
Gemini: A Novel and Universal Heterogeneous Graph
Information Fusing Framework for Online Recommendations

Jixing Xu∗
DiDi BizTech Dept.
Beijing, China

xujixing@didiglobal.com

Zhenlong Zhu
DiDi BizTech Dept.
Beijing, China

zhuzhenlong@didiglobal.com

Jianxin Zhao
DiDi BizTech Dept.
Beijing, China

zhaojianxin_i@didichuxing.com

Xuanye Liu
DiDi BizTech Dept.
Beijing, China

liuxuanye@didiglobal.com

Minghui Shan
DiDi BizTech Dept.
Beijing, China

shanminghui@didiglobal.com

Jiecheng Guo
DiDi BizTech Dept.
Beijing, China

jasonguo@didiglobal.com

ABSTRACT
Recently, network embedding has been successfully used in rec-
ommendation systems. Researchers have made efforts to utilize
additional auxiliary information (e.g., social relations of users) to
improve performance. However, such auxiliary information lacks
compatibility for all recommendation scenarios, thus it is difficult
to apply in some industrial scenarios where generality is required.
Moreover, the heterogeneous nature between users and items ag-
gravates the difficulty in network information fusion. Many works
tried to transform user-item heterogeneous network to two ho-
mogeneous graphs (i.e., user-user and item-item), and then fuse
information separately. This may limit the representation power of
learned embedding due to ignoring the adjacent relationship in the
original graph. In addition, the sparsity of user-item interactions is
an urgent problem need to be solved.

To solve the above problems, we propose a universal and effec-
tive framework named Gemini, which only relies on the common
interaction logs, avoiding the dependence on auxiliary information
and ensuring a better generality. For the purpose of keeping origi-
nal adjacent relationship, Gemini transforms the original user-item
heterogeneous graph into two semi homogeneous graphs from the
perspective of users and items respectively. The transformed graphs
consist of two types of nodes: network nodes coming from homo-
geneous nodes and attribute nodes coming from heterogeneous
node. Then, the node representation is learned in a homogeneous
way, with considering edge embedding at the same time. Simulta-
neously, the interaction sparsity problem is solved to some extent
as the transformed graphs contain the original second-order neigh-
bors. For training efficiently, we also propose an iterative training
algorithm to reduce computational complexity. Experimental re-
sults on the five datasets and online A/B tests in recommendations
of DiDiChuXing show that Gemini outperforms state-of-the-art
algorithms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’20, August 23–27, 2020, Virtual Event, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403388

CCS CONCEPTS
•Mathematics of computing→Graph algorithms; •Comput-
ing methodologies → Learning latent representations.

KEYWORDS
network embedding; heterogeneous graph; recommendation

ACM Reference Format:
Jixing Xu∗, Zhenlong Zhu, Jianxin Zhao, Xuanye Liu,Minghui Shan, and Jiecheng
Guo. 2020. Gemini: A Novel and Universal Heterogeneous Graph Informa-
tion Fusing Framework for Online Recommendations. In Proceedings of the
26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’20), August 23–27, 2020, Virtual Event, CA, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3394486.3403388

1 INTRODUCTION
With the rapid development of the Mobile Internet, recommen-
dation system has become an effective way to help user to get
personal interest (e.g., news, videos, products) from massive in-
formation resources, and also the key solution to help industry to
achieve greater business growth (e.g., e-commerce order, advertis-
ing revenue). As one of the most popular online serving platforms
of immediate ride-hailing in the world, DiDiChuxing serves hun-
dreds of millions of active passengers and millions of active drivers.
For different requirements of daily operation, DiDiChuxing builds a
dozen different types of recommendation scenarios, such as coupon
recommendation for passenger growth, product recommendation
for driver incentives and advertising recommendation for order
growth. In different recommendation scenarios, the recommended
items are completely different and the information available is very
different. So how to build a unified recommendation system to
address the recommendation requirements of all these scenarios
is a huge challenge, especially when facing the sparsity problem
of user-item interactions. With the development of deep learning,
many neural models[4, 11] have been proposed to directly learn low
dimensional representations of features (e.g. age, gender, category)
through huge amounts of click-through log data. These represen-
tations can capture memorization and generalization of features
and can be used to match user′s interest. However, these repre-
sentations do not directly capture the global topology relations
between users and users and between items and items (e.g., neigh-
bor relations). In recent years, network embedding has attracted

Applied Data Science Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

3356

https://doi.org/10.1145/3394486.3403388
https://doi.org/10.1145/3394486.3403388

Figure 1: Examples of transformation from user-item bipartite graph to Gemini-U and Gemini-I

extensive attentions from researchers and has been successfully
applied in recommendation system. Network embedding can fuse
information based on network topology and capture the relations
between nodes (e.g., first-order or second-order neighbors) by dis-
tributing a low dimensional representation for each node. As the
vectors learned in the same space, they can be used to measure
the similarity of the entities, which is crucial in recommendation
systems.

Several works[18, 34] have demonstrated that introducing ad-
ditional auxiliary information (e.g., comment text, query words)
can further improve effectiveness. However, these information is a
double-edged sword, improving performance while reducing the
model′s versatility. As mentioned above, the various type of users
(e.g., passenger, driver) and items (e.g., discount coupons, marketing
ads) make it difficult to implement such algorithms in a unified
recommendation system. Therefore, we urgently need a much more
universal network embedding that can be applied to all scenarios.
In a recommendation scenario, the most common information is
user-item interaction logs, which can be used to build a typical
user-item bipartite network. So in this paper, we try to propose a
more effective and universal network embedding based on the most
common user-item interactions without relying on any auxiliary
information.

There are two major challenges need to be solved. One is how
to deal with heterogeneous user and item nodes in network. Algo-
rithms [12, 21] that deal with homogeneous graph may not work
well. Research[28] converts user-item network to an item-item ho-
mogeneous network first, and then adopts random walk to capture
the co-occurrences between items. Its downside is that it cannot
preserve the topology relations between users. There are also a
few researches based on heterogeneous networks. To list a few,
researches[6, 7, 15] rely on meta-path (e.g., user-user-item-item)
that requires expert domain knowledge. Research[34] utilizes addi-
tional auxiliary information to transform the user-item heteroge-
neous network to two separate homogeneous networks (i.e., user-
user and item-item). Its downside is that it may limit the represen-
tation power of learned embedding due to missing the user-item
neighbor relations in original network topology. Its network infor-
mation fusions are done separately in the two transformed graphs,
so the fusion processes of users and items do not directly affect
each other. However, we found that combining the two network

fusion processes can further improve performance. BiNE[8] trans-
forms user-item heterogeneous network to user-user and item-item
homogeneous networks without relying on auxiliary information.
It preserves the first-order neighborhood relations between users
and items, but still separately does the two network information
fusions. Another challenge is how to solve the sparsity of user-item
interactions. In a real recommendation scenario of industry, a user
usually interacts with only a small number of items while an item
can only be exposed to a small number of users, which results in
a very sparse user-item network and limits the effectiveness of
embedding representation.

To solve the above problems, we propose aGraphConvolution[17]
based heterogeneous graph information fusing framework named
Gemini. Firstly, in order to be applied in various types of recom-
mended scenarios in DiDiChuxing, Gemini only utilizes the most
common user-item click logs. Secondly, instead of working directly
on the user-item heterogeneous network, Gemini transforms it
into two semi homogeneous graphs (i.e., Gemini-U and Gemini-I
in Figure 1) from the perspective of users and items respectively.
Gemini-U and Gemini-I have similar structures that consist of net-
work nodes and attribute nodes, just as twins, which is the origin
of its name. From the perspective of users, if two users both click
the same some items, then they have some common interests, thus
adding an edge in Gemini-U. These items are the attribute nodes of
the edge, referred to as Att-U for simplicity. In addition to providing
item embeddings to represent the common interests of the user
pair, Att-U can also characterizes the importance of the edge in two
ways. One way is the quantity of items, the more items there are,
the more important the edge is. The other way is the importance
of the individual item, and the more important the item is, the
more important the edge is. Some previous[34] works transform
heterogeneous user-item graph to user-user homogeneous graph,
but losing the original topology relations between user and item.
By contrast, the transformation from user-item graph to Gemini-U
does not lose any original topology information, because all user
nodes, item nodes and the relations between them can still be found
in Gemini-U, but just from a different perspective. The advantage of
this transformation is homogeneous Graph Convolution Network
(GCN) based algorithm can be applied on Gemini-U, just addition-
ally taking into account the item embeddings in Att-U. We extend
GCN based algorithm with a novel aggregate stage, in which we

Applied Data Science Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

3357

compute attention weights of local neighborhoods of nodes by tak-
ing into the quantity and quality of the items in Att-U account,
and then apply a weighted sum pooling. The detailed algorithm is
shown in Section 4. Similarly, from the perspective of items, we can
get Gemini-I and Att-I (i.e., user nodes of edge), and apply same
GCN algorithm. Thirdly, in training process, we share the embed-
dings of users and items between Gemini-U and Gemini-I, then we
can correlate the two network information fusing processes very
closely through the edge attributes Att-U and Att-I. This brings two
benefits: one is that the representations of the two types of nodes
are distinct but still in the same low dimensional space; the other
is that as network information fusing goes on, item embedding
combines the information of its multi-order neighbors, then the
neighbor relation information between items can be introduced
into user′s information fusing on Gemini-U. Similarly, such infor-
mation of users is also introduced into Gemini-I. In order to reduce
the time complexity of the joint training of the two graphs, we
also propose a Gemini-Collaboration algorithm to alternately train
them.

The main contributions of this work are summarized in the
following:

1)We propose a new heterogeneous graph fusing framework,
Gemini, which does not rely on any auxiliary information, and
handles heterogeneous graph more effectively through a novel and
effective network transformation. Thus, Gemini can be applied
to all kinds of recommended scenario and achieve satisfactory
results. To our best knowledge, this is the first work to transform
heterogeneous graph to two semi homogeneous graphs that does
not miss any key topology information.

2)We propose a GCN based algorithmwhich effectively processes
graph edge consisting of heterogeneous nodes by capturing the
global importance and local importance of these nodes. Simulta-
neously, through an attention function, the algorithm focuses on
more important homogeneous neighbors in aggregation stage. In
addition, adding edge information while aggregating information
from neighbor nodes can exchange heterogeneous topology infor-
mation between Gemini-U and Gemini-I. Thus, the information
fusion processes on the two graphs are interdependent. To our best
knowledge, this is also the first work to take into account the above
optimizations.

3)To some extent, Gemini solves the sparsity problem of user-
item interactions. Because, in addition to the first-order neighbor
relations of user-item, the second-order neighbor relations of user-
user and item-item are introduced to Gemini-U and Gemini-I.

4)We design a training algorithm, Gemini-Collaboration, that
enables the Gemini framework to run on a large-scale dataset.

5)We conduct extensive offline experiments and deploy an online
A/B tests at DiDiChuxing. Experimental results show the superior-
ity of our Gemini over state-of-the-art algorithms.

2 RELATEDWORK
Recently, network embedding[32] has attracted extensive attention.
It aims to learn latent low dimensional representations of network
nodes based on topology structure. According to the types of nodes
in the network, there are two types of network: homogeneous and
heterogeneous. For homogeneous network,matrix decomposition

based works[1, 3, 33] try to decompose the representations of the
nodes from the adjacency matrix of network; random walk based
works[10, 21, 24] convert network into articles with nodes as words,
and then use SkipGram[20] to get the representations of nodes;
SNDE[26] and GraphGAN[27] use deep neural networks to learn
network embedding. In addition to the mentioned heterogeneous
network algorithms in Introduction section, HEER[23] adds edge
representation to bridge the semantic gap between heterogeneous
nodes; JUST[16] embeds heterogeneous graphs using randomwalks
with jumps and stops without involving meta-paths.

Nowadays, more attention is focused on GCNs[2, 12, 17, 31].
Graphsage[12] is a typical GCN model that instead of training indi-
vidual embeddings for each node, it learns a function that generates
embeddings by sampling and aggregating local neighbors. GAT[25]
believes that different neighbor nodes have different importance,
so it adopts attention mechanism to learn the weight of different
neighbor nodes.

In a recommendation system, network can be constructed ac-
cording to user-item interactions. So many works[18, 19, 22, 29, 30,
34, 35] try to introduce network embedding into recommendation
system to retrieve the closest items in the embedding space. To list
a few, GeoSAGE[30] extends Line[24] to multiple bipartite graphs
to obtain the embedding of poi. PGE[19] captures the sequential
impact of items by converting historical purchase records into item
network, and then adopts the SkipGram to obtain item embedding.
The HERec[22] proposes meta-path based random walk strategy
to generate meaningful node sequences for network embedding.
DiffNet[29] is a typical GCN based algorithm that uses a layer-wise
influence propagation structure to model how user embeddings
evolve as the social diffusion process continues.

3 PROBLEM DEFINITION
In this section, we introduce some related concepts and notions,
and then define the problem.

Definition1. (Interaction Record). An interaction record indicates
a single interaction between an certain user and an item, denoted
by < 𝑢, 𝑣 >, where 𝑢 denotes the user and 𝑣 denotes the item.

Definition2. (Bipartite Graph). A bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸),
where 𝑈 is the set of users, 𝑉 is the set of items and 𝐸 ⊆ 𝑈 ∗𝑉 is
the set of edges between 𝑈 and 𝑉 which is based on interaction
records. Note that a bipartite graph is composed of two types of
nodes: users and items, so it is a heterogeneous graph.

Definition3. (Semi homogeneous Graph). A semi homogeneous
graph 𝐺 = (𝑋, 𝐸,𝐴𝑡𝑡), where 𝑋 is the set of node and 𝐸 ⊆ 𝑋 ∗ 𝑋
is the set of edges. 𝐴𝑡𝑡 represents the set of attributes nodes on 𝐸,
and the type of attribute nodes is different from 𝑋 . We use 𝐴𝑡𝑡𝑟𝑖, 𝑗
to represent the set of attribute nodes on the edges of node 𝑥𝑖 and
node 𝑥 𝑗 . If we only consider the topology of 𝐺 , then 𝐺 is a homo-
geneous Graph. If we also consider edge attributes, then G is not a
homogeneous Graph. In this case, we call G semi homogeneous.

Definition4. (User-Item Recommendation). Given a user𝑢, the task
of user-item recommendation is to recommend a list of items that
u would be interested based on the interaction records. A bipartite
graph 𝐺 = (𝑈 ,𝑉 , 𝐸) can be built based on interaction records so
that we can transform the user-item recommendation problem into
a link prediction problem on graph.

Applied Data Science Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

3358

4 RESEARCH METHODS
In this section, we detail the proposed framework Gemini, which
has four key characteristics: 1) Network Transformation, which
transforms user-item heterogeneous graph into two semi homoge-
neous graphs, Gemini-U and Gemini-I. 2) Edge embedding, which
is represented with attribute information. 3) Information Convolu-
tion, by which we could learning the user and item representation
from the graph efficiently. 4) Gemini-Collaboration, an interac-
tive(alternate) training procedure, which speeds up the training
without hurting performance.

4.1 Network Transformation
As shown in Figure 1, the most common network in recommenda-
tion system is the bipartite graph that describes the interactions
(e.g., click) between users and items. To utilize the bipartite, most
works try to transform such a bipartite to user-user graph or/and
item-item graph, with some assumed auxiliary information, such as
social relations between users. However, the major downside is the
reliance on specific auxiliary information may limit the scope of its
application and the original user-item topology relationships. Ap-
proaches directly model the heterogeneous graph usually encounter
sparsity problem as the user-item interaction is sparse. Compared
with 1-hop neighbors, nodes have more 2-hop neighbors, which can
be used to alleviate the problem of graph sparsity. And compared
to the different types of 1-hop neighbors, the 2-hop neighbors have
the same node type. So the biggest challenge is to learn network
embedding by using second-order neighbor relationships, while
taking first-order neighbor relationship into account and not rely-
ing on any additional auxiliary information. To conquer this, we
transforms user-item heterogeneous graph into two semi homo-
geneous graphs, Gemini-U and Gemini-I, from the perspective of
users and items respectively.

Specifically, if two users both link to the same items, then they
have some common interested items, thus adding an edge between
them in Gemini-U. These items are the attributes of the new edge,
referred to as Att-U as mentioned above. Similarly, if two items both
link to the same some users, then they share the same target user
group, thus adding an edge between them in Gemini-I. These users
are the attributes of the new edge, referred to as Att-I. Att-U and
Att-I describe the reason why the edge is built and then the original
user-item neighbor relationships are all kept in edges. Then, the
nodes in Gemini-U/Gemini-I are all same type and the 1-hop neigh-
bors describe the original seconded-order neighbor relationships.
Finally, we can easily extend a GCN based algorithm to learn node
representations, not relying on any additional auxiliary information
and not missing any topology relationship.

4.2 Edge Embedding
In Gemini framework, edge information is crucial. First of all, the
edge attributes (i.e., nodes in Att-U and Att-I) describe the original
first-order neighbor relationship and can be used to measure the
strength of neighbor relationships of nodes in Gemini-U or Gemini-
I. Second, through sharing node embeddings, the edge attributes
can provide information of heterogeneous nodes in another graph.
This brings two advantages: one is that the topology information of
Gemini-U/Gemini-I, especially the high order neighbor relationship,

is exchanged to each other; the other is that the separate graphs,
Gemini-U and Gemini-I, are closely related to each other and their
network information fusion affects each other.

Sum Pooling. An intuitive idea is that the more attribute nodes
on edge, the more information the edge contains. Based on this,
instead of mean pooling, we use a sum pooling to aggregate edge
information as follows:

he =
∑

f ∈Att−Ui,j or Att−Ii,j
hf (1)

Where 𝑒 = 𝐴𝑡𝑡 − 𝑈𝑖, 𝑗 𝑜𝑟 𝐴𝑡𝑡 − 𝐼𝑖, 𝑗 is an edge between node 𝑖
and node 𝑗 , 𝑓 is an attribute nodes of the 𝑒 , ℎ𝑒 and ℎ𝑓 are the
embedding vectors. The downside of this approach is that it ignores
the importance of the different attribute node. Usually, different
node plays different roles, especially in different edges.

Local & Global Information.Different attribute nodes usually
appear different times on the edge due to that, for example, an
item may be clicked by two user neighbors many time. The more
times a node appears on the edge, the more important it becomes.
So the number of times a node appears on an edge describes the
importance of the node to the edge, which we call Local Information
because that this is from the perspective of a single edge. Conversely,
the more edges a node appears on, the less important it is. We call
the IDF of node Global Information because that this is from the
perspective of all edges.

TF-IDF Pooling. To consider the quantity and quality of the
attributes on edge simultaneously, we combine Sum Pooling (i.e.,
quantity) and TF-IDF (i.e., quality) to propose TF-IDF Pooling as
follows:

he =
∑

f ∈Att−Ui,j or Att−Ii,j
hf ⊙ htf−idff (2)

where ⊙ denotes the element-wise product of two vectors. We
divided the TF-IDF values of all nodes from low to high into K
slots. For each slot, we learn a parameter vector (i.e., ℎ𝑡 𝑓 −𝑖𝑑 𝑓𝑓) to
represent its weight vector.

4.3 Information Convolution
For a central node, the core idea of GCNs is to iteratively use the
embeddings of its neighbor nodes to update its own embedding.
Here, we extend the typical GCNs for working on Gemini-U and
Gemini-I. The key issue is to effectively handle edge embedding
when aggregating information from neighbors.

Attention based Aggregating. Our aggregator function is an
attention-layer that combines edge embeddings and node embed-
dings, which can be formulated as follows:

hk−1Nk (u) = AGG(hk−1u , hk−1d , hk−1e ,∀d ∈ Nk (u)) (3)

Where 𝑁𝑘 (𝑢) is a fixed-size set of neighbors of𝑢, sampling from the
set {(𝑢,𝑑) ∈ 𝐸}. ℎ𝑘−1𝑢 , ℎ𝑘−1

𝑑
∈ R𝑑𝑘−1 is the embedding of node𝑢 and

𝑑 after the (k-1)-th convolution-layer. ℎ𝑘−1𝑒 donates the embedding
of the edge between node 𝑢 and node 𝑑 after (k-1)-th convolution-
layer.

When we calculate the attention weights, we need not only
information about the neighbor nodes, but also about the edges, so

Applied Data Science Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

3359

Figure 2: Example of calculation process of Gemini

we need to get the edge vectors first:

hk−1e =
∑

f ∈Att−Ui,jorAtt−Ii,j
hk−1f ⊙ htf−idff (4)

Where ℎ𝑘−1
𝑓

denotes the embedding of attribute node 𝑓 after the(k-
1)-th convolution-layer. The attention aggregator can be calculated
as follow:

hk−1ed = CONCAT(hk−1e , hk−1d) (5)

qd = VTTanh(Whk−1u + Uhk−1ed) ∀d ∈ Nk (u) (6)

qd =
eqd∑

a∈Nk (u) e
qa (7)

AGG(hk−1u , hk−1d , hk−1e) =
∑

a∈Nk (u)
(qa ∗ hk−1ed) (8)

Where 𝑊 ∈ R𝑑𝑘−1∗𝑑𝑘−1 , 𝑈 ∈ R𝑑𝑘−1∗2𝑑𝑘−1 and 𝑉 ∈ R𝑑𝑘−1∗1 are
parameter matrices.

Edge CONV. After the aggregation, We pass the neighbor infor-
mation to self node by the following convolution function:

hku = 𝜎 (WkCONCAT(hk−1u , hk−1Nk (u))) (9)

Where ℎ𝑘𝑢 is the embedding of node 𝑢 after the(k)-th convolution-
layer. This function can be expressed as 𝐶𝑂𝑁𝑉 .

4.4 Gemini Framework
We now summarize our proposed Gemini framework, as illustrated
in Algorithm 1. Line 2-12 is the sampling stage of Gemini. Each set
𝑈 𝑘 contains the nodes that are needed to compute the representa-
tions of nodes 𝑢 ∈ 𝑈 𝑘+1, the same for each set 𝑉𝑘 . Lines 15-20 and
21-27 correspond to the aggregation stage of the user nodes and the
item nodes, respectively. Given a user 𝑢 and an item 𝑣 , we can get
their final representation ℎ𝑘𝑢 and ℎ𝑘𝑣 by their respective aggregation
and convolution functions. We use two full connection-layers to
predict whether the user is interacted (eg.click) in item, and the
calculation process is shown in equation 10.

p = CLASSIFIER(CONCAT(hku, hkv)) (10)

𝑝 is the probability of the user interactingwith the item. In our work,
we take the cross entropy as the loss function, and the negative
sample is the item exposed by the user but not clicked.

Algorithm 1: Gemini
Input: graphs Gemini-U and Gemini-I; number of-layers 𝐾 ;

non-linearity 𝜎 ; dataset: (𝑢𝑖 , 𝑣𝑖), ∀𝑖 ∈ {1, ...𝑛}
Output: Hidden states of the 𝐾-th layer, include the hidden

states of users: 𝑧𝑢 ,∀𝑢 ∈ 𝑈 and the hidden states of
items: 𝑧𝑣,∀𝑣 ∈ 𝑉

1 Initialize all parameters: user and item embedding matrix
𝐻0
𝑈
and 𝐻0

𝑉
; differentiable aggregator functions: 𝐴𝐺𝐺𝑢𝑘 ,

𝐴𝐺𝐺𝑣𝑘 , ∀𝑘 ∈ {1, ...𝐾}; differentiable convolution functions:
𝐶𝑂𝑁𝑉𝑢𝑘 , 𝐶𝑂𝑁𝑉𝑣𝑘 , ∀𝑘 ∈ {1, ...𝐾}; classifier: 𝐶𝐿𝐴𝑆𝑆𝐼𝐹𝐼𝐸𝑅

2 𝑈𝐾 = 𝑈 ,𝑉𝐾 = 𝑉

3 for 𝑘 = K-1...1 do
4 𝑈 𝑘 = 𝑈 𝑘+1

5 for 𝑛𝑜𝑑𝑒 ∈ 𝑈 𝑘 do
6 𝑈 𝑘 = 𝑈 𝑘 ∪ 𝑁𝑘 (𝑛𝑜𝑑𝑒)
7 end
8 𝑉𝑘 = 𝑉𝑘+1

9 for 𝑛𝑜𝑑𝑒 ∈ 𝑉𝑘 do
10 𝑉𝑘 = 𝑉𝑘 ∪ 𝑁𝑘 (𝑛𝑜𝑑𝑒)
11 end
12 end
13 for 𝑏 = 1...𝑏𝑎𝑡𝑐ℎ𝑛𝑢𝑚 do
14 Sampling batch of tuples < 𝑢, 𝑣 >
15 for 𝑘 = 1...K do
16 for 𝑢 ∈ 𝑈 𝑘𝑢 do
17 ℎ𝑘−1

𝑁𝑘 (𝑢) = 𝐴𝐺𝐺𝑢𝑘 (ℎ
𝑘−1
𝑢 , ℎ𝑘−1

𝑑
, ℎ𝑘−1𝑒 ,∀𝑑 ∈ 𝑁𝑘 (𝑢))

18 ℎ𝑘𝑢 = 𝐶𝑂𝑁𝑉𝑢𝑘 (𝐶𝑂𝑁𝐶𝐴𝑇 (ℎ𝑘−1𝑢 , ℎ𝑘−1
𝑁𝑘 (𝑢)))

19 end
20 end
21 for 𝑘 = 1...K do
22 for 𝑣 ∈ 𝑉𝑘𝑣 do
23 ℎ𝑘−1

𝑁𝑘 (𝑣) = 𝐴𝐺𝐺𝑣𝑘 (ℎ
𝑘−1
𝑣 , ℎ𝑘−1

𝑑
, ℎ𝑘−1𝑒 ,∀𝑑 ∈ 𝑁𝑘 (𝑣))

24 ℎ𝑘𝑣 = 𝐶𝑂𝑁𝑉𝑣𝑘 (𝐶𝑂𝑁𝐶𝐴𝑇 (ℎ𝑘−1𝑣 , ℎ𝑘−1
𝑁𝑘 (𝑣)))

25 end
26 end
27 𝑝 = 𝐶𝐿𝐴𝑆𝑆𝐼𝐹𝐼𝐸𝑅(𝐶𝑂𝑁𝐶𝐴𝑇 (ℎ𝑘𝑢 , ℎ𝑘𝑣))
28 end
29 𝑧𝑢 = ℎ𝑘𝑢 ,∀𝑢 ∈ 𝑈 , 𝑧𝑣 = ℎ𝑘𝑣 ,∀𝑣 ∈ 𝑉

Joint training.When updating the embedding ℎ𝑘𝑢 of network
node in Gemini-U or Gemini-I, the attribute node embeddingℎ𝑘−1

𝑓
is

also a required input which needs to be computed by the same infor-
mation convolution on another graph. So Gemini-U and Gemini-I
are interdependent and they are jointly trained.

4.5 Gemini-Collaboration Framework
Gemini Complexity. Intuitively, the time complexity of joint
training can be very high. For the sake of simplicity, we approxi-
mate the number of nodes introduced in the training to the time
complexity. Assume that: 1) the neighbor sampling number for K
convolution layer on Gemini-U and Gemini-I are 𝑁𝑢,𝑧 and 𝑁𝑖,𝑧 ,

Applied Data Science Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

3360

𝑧 ∈ {1,...,𝐾}; 2) the average number of attribute nodes on edge are
𝑁𝑒 .

As shown in Figure 2, for a user, the calculation of its 1-layer em-
bedding requires𝑁𝑢,1 1-hop neighbors and𝑁𝑢,1∗𝑁𝑒 attribute nodes
(i.e., item nodes). Similarly, the calculation of 1-layer embedding of
an item requires 𝑁𝑖,1 1-hop neighbors and 𝑁𝑖,1 ∗𝑁𝑒 attribute nodes
(i.e., user nodes). In the case of K = 2, for a user, its 2-layer embedding
requires the 1-layer embeddings of 𝑁𝑢,1 1-hop neighbors and 𝑁𝑢,1 ∗
𝑁𝑒 attribute nodes, which requires 𝑁𝑢,1 ∗𝑁𝑢,2 +𝑁𝑢,1 ∗𝑁𝑒 ∗𝑁𝑖,1 ∗𝑁𝑒
user nodes and 𝑁𝑢,1 ∗𝑁𝑢,2 ∗𝑁𝑒 +𝑁𝑢,1 ∗𝑁𝑒 ∗𝑁𝑖,1 item nodes, a total
of 𝑁𝑢,1 ∗𝑁𝑢,2+𝑁𝑢,1 ∗𝑁𝑒 ∗𝑁𝑖,1 ∗𝑁𝑒 +𝑁𝑢,1 ∗𝑁𝑢,2 ∗𝑁𝑒 +𝑁𝑢,1 ∗𝑁𝑒 ∗𝑁𝑖,1
nodes.𝑁𝑖,1∗𝑁𝑖,2+𝑁𝑖,1∗𝑁𝑒 ∗𝑁𝑢,1∗𝑁𝑒+𝑁𝑖,1∗𝑁𝑖,2∗𝑁𝑒+𝑁𝑖,1∗𝑁𝑒 ∗𝑁𝑢,1
nodes are required to compute the 2-layer embedding of item. As K
increases, the amount of computation becomes too much for us to
handle.

Therefore, we propose an iterative trainingmethod namedGemini-
Collaboration to reduce computational complexity. As shown in
Algorithm 2, the core idea of Gemini-Collaboration is that in one
iteration, when the 𝑧-th layer 𝑧 ∈ {1, · · · , 𝐾} embedding is calcu-
lated, the embedding of its attribute nodes is the calculated value of
this or last iteration and the attribute embedding is not updated in
this lteration. For example, in the first iteration, we first calculate
the Gemini-U graph, items as the attribute node, we use 𝐻0

𝑖
(1)

which denotes the 0-layer embedding of item in the first iteration,
to participate in the calculation, and we get 𝐻𝑘𝑢 (1) which is the
K-layer embedding of user, then calculate the Gemini-I graph, in
this case the user is the attribute nodes, we use𝐻𝐾𝑢 (1) to participate
in the calculation, we get 𝐻𝐾

𝑖
(1). In the second iteration, when cal-

culating the Gemini-U graph, item is the attribute node, and 𝐻𝐾
𝑖
(1)

is used to participate in the calculation to get 𝐻𝐾𝑢 (2) and so on.
Gemini-CollaborationComplexity. In each iteration of Gemini-

Collaboration, for a user, 𝑁𝑢,1 + 𝑁𝑢,1 ∗ 𝑁𝑢,2 user nodes and 𝑁𝑢,1 ∗
𝑁𝑒 + 𝑁𝑢,1 ∗ 𝑁𝑢,2 ∗ 𝑁𝑒 item nodes participate in the calculation
and only 𝑁𝑢,1 + 𝑁𝑢,1 ∗ 𝑁𝑢,2 user nodes are updated. For an item,
𝑁𝑖,1 + 𝑁𝑖,1 ∗ 𝑁𝑖,2 item nodes and 𝑁𝑖,1 ∗ 𝑁𝑒 + 𝑁𝑖,1 ∗ 𝑁𝑖,2 ∗ 𝑁𝑒 user
nodes participate in the calculation and only 𝑁𝑖,1 + 𝑁𝑖,1 ∗ 𝑁𝑖,2 item
nodes are updated.

5 EXPERIMENTS
In this section, we evaluate our framework on five offline datasets
and perform online A/B tests on four recommendation scenarios of
DiDiChuxing. The launched system architecture is shown in Figure
6 and Appendix A.1. For the baselines, we choose four state-of-the-
art methods:
DeepWalk[21]: It involves language model to analyze truncated
random walks on a graph. We apply it to user-item recommenda-
tion.
Graphsage[12]: It is a state-of-the-art method of GCN that aggre-
gators neighborhood information into center nodes. We used the
same classifier as Gemini in Graphsage and implement it for user-
item recommendation. We set the number of GCN layers to 2 and
4, respectively.
Metapath2vec++[6]: It captures the relationships between hetero-
geneous nodes through artificially defined meta-paths. We apply
it to the original bipartite user-item graph and to the Gemini-U,
Gemini-I graph, and set the meta-path to user-user-item-item.

Algorithm 2: Gemini-Collaboration
Input: graphs Gemini-U and Gemini-I; number of layers 𝐾 ;

non-linearity 𝜎 ; dataset: (𝑢𝑖 , 𝑣𝑖), ∀𝑖 ∈ {1, ...𝑛}
Output: Hidden states of the 𝐾-th layer, include the hidden

states of users: 𝑧𝑢 ,∀𝑢 ∈ 𝑈 and the hidden states of
items: 𝑧𝑣,∀𝑣 ∈ 𝑉

1 Initialize all parameters: user and item embedding matrix
𝐻0
𝑢 (1) and 𝐻0

𝑣 (1); differentiable aggregator functions:
𝐴𝐺𝐺𝑢𝑘 , 𝐴𝐺𝐺𝑖𝑘 , ∀𝑘 ∈ {1, ...𝐾}; differentiable convolution
functions: 𝐶𝑂𝑁𝑉𝑢𝑘 , 𝐶𝑂𝑁𝑉𝑖𝑘 , ∀𝑘 ∈ {1, ...𝐾}; classifier:
𝐶𝐿𝐴𝑆𝑆𝐼𝐹𝐼𝐸𝑅; Neighbor nodes of different layers:
𝑈𝐾 ,𝑉𝐾 ,∀𝑘 ∈ {1, ...𝐾}

2 for 𝑏 = 1...𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑛𝑢𝑚 do
3 𝐻0

𝑢 (𝑏) = 𝐻0
𝑢 (1)

4 𝐻0
𝑣 (𝑏) = 𝐻0

𝑣 (1)
5 while not convergence do
6 Sampling batch of tuples < 𝑢, 𝑣 >
7 for 𝑢 ∈ 𝑈 𝑘𝑢 do
8 ℎ𝑒 = (𝑏 == 1 ? ℎ0𝑒 (1) : ℎ𝐾𝑒 (𝑏 − 1))
9 for 𝑘 = 1...K do
10 ℎ𝑘−1

𝑁𝑘 (𝑢) (𝑏) =
𝐴𝐺𝐺𝑢𝑘 (ℎ𝑘−1𝑢 (𝑏), ℎ𝑘−1

𝑑
(𝑏), ℎ𝑒 ,∀𝑑 ∈ 𝑁𝑘 (𝑢))

11 ℎ𝑘𝑢 (𝑏) =
𝐶𝑂𝑁𝑉𝑢𝑘 (𝐶𝑂𝑁𝐶𝐴𝑇 (ℎ𝑘−1𝑢 (𝑏), ℎ𝑘−1

𝑁𝑘 (𝑢) (𝑏)))
12 end
13 end
14 ℎ𝑣 = (𝑏 == 1 ? ℎ0𝑣 (1) : ℎ𝐾𝑣 (𝑏 − 1))
15 𝑝 = 𝐶𝐿𝐴𝑆𝑆𝐼𝐹𝐼𝐸𝑅(𝐶𝑂𝑁𝐶𝐴𝑇 (ℎ𝐾𝑢 (𝑏), ℎ𝑣))
16 end
17 while not convergence do
18 Sampling batch of tuples < 𝑢, 𝑣 >
19 for 𝑣 ∈ 𝑉𝑘𝑣 do
20 for 𝑘 = 1...K do
21 ℎ𝑘−1

𝑁𝑘 (𝑣) (𝑏) =
𝐴𝐺𝐺𝑣𝑘 (ℎ𝑘−1𝑣 (𝑏), ℎ𝑘−1

𝑑
(𝑏), ℎ𝐾𝑒 (𝑏),∀𝑑 ∈

𝑁𝑘 (𝑢))
22 ℎ𝑘𝑣 (𝑏) =

𝐶𝑂𝑁𝑉𝑣𝑘 (𝐶𝑂𝑁𝐶𝐴𝑇 (ℎ𝑘−1𝑣 (𝑏), ℎ𝑘−1
𝑁𝑘 (𝑣) (𝑏)))

23 end
24 end
25 𝑝 = 𝐶𝐿𝐴𝑆𝑆𝐼𝐹𝐼𝐸𝑅(𝐶𝑂𝑁𝐶𝐴𝑇 (ℎ𝐾𝑢 (𝑏), ℎ𝐾𝑣 (𝑏)))
26 end
27 end
28 𝑧𝑢 = ℎ𝐾𝑢 (𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑛𝑢𝑚),∀𝑢 ∈ 𝑈
29 𝑧𝑣 = ℎ

𝐾
𝑣 (𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑛𝑢𝑚),∀𝑣 ∈ 𝑉

BiNE[8]: It preserves both explicit preference and implicit relation
through joint optimization. We apply it to user-item recommenda-
tion.
Gemini-Collaboration(1): It is Gemini-Collaboration with the 1
GCN layer (The formal Gemini-Collaboration has 2 GCN layers).

Applied Data Science Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

3361

In offline evaluations, we employ the common metric: area un-
der the ROC curve (AUC). And the final presented results are the
average of five experiments. In online A/B tests, we employ the
most common industry metric: click through rate (CTR).

5.1 Offline Datasets
In order to verify the universality and effectiveness of Gemini, we
choose five different types of recommendation datasets. The first
four datasets are extracted from the following recommendation
scenarios of DiDiChuxing which is shown in Figure 3: the prod-
uct recommendation in Integral Mall (DiDi-Product), the content
recommendation in DiDiChezhu app (DiDi-Content), the music rec-
ommendation in DiDiChuxing FM (DiDi-Music) and the coupon rec-
ommendation in DiDiChuxing app (DiDi-Coupon). DiDi-Product,
DiDi-Content and DiDi-Music are all the recommendation scenar-
ios that serve tens of millions of drivers, and DiDi-Coupon is a
recommendation scenario that serves hundreds of millions of pas-
sengers. For the above recommendations, we separately extracted
the online logs for 12 days, the first 11 days for the training set, and
the twelfth day for the test set. Specifically, DiDi-Product dataset
has 8976117 interaction records, DiDi-Content dataset has 7934319
interaction records, DiDi-Music dataset has 3321930 interaction
records and DiDi-Coupon dataset has 82666658 interaction records.
The last dataset is a common public data, MovieLens[13], which is
extracted from a movie recommendation scenario and has about
2006859 records. MovieLens is different from the above four types
of recommendations, so we select it as the additional dataset to
evaluate performance under different type of recommendations.

For the first four real datasets, we take the items that the user
has interacted with positive instance, and the items that have been
exposed but not interacted with as negative instance. MovieLens
dataset contains positive instances only (i.e., all instances have
target value 1), we randomly select twice as many movies as the
number of positive instances for each user as negative instances.

5.2 Offline Evaluation
The evaluation results of all the methods are presented in Table 1.
In most datasets, BINE works better than Deepwalk, illustrating
the need to consider the type of nodes. Graphsage is better than
Deepwalk overall, demonstrating the effectiveness of the way the
GCN aggregators information. Compared to the best baselines in
each scenario, Gemini-Collaboration increases the AUC by 3.7%,
10.8%, 1.1%, 3% and 1%. These results prove the effectiveness and
universality of the method.

5.3 Number of GCN layers Evaluation
Gemini-Collaboration(1) aggregators information about original
second-order neighbors and contains the same amount of infor-
mation as Graphsage(2). The Gemini-Collaboration aggregators
information about original fourth-order neighbors and contains the
same amount of information as Graphsage(4). From table 1, we can
see that Graphsage(2) is better than Graphsage(4), but that Gemini-
Collaboration (1) is less effective than Gemini-Collaboration. This
suggests that Gemini-Collaboration can aggregator neighborhood
information more efficiently, and automatically eliminate noise. In
most datasets, Gemini-Collaboration(1) is better than Graphsage(2),

further proving that we can make better use of the information we
already have.

5.4 Superiority of Algorithm Design.
To demonstrate the superiority of Gemini′s designs (i.e., Network
Transformation, Edge Embedding, TF-IDF pooling, Attention based
Aggregating), we conduct several additional experiments on DiDi-
Product offline dataset. The results are shown in Table 2. The result
of Proposal_1 is better than the best baseline, which proves the
correctness of our Gemini framework. Proposal_2 increases the
value of AUC to Proposal_1, indicating that attribute nodes have
different importance. The AUC of Proposal_3 is higher than that of
Proposal_1, proving that the contribution of each neighbor node is
different.

5.5 Gemini-Collaboration Evaluation.
In this section, we compare the performance and training time of
methods Gemini and Gemini-Collaboration on the same configured
machines. The Figure5 shows Gemini-Collaboration get a better
performance. The reason is, when using Gemini-Collaboration to
train model, we train ℎ𝑢 to convergent firstly and then train ℎ𝑣
to convergent per iteration. It is similar to train discriminator and
generator in GAN[9]. On the contrary, Gemini jointly trains Gemini-
U and Gemini-I, which means that the embeddings of network
nodes are updated based on the not well trained embeddings of
attribute nodes. Moreover, Figure5 also demonstrates that Gemini-
Collaboration is able to greatly reduce the time complexity in the
actual training process.

5.6 Online Evaluation
To evaluate the real online performance of our Gemini, we per-
form four online A/B tests on the real recommendation scenarios of
DiDiChuxing. Because of the preciousness of online experiments,
we only compare to the best baseline according to the offline ex-
periments. The evaluation results are presented in Figure 4. In all
four scenarios, Gemini achieves the better CTR values in each day
of the test week. For the four real scenarios, Gemini increases the
average CTR value by 4.13%, 31.03%, 15.45% and 49.13% separately.

6 CONCLUSIONS
In this paper, we first propose a novel heterogeneous graph fusing
framework, Gemini, which does not relay on any auxiliary infor-
mation, but handles heterogeneous graph more efficiently through
a novel and effective network transformation. Empirical experi-
ments demonstrate that Gemini can be applied to various types of
recommended scenarios and achieve satisfactory results. We then
designed a training algorithm, Gemini-Collaboration, that enables
the Gemini framework to run on a large-scale dataset.

REFERENCES
[1] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and

Alexander J. Smola. 2013. Distributed Large-scale Natural Graph Factorization.
In Proceedings of the 22nd international conference on World Wide Web.

[2] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. [n.d.]. Spectral
Networks and Locally Connected Networks on Graphs. ([n. d.]).

[3] Shaosheng Cao, Lu Wei, and Qiongkai Xu. 2015. GraRep: Learning Graph Repre-
sentations with Global Structural Information.

Applied Data Science Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

3362

Figure 3: Different recommendation scenarios (product, content, music and coupon) of DiDiChuxing

Table 1: Offline performance of compared methods

Algorithm DiDi-Product DiDi-Coupon DiDi-Content DiDi-Music MovieLens
AUC AUC AUC AUC AUC

DeepWalk 0.6418 0.6534 0.6205 0.5547 0.7266
Metapath2vec++ 0.6385 0.6513 0.6128 0.5661 0.7778
BiNE 0.6523 0.6325 0.6793 0.5729 0.8416
GraphSage(2) 0.6616 0.6358 0.6989 0.6058 0.8636
GraphSage(4) 0.6596 0.6064 0.6958 0.6004 0.8654
Gemini-Collaboration(1) 0.7255 0.6468 0.7003 0.6083 0.8512
Gemini-Collaboration 0.7333 0.6774 0.7069 0.6240 0.8735

2.00%
2.50%
3.00%
3.50%
4.00%
4.50%
5.00%
5.50%
6.00%
6.50%

Day1 Day2 Day3 Day4 Day5 Day6 Day7

C
T
R

Date

Product

Graphsage Gemini-Collaboration

3.00%

3.50%

4.00%

4.50%

5.00%

5.50%

6.00%

Day1 Day2 Day3 Day4 Day5 Day6 Day7

C
T
R

Date

Coupon

Graphsage Gemini-Collaboration

4.00%
5.00%
6.00%
7.00%
8.00%
9.00%
10.00%
11.00%
12.00%
13.00%

Day1 Day2 Day3 Day4 Day5 Day6 Day7

C
T
R

Date

Content

Graphsage Gemini-Collaboration

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

Day1 Day2 Day3 Day4 Day5 Day6 Day7

C
T
R

Date

Music

Graphsage Gemini-Collaboration

Figure 4: Online performance of compared methods

Applied Data Science Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

3363

Table 2: Performance of different designs on DiDi-Product dataset

Proposal with different designs AUC
Proposal_1 (evaluate Network Transformation): we implement Gemini-Collaboration
without using edge information. 0.6783

Proposal_2 (evaluate Edge Embedding): we implement Gemini-Collaboration by using sum
pooling instead of TF-IDF pooling and using mean function instead of attention based function
to remove the affect of of TF-IDF pooling and Attention based Aggregating.

0.7145

Proposal_3 (evaluate TF-IDF pooling): we add TF-IDF pooling to Proposal_2. 0.7226
Proposal_4 (evaluate Attention based Aggregating): we add attention based function
to Proposal_2. 0.7272

5

0.66

0

1

2

3

4

5

6

Gemini Gemini-Collaboration

Ti
m

e
 p

e
r

e
p
o
ch

 (
h

o
u
r)

Algorithm

0.7197 0.7333

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Gemini Gemini-Collaboration

A
U
C

Algorithm

Figure 5: Gemini VS Gemini-Collaboration

[4] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. ACM, 7–10.

[5] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[6] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable Representation Learning for Heterogeneous Networks. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining.

[7] Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. 2017. Hin2vec: Explore meta-paths
in heterogeneous information networks for representation learning. In Proceed-
ings of the 2017 ACM on Conference on Information and Knowledge Management.
1797–1806.

[8] Ming Gao, Leihui Chen, Xiangnan He, and Aoying Zhou. 2018. Bine: Bipartite
network embedding. In The 41st International ACM SIGIR Conference on Research
& Development in Information Retrieval. 715–724.

[9] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
Adversarial Networks. Advances in Neural Information Processing Systems 3
(2014), 2672–2680.

[10] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 855–864.

[11] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. arXiv
preprint arXiv:1703.04247 (2017).

[12] William L. Hamilton, Rex Ying, and Jure Leskovec. [n.d.]. Inductive Representa-
tion Learning on Large Graphs. ([n. d.]).

[13] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History
and Context.

[14] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM international conference on
Information & Knowledge Management. 2333–2338.

[15] Zhipeng Huang and Nikos Mamoulis. 2017. Heterogeneous information network
embedding for meta path based proximity. arXiv preprint arXiv:1701.05291 (2017).

[16] Rana Hussein, Dingqi Yang, and Philippe Cudré-Mauroux. 2018. Are Meta-Paths
Necessary? Revisiting Heterogeneous Graph Embeddings. In Proceedings of the
27th ACM International Conference on Information and Knowledge Management.
437–446.

[17] Thomas N. Kipf and Max Welling. [n.d.]. Semi-Supervised Classification with
Graph Convolutional Networks. ([n. d.]).

[18] Ao Li, Zhou Qin, Runshi Liu, Yiqun Yang, and Dong Li. 2019. Spam Review
Detection with Graph Convolutional Networks. In Proceedings of the 28th ACM

International Conference on Information and Knowledge Management. 2703–2711.
[19] Yuqi Li,Weizheng Chen, andHongfei Yan. 2017. Learning graph-based embedding

for time-aware product recommendation. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management. 2163–2166.

[20] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. Computer Science (2013).

[21] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701–710.

[22] Chuan Shi, Binbin Hu, Wayne Xin Zhao, and S Yu Philip. 2018. Heterogeneous
information network embedding for recommendation. IEEE Transactions on
Knowledge and Data Engineering 31, 2 (2018), 357–370.

[23] Yu Shi, Qi Zhu, Fang Guo, Chao Zhang, and Jiawei Han. 2018. Easing embedding
learning by comprehensive transcription of heterogeneous information networks.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2190–2199.

[24] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 1067–1077.

[25] Petar Veli?kovi?, Guillem Cucurull, Arantxa Casanova, Adriana Romero, and
Yoshua Bengio. [n.d.]. Graph Attention Networks. ([n. d.]).

[26] Daixin Wang, Cui Peng, and Wenwu Zhu. 2016. Structural Deep Network Em-
bedding. In the 22nd ACM SIGKDD International Conference.

[27] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng
Zhang, Xing Xie, and Minyi Guo. [n.d.]. GraphGAN: Graph Representation
Learning with Generative Adversarial Nets. ([n. d.]).

[28] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun
Lee. [n.d.]. Billion-scale Commodity Embedding for E-commerce Recommenda-
tion in Alibaba. ([n. d.]).

[29] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang. 2019.
A neural influence diffusion model for social recommendation. In Proceedings
of the 42nd international ACM SIGIR conference on research and development in
information retrieval. 235–244.

[30] Min Xie, Hongzhi Yin, Hao Wang, Fanjiang Xu, Weitong Chen, and Sen Wang.
2016. Learning graph-based poi embedding for location-based recommendation.
In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management. 15–24.

[31] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J. Kim.
[n.d.]. Graph Transformer Networks. ([n. d.]).

[32] Daokun Zhang, Yin Jie, Zhu Xingquan, and Zhang Chengqi. [n.d.]. Network
Representation Learning: A Survey. IEEE Transactions on Big Data ([n. d.]), 1–1.

[33] Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Xuanrong Yao, and Wenwu Zhu.
2018. Arbitrary-order proximity preserved network embedding. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. ACM, 2778–2786.

[34] Jun Zhao, Zhou Zhou, Ziyu Guan, Wei Zhao, Wei Ning, Guang Qiu, and Xiaofei
He. 2019. IntentGC: a Scalable Graph Convolution Framework Fusing Heteroge-
neous Information for Recommendation. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2347–2357.

[35] Zhenlong Zhu, Ruixuan Li, Minghui Shan, Yuhua Li, Lu Gao, Fei Wang, Jixing
Xu, and Xiwu Gu. 2019. TDP: Personalized Taxi Demand Prediction Based
on Heterogeneous Graph Embedding. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1177–1180.

Applied Data Science Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

3364

Figure 6: Launched System Architecture

Table 3: Hyper-parameter settings hyper

hyper parameter setting
learning rate 0.001
optimizer adam

mini-batch size 512
number of GCN layers 2

number of neighbors sampled in Gemini-U 5,5
number of neighbors sampled in Gemini-I 5,5

number of the slots of Gemini-U 100
number of the slots of Gemini-I 100

dimension of embedding 16

A REPRODUCIBILITY
A.1 Online Launch
Gemini-Collaboration has been launched to production environ-
ment of DiDiChuxing. The system architecture is depicted in Fig-
ure6. The upper left portion shows the offline training process, and
the bottom right portion shows the online serving process. For solv-
ing recommendation diversity and cold start issues, we use hot item
recall and some common recall algorithms[5, 14] in the recall stage
instead of using Gemini-Collaboration. In the rank stage, we use
Gemini-Collaboration. Specifically, we use Gemini-Collaboration
to predict the interaction probability for each candidate item, and
then rank them based on their probabilities.

A.2 Hyper-parameter Settings
The table 3 is the hyper-parameter setting of our off-line experiment,
and we use the same hyper-parameter for all datasets to ensure the
fairness of the comparison. During the experiment, we explored
each of the hyper-parameters, and the values in the table got the
best results.

Applied Data Science Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

3365

	Abstract
	1 Introduction
	2 RELATED WORK
	3 PROBLEM DEFINITION
	4 Research Methods
	4.1 Network Transformation
	4.2 Edge Embedding
	4.3 Information Convolution
	4.4 Gemini Framework
	4.5 Gemini-Collaboration Framework

	5 EXPERIMENTS
	5.1 Offline Datasets
	5.2 Offline Evaluation
	5.3 Number of GCN layers Evaluation
	5.4 Superiority of Algorithm Design.
	5.5 Gemini-Collaboration Evaluation.
	5.6 Online Evaluation

	6 CONCLUSIONS
	References
	A REPRODUCIBILITY
	A.1 Online Launch
	A.2 Hyper-parameter Settings

