentGC(Single) with GraphSage trained on
day T can only be deployed online on day T + 5, since it needs
more than 3 days of training. Because user-item recommendation
is highly sensible to time, IntentGC(Single) with GraphSage is not
feasible in practice. In our work, IntentNet also enables us to handle
more heterogeneous relationships with a similar training time.

Although IntentGC(Single) with GraphSage cannot provide a
trained model on T + 1 in reality, we still use the dataset of day
T + 1 to evaluate its performance for fair comparison. In Tables 3
and 4, we observe that IntentGC(Single) with IntentNet is also more
effective than IntentGC(Single) with GraphSage in both Taobao
and Amazon. It suggests that vector-wise convolution on graphs
actually avoids useless feature interactions and fits the data better
without overfitting.

Effectiveness of Different Types of Auxiliary Relationships.
By now, we have only compared one type of auxiliary relationships
in IntentGC(Single) with IntentGC(All). To study whether model-
ing heterogeneous auxiliary relationships can really lead to better
performance than any single type, we deploy a specific version of
IntentGC(Single) for each type of auxiliary relationships. In Fig. 5,
we name these specific versions by the type name of the objects
used for generating auxiliary relationships. For example, “word”
in Fig. 5 means we only use the auxiliary relationships generated
by user-word-user and item-word-item links, “item/user” in Fig. 5
means we use the same auxiliary relationships with BiNE. It shows
that, the IntentGC(All) outperforms all single type versions in both
Taobao and Amazon, which means that heterogeneous auxiliary
relationships can complement each other and are able to improve
performance when modeled together.

5.4 Online Evaluation
Based on the same algorithms we deploy a recommender system
on Alibaba Advertising Platform. In advertising, we recommend

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2354

item/user word prop shop brand all
0.65

0.7

0.75

A
U

C

0

0.1

0.2

0.3

0.4

M
R

R

AUC

MRR

(a) Taobao

item/user word prop all
0.75

0.8

0.85

0.9

A
U

C

0

1

2

3

M
R

R

AUC

MRR

(b) Amazon

Figure 5: The study of heterogeneous relationships

Table 5: Online performance of compared methods.

algorithm scaled CTR model capability

DSPR 3.2812 consider no auxiliary relationships
BiNE 3.3822 consider one type of auxiliary relationships
IntentGC(Single) 4.4136 consider one type of auxiliary relationships
IntentGC(All) 5.5964 consider heterogeneous auxiliary relation-

ships

ads (items) to users. This section presents the results of online A/B
tests in the Alibaba Advertising Platform. To evaluate different algo-
rithms, we use click-through rate (CTR) as the performance metric,
which is the key objective for advertising. A higher CTR means a
better advertising. It should be noted that, due to Alibaba’s busi-
ness policy, we temporarily cannot expose the absolute CTR values.
Instead we use a scaled CTR which multiplies the real CTR with a
constant coefficient. This will not affect performance comparison.

The results are reported in Table 5. We compare the performance
of our algorithms to the best baseline that considers only user-
item links (DSPR) and the best baseline that leverages both explicit
preferences and auxiliary relationships (BiNE). We find that In-
tentGC(Single) and IntentGC(All) consistently outperform these
baseline methods. It can be observed that the IntentGC(Single) im-
proves CTR by 30.4% compared to the best baseline BiNE, and
IntentGC(All) further improves CTR by 26.7% compared to In-
tentGC(Single).

6 CONCLUSIONS
In this paper, we propose the first framework to capture hetero-
geneous auxiliary relationships in recommendation. Empirical ex-
periments demonstrate that these heterogeneous relationships are
practically useful in predicting users’ preferences and complemen-
tary to each other. In our framework, we design a faster graph
convolutional network for billion-scale application. Experimental
results indicate that our method can avoid unnecessary feature
interactions with better effectiveness and efficiency.

In future work, it is worth extending our approaches and ideas to
other tasks, such as information retrieval. Besides, it is also mean-
ingful to study a dynamic graph convolutional model to emphasize
real-time user behaviors as well as interest drift.

REFERENCES
[1] Alexandr Andoni and Piotr Indyk. 2006. Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions. In Foundations of Computer
Science, 2006. FOCS’06. 47th Annual IEEE Symposium on. IEEE, 459–468.

[2] Joan Bruna,Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral net-
works and locally connected networks on graphs. arXiv preprint arXiv:1312.6203
(2013).

[3] Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C Aggarwal, and
Thomas S Huang. 2015. Heterogeneous network embedding via deep archi-
tectures. In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 119–128.

[4] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2018. A survey on network
embedding. IEEE Transactions on Knowledge and Data Engineering (2018).

[5] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable representation learning for heterogeneous networks. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 135–144.

[6] Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. 2015. A multi-view deep
learning approach for cross domain usermodeling in recommendation systems. In
Proceedings of the 24th International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 278–288.

[7] Ming Gao, Leihui Chen, Xiangnan He, and Aoying Zhou. 2018. BiNE: Bipartite
Network Embedding. (2018).

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[9] Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications,
and performance: A survey. Knowledge-Based Systems 151 (2018), 78–94.

[10] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 855–864.

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems.
1024–1034.

[12] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 173–182.

[13] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[14] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xDeepFM: Combining Explicit and Implicit Feature
Interactions for Recommender Systems. arXiv preprint arXiv:1803.05170 (2018).

[15] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701–710.

[16] Yu Shi, Qi Zhu, Fang Guo, Chao Zhang, and Jiawei Han. 2018. Easing Embed-
ding Learning by Comprehensive Transcription of Heterogeneous Information
Networks. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, 2190–2199.

[17] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 1067–1077.

[18] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 1, 2 (2017).

[19] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network em-
bedding. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 1225–1234.

[20] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun
Lee. 2018. Billion-scale Commodity Embedding for E-commerce Recommendation
in Alibaba. arXiv preprint arXiv:1803.02349 (2018).

[21] Zhenghua Xu, Cheng Chen, Thomas Lukasiewicz, Yishu Miao, and Xiangwu
Meng. 2016. Tag-aware personalized recommendation using a deep-semantic sim-
ilarity model with negative sampling. In Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management. ACM, 1921–1924.

[22] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. arXiv preprint arXiv:1806.01973 (2018).

[23] Shuai Zhang, Lina Yao, and Aixin Sun. 2017. Deep learning based recommender
system: A survey and new perspectives. arXiv preprint arXiv:1707.07435 (2017).

[24] Yizhou Zhang, Yun Xiong, Xiangnan Kong, Shanshan Li, Jinhong Mi, and Yangy-
ong Zhu. 2018. Deep Collective Classification in Heterogeneous Information
Networks. In Proceedings of the 2018 World Wide Web Conference on World Wide
Web. International World Wide Web Conferences Steering Committee, 399–408.

[25] Dingyuan Zhu, Peng Cui, Daixin Wang, and Wenwu Zhu. 2018. Deep variational
network embedding in wasserstein space. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. ACM, 2827–
2836.

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2355

http://www.deeplearningbook.org

A REPRODUCIBILITY
A.1 Hyper-parameter Settings
For reproducibility, we provide the settings of some key hyper-
parameter settings in Table 6. We also have a few insights for
hyper-parameter tuning in the following. 1) Compared algorithms
are not quite sensitive to learning rate between 0.001 to 0.0001; 2)
100-1000 is a good range for the mini-batch size. In our experiments,
we use 200; 3) The standard deviation for initializing parameters
is quite important. For network parameters, smaller standard de-
viation might lead to bad local optimum. For feature embedding
parameters, larger standard deviation causes slow convergence; 4)
10 neighbors for convolution are good enough for significantly im-
proving the performance, more neighbors raise the time complexity
and the improvement is not so much. For practical usage, we use
10 neighbors in this paper and also in product.

It is worth to note that, we use the same hyper-parameter set-
tings in experiments for all the algorithms, which results in good
convergence. This also ensures a fair condition for performance
comparison.

A.2 Hardware and Software
In distributed learning, we use a cluster of 200 machines for each
epoch of each algorithm, where an instance machine has 32 CPU
cores and 128G memory. All models are implemented on Tensor-
Flow v1.7 and Python v2.7. The wiki for distributed environment
setting is shared in https://github.com/alibaba/euler/wiki. With
the distributed environment been set, readers can reproduce our
results by running codes in https://github.com/peter14121/intentgc-
models.

A.3 Dataset Preprocessing
Taobao: We collect all records from October 11, 2018 to October 19,
2018 in Taobao App. It is a dataset with rich information including
user profiles, item descriptions, user click behaviors, purchase data,
impression lists of pages, etc. In this dataset, we consider user clicks
as explicit preferences on items (labeled edges). Using other types
of behaviors to be the preference labels is also valid. However, we
choose clicks since this kind of information is relatively abundant
and is a superset of purchases. To simulate a real recommenda-
tion task in offline evaluation, we use the data from October 11 to
October 17 as the training set, and use the data in October 19 as
the test set (we skip the data for 18th since in practice the model
training needs one day). In this way, the offline recommendation
is quite similar to the real usage in online product, and share the
same evaluation setting with the online A/B tests.

Amazon: This dataset is a subset of product reviews and metadata
provided by Amazon. Since user clicks are not provided in the
dataset, we consider high ratings (rating = 5) as explicit preferences
on items. With this definition, we can formulate a recommendation
task. BecauseAmazon only opened limited data in the public dataset,
we use a wide range of time for both training and test. In the
experiment, we use the data from August 1, 2006 to July 30, 2013
as the training set, and use the data from August 1, 2013 to July 23,
2014 as the test set. This still keeps the nature of predicting unseen
behaviors in the recommendation task and split ratio is also similar
to that of the Taobao dataset.

Table 6: Hyper-parameter settings

hyper parameter setting

learning rate 0.0001
optimizer momentum

mini-batch size 200
full-connected network structure [110, 800, 300, 100]

q-stack number 2
stddev for initializing network 0.8

stddev for initializing embedding 0.4
δ in Eq. (6) 0.3

neighbors for convolution 10

A.4 Feature Design
Since there are some differences between Taobao dataset and Ama-
zon dataset, we design features for each of them. The corresponding
features are illustrated in the following:

Features of Taobao: There are relatively richer information in
Taobao dataset since we own the complete records on the platform.
Main features for user nodes include: preferred categories (includ-
ing various levels), favorite brands, frequent query words, user
profile (age, occupation, income, province, gender, etc.), member
information (vip level, star level, etc.), purchased items’ statistics
(average price, trade number, etc.), visited shops, preferred prop-
erties, etc. Main features for item nodes include: words of title,
category path, properties, brand, shop information, statistics (price,
trade, CTR, etc.), profiles of frequently visiting users, business types
(e.g., b2c or c2c), etc. These are the major features designed for
Taobao dataset that can lead to good performance, we omit the
other features due to business secret.

Features of Amazon: We have limited access to Amazon’s data, so
we designed a smaller feature set for it. Main features for user nodes
include: preferred categories (including two levels), favorite brands,
preferred words collected from high rated items, high rated items’
statistics from metadata, average rating score, consumption level,
number of reviews written. Main features for item nodes include:
words of title, category path, brand, statistics from metadata (price,
reviews, etc.), popular review users’ statistics (rating distribution,
number of reviews written, etc.). Although we cannot access many
other features in Amazon, the major features are similar to the ones
of Taobao dataset. For a complete reveal of features, please refer to
the code.

We also obtain a helpful insight for feature designing by ex-
periments: Since we model recommendation as a link prediction
task on the user-item graph, it is expected that a user and his pre-
ferred items should be mapped closer. This inspires us to design
co-features for user nodes and item nodes. To be specific, if we
use price as a feature for item nodes, it is useful to design a match-
ing feature (e.g., average price) for user nodes as well. This is an
effective strategy to design features for user-item recommendation.

For either Taobao and Amazon dataset, there are two types of
features: continuous features and discrete features. For continu-
ous features (e.g., CTR), it is straightforward to add them directly
to the feature vector. For discrete features, we first construct an

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2356

https://github.com/alibaba/euler/wiki
https://github.com/peter14121/intentgc-models
https://github.com/peter14121/intentgc-models

Table 7: Kinds of heterogeneous auxiliary relationships

Type of Schema Information Example
user-word-user semantic desire office lady style, pet
user-brand-user brand taste and loyalty LOUIS VUITTON, APPLE
user-shop-user browsing habit specific visited shop list
user-item-user common interests on item specific clicked item list

user-property-user preferred property cheap, quality, fashion
item-word-item text similarity sweet, beautiful

item-property-item property similarity quality, fashion
item-brand-item brand similarity LOUIS VUITTON, APPLE
item-user-item common users specific coming user list
item-shop-item belong to the same shop specific shop

Feature Graph Translation

Data Processor

Train
worker Sampling

Distributed IntentGC Platform

mini- batch

node msg
hash

Distributed File System

Neural Networks Weights
Distributed IntentGC Platform

Inference
Vector Representations

Online
Recommender

Service

search request
result

Inference
worker

ItemUser

Training

Train
worker

Train
worker

Inference
worker

Inference
worker

node msg
hash

Figure 6: System Architecture

ID dictionary for mapping discrete values, and then use the em-
bedding lookup function to obtain the embedding vectors, which
will be concatenated into the feature vector. This preprocessing
operation is equivalent to feeding a one-hot vector through a fully-
connected neural layer for each discrete feature, but can be much
faster. If a feature contains multiple discrete values, we use the
tf.nn.embedding_lookup_sparse function for preprocessing.

A.5 Negative Sampling
For each labeled edge (u,v) that representsu’s explicit preference on
item v , we need to sample multiple negative instances for training,
so that we can learn representations by maximizing the relevance
between users and positive items while minimizing the relevance
between users and negative items. To make the model capable of
distinguishing hard cases, we only consider negative items in the
same leaf category as the positive item. The steps of negative sam-
pling include: 1) First, we calculate the weights (click frequency in
Taobao; review counts in Amazon) of items in each leaf category, so
the weights of the same item in different category are also different.
2) Then, for any labeled edge (u,v), we pick a negative item in the
same leaf category by weighted random selection. For instance, if
a category has three items with weights 70, 20, 10, they will be
picked with probabilities 0.7, 0.2, 0.1, respectively. 3) Last, if the

sampled item together with the target user form a positive instance
in the training set, we discard it and do re-sampling. This negative
sampling process is run 5 times for each labeled edge. Usually, more
negative instances lead to more robust performance but consume
more computing resources.

A.6 Heterogeneous Auxiliary Relationships
As mentioned in Section 4.1, robust heterogeneous relationships
and neighborhoods are generated according to the second order
proximity via auxiliary nodes. However, in large-scale graph, the
computation of second order proximity is not feasible. For instance,
a hot brand typically has millions of fans, which results in O(1012)
user pair counting for that brand. For this reason, we use another
practical implementation, in which we do not need to calculate
the complete second-order proximity. The basic idea is that, hot
brands are actually not useful to capture user relationship, because
almost everyone likes them. Hence, if two users prefer a same hot
brand, this only provides a very weak evidence that they share
similar tastes. Following this idea, we only calculate second-order
proximity by normal brands with less than 20k user visits per
day. We find that they are more useful to measure the degree of
similarity. For the other auxiliary nodes and edges, we generate
second order proximity relationships among users/items in a similar
way. We provide the kinds of captured auxiliary relationships in
Table 7. It should be noted that, since Amazon only provides a
limited access to its data, we can only use a subset of the whole
set of auxiliary relationships for Amazon. Nevertheless, all the
auxiliary relationships in Table 7 can be obtained in the Taobao
dataset. In addition, a very few nodes have less than 10 neighbors
(or no neighbor). For those nodes, default nodes are generated
by replicating its most similar neighbor (or the node itself if no
neighbor exists) and used to fill the blanks.

A.7 System Architecture
The system architecture of our approach is depicted in Fig. 6, which
is implemented to meet the requirements of the IntentGC frame-
work in Section 4.4. The data preprocessing of features and graphs
before model training is handled offline by MapReduce downstream
in Java, and both training and inference components are imple-
mented on a distributed IntentGC platform in Python. It is worth
to note that, this is a highly flexible implementation in that we
remove the limitation of training on clustered mini-graph batches.
Instead of producing clustered mini-graphs for every batch, we sam-
ple random nodes and fetch their neighborhoods from the graph
indexing engine by hash keys in the run time of training. The in-
ference component is much like the training component except
without backward propagation. After inference, user representa-
tions and item representations are stored in database for online
services. All experiments in this paper are implemented on a graph
learning framework named Euler. Its source code can be found in
https://github.com/alibaba/euler.

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2357

https://github.com/alibaba/euler

	Abstract
	1 Introduction
	2 Related Work
	2.1 Network Embedding
	2.2 Graph Convolutional Networks
	2.3 Recommendation

	3 Problem Definition
	4 Methodology
	4.1 Network Translation
	4.2 Faster Convolutional Network: IntentNet
	4.3 Dual Graph Convolution in HIN
	4.4 The IntentGC Framework

	5 Experiments
	5.1 Datasets
	5.2 Compared Methods
	5.3 Offline Evaluation
	5.4 Online Evaluation

	6 Conclusions
	References
	A Reproducibility
	A.1 Hyper-parameter Settings
	A.2 Hardware and Software
	A.3 Dataset Preprocessing
	A.4 Feature Design
	A.5 Negative Sampling
	A.6 Heterogeneous Auxiliary Relationships
	A.7 System Architecture

