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ABSTRACT
The estimated time of arrival (ETA) is a critical task in the intel-
ligent transportation system, which involves the spatiotemporal
data. Despite a significant amount of prior efforts have been made
to design efficient and accurate systems for ETA task, few of them
take structural graph data into account, much less the heteroge-
neous information network. In this paper, we propose HetETA to
leverage heterogeneous information graph in ETA task. Specifically,
we translate the road map into a multi-relational network and in-
troduce a vehicle-trajectories based network to jointly consider the
traffic behavior pattern. Moreover, we employ three components
to model temporal information from recent periods, daily periods
and weekly periods respectively. Each component comprises tem-
poral convolutions and graph convolutions to learn representations
of the spatiotemporal heterogeneous information for ETA task.
Experiments on large-scale datasets illustrate the effectiveness of
the proposed HetETA beyond the state-of-the-art methods, and
show the importance of representation learning of heterogeneous
information networks for ETA task.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems;Datamin-
ing; • Computing methodologies → Neural networks.
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Figure 1: Application of estimated time of arrival (ETA) to
route planning. The origin is in green and the destination
is in red. The color of roads indicates the traffic congestion
level. The darker the color, the more congested.

1 INTRODUCTION
With the growing number of vehicles and travel demands of peo-
ple, intelligent transportation systems have become the key role
to make safer, more coordinated, and more efficient use of traffic
networks. The estimated time of arrival (ETA), a core functionality
in the intelligent transportation system, measures the travel time
when a vehicle1 is expected to arrive at a certain destination from
origin. An accurate travel time estimation can save user time [8]
and optimize vehicle dispatching [35] via mining complicated spa-
tiotemporal information. A simple ETA method is to average the
historical travel time between the pair of origin and destination
[23, 30]. Naturally, these historical mean based methods produce
low accuracy, due to the sparseness problem of short-term data for
the same route. In addition, these approaches often fail to meet the
needs of applications such as route planning [18]. As shown in Fig-
ure 1, three routes between the same pair of origin and destination

1ETA also refers to time estimation for aircraft, ship, computer file, et. al. to reach the
place it is directed to. In this paper, we focus on the movement of vehicles.

Applied Data Science Track Paper  KDD '20, August 23–27, 2020, Virtual Event, USA

2444

https://doi.org/10.1145/3394486.3403294
https://doi.org/10.1145/3394486.3403294


Ro
ad

 s
eg

m
en

t 1
Ro

ad
 s

eg
m

en
t 2

Road segm
ent 3

Road segment 4 Road
3

Road
2

Road
4

Road
1

turn right

turn around

go
 s

tra
ig

ht

turn around

Road map Multi-relational road network

Road segment 5

Road
5

turn right

(a) Translation from a road map to a multi-relational road net-
work.

    

120

90

100

60

(b) A freewaywith a
right hand lane exit.

Figure 2: The road network information for ETA task.

are provided with the travel time in the route planning software,
which requires the use of route-based ETA solutions.

The route-based ETA solution turns the ETA problem into traffic
prediction task, that is, predicting transit time of each road seg-
ment firstly, then calculating the total time of a given trajectory
path. However, this line of research focuses on collecting various
kinds of raw data [10, 11, 20] or optimizing the concatenation of
road segments [12, 13, 31]. On the contrary, the bulk of congestion
estimation methods [21, 33, 34] are more concerned with represen-
tation learning of spatiotemporal data, especially the use of graph
neural networks (GNNs) [7, 17]. These models are mainly applied
to sensor network data instead of real urban road network data,
which is the essential geospatial information for ETA task.

In this paper, we employ GNN to embed road network data for
ETA task. This problem is very challenging since 1) the relation-
ship of connection in road networks/graphs is more complicated
than single-relation sensor networks 2) and the links between road
segments are very sparse. Considering road segments as vertices
in the road network, the relationships between vertices could be
“go straight”, “turn right” or “turn around” and so on [Figure 2(a)].
Different relationships imply different traffic patterns. For exam-
ple, Figure 2(b) shows that vehicles usually move at high speed
when going straight on the highway while they usually slow down
when turning right to the exit lane. Therefore, it is important to
take various relationships between road segments into account
during road network embedding. In addition, the road network is
constructed as a large-scale network with low density. Take the
road network of Shenyang (detailed in Section 4.1) as an example:
there are 74, 685 vertices with an average number of 2.52 neighbors.
It is much sparser than sensor networks like METR-LA [14] (207
nodes with an average degree of 13.69) or PEMS-BAY[3] (325 nodes
with an average degree of 13.79). Such sparse network makes it
difficult to collect sufficient messages from neighbors via GNNs.

To tackle the above challenges, we introduce heterogeneous in-
formation network (HIN) [28] to ETA task. Specifically, we translate
the road map into a multi-relational network (a type of HIN), as
shown in Figure 2(a), where edges indicate the directions of con-
nection between road segments. And we also construct a vehicle-
trajectories based network, where vertices are the same as the
translated road network and an edge from vertex i to j indicates

Figure 3: An example of the traffic flow pattern in Shenyang.
The yellow line is Qingniandajie and the red lines on the left
and right are Taiyuanjie and Zhongjie respectively.

that vehicles travel from road segment i to j frequently. The vehicle-
trajectories based network implicitly incorporates the traffic flow
pattern of a city, for instance, vehicles at Qingniandajie are most
likely going to Taiyuanjie (a transportation hubwith railway station
and a passenger transport station in there) or Zhongjie (a famous
shopping street in Shenyang). Besides, the vehicle-trajectories based
network can supplement some information that road network can
not mine. For example, drivers may find out new roads before map
update and some may know smoother/better routes by experience.

Moreover, heterogeneity also exists in temporal data. Figure 4
shows changes in traffic condition on a road segment over two
weeks. Obviously, the peak hours of weekdays appear around 8:00
AM and 6:00 PM, while the rush hours on weekend last from 8:00
AM to 6:00 PM. In view of this, we class the temporal information
into three categories: recent periods which are closely related to
traffic condition to predict, daily periods referring to daily-periodic
patterns and weekly periods implying weekly-periodic patterns.

In this paper, we propose a fused framework called HetETA to
incorporate the above-mentioned spatiotemporal heterogeneous
information for ETA task. Specifically, HetETA models temporal
heterogeneous information from recent periods, daily periods and
weekly periods respectively with three components. Each compo-
nent has the structure of a double-stuffed sandwich, consisting
of two graph neural networks, to embed spatial heterogeneous
information from the multi-relational road network and vehicle-
trajectories based network respectively, placed between three con-
volutional neural networks used to process information on time
axis. Furthermore, we develop an attention-based graph network
with fast localized spectral filtering to learn better representations
when the HIN is sparse. In a nutshell, the key innovations of this
paper are:

• To the best of our knowledge, this is the first time that HINs
and graph neural network technology are applied to ETA
task. We extract heterogeneous information both in the view
of space and time and propose a framework HetETA to fuse
them and learn representations toward ETA task.

• We design an attention-based graph network with fast local-
ized spectral filtering, named Het-ChebNet, to embed sparse
heterogeneous information network under the space require-
ment proportional to the number of edges.

• Extensive experiments are conducted on four real-world
vehicle-trip datasets in a large-scale urban road network.
Our model significantly outperforms other methods. The
ablation studies verify the efficacy of vehicle-trajectories
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Figure 4: The temporal pattern of a road in Shenyang. The
x- and y-axis represent time and speed (km/h) respectively.

based network introduced in this paper. In addition, we im-
port representations learned by HetETA as extra features of
Wide-Deep-Recurrent (WDR) [32] which is a well-designed
feature system for ETA on Didi Chuxing’s platform, and
the experimental results demonstrate the power of heteroge-
neous information network embedding.

2 RELATEDWORK
2.1 Estimated Time of Arrival
The estimated time of arrival (ETA) or travel time estimation is one
of the key topics in the intelligent transportation system. There
are mainly two categories of existing solutions. The first category
is the route-based methods [6, 15, 27, 31, 32], which estimate the
travel time by considering the road segments and intersections in
the trip. SMA [15] models the correlation between different road
segments in terms of their historical patterns. WDR [32] formulates
ETA as a regression problem and proposes a Wide-Deep-Recurrent
(WDR) architecture, in which, the recurrent module is specially
designed to handle sequential features. The second category is
the route-free methods [16, 19, 30], which focus on the origin and
destination locations to make predictions. TEMP [30] estimates
the time of a queried trip by calculating the weighted average of
neighboring trips with similar origin and destination locations. ST-
NN [16] predicts the travel distance and time jointly by designing
a unified feed-forward neural network. However, these efforts do
not fully mine the spatiotemporal data, and fail to exploit the rich
semantic information contained in road network structures.

2.2 Traffic Forecasting with Spatiotemporal
Graph Convolution

In the past two years, GNNs for traffic forecasting problem have
received much attention. These works try to model spatial and
temporal dependencies of the road traffic through spatiotemporal
graph convolution. DCRNN [21] treats the traffic flow as a diffusion
process [1] on a directed graph and proposes diffusion convolution
to capture the spatial dependency. On the other hand, it captures
the temporal dependency by using sequence-to-sequence architec-
ture with gated recurrent units (GRUs) [4]. In consideration of time
efficiency, instead of RNN structure, STGCN [34] employs a 1D con-
volution layer followed by gated linear units (GLUs) [5] to extract
temporal features. Inspired by WaveNet [25], Graph WaveNet [33]

Figure 5: HetETA consists of three components for learning
spatiotemporal heterogeneous information of recent peri-
ods, daily periods and weekly periods respectively. Three
components are connected by a fully connected layer and
output the prediction value.

stacks dilated casual convolutions to handle long-range temporal
sequences. In addition, Graph WaveNet introduces a self-adaptive
graph to better extract the hidden spatial features. ASTGCN [9]
models temporal dependencies of three time scales, i.e., recent,
daily-periodic and weekly-periodic. Spatial attention and temporal
attention are performed to help dynamically capture the correla-
tions between different time scales.

However, the above-mentioned methods show common weak-
nesses as follow: 1) They treat the road network as a homogeneous
graph, and the differences between edges are neglected. 2) Most
experiments are performed on public datasets like META-LA [14] or
PEMS [3], where traffic conditions are collected from loop detectors
in highways. In fact, situations in urban road network are much
more complicated. There are streets, elevated roads, private roads
and so on, and they usually show quite distinct traffic properties to
highways. Obviously, it is impractical to set up loop detectors for
the entire urban road network. 3) Many researches [9, 33, 36] fail
to take model scalability into consideration. Their proposed models
work well on small networks but are hard to scale up for large-scale
networks due to the dense weight matrix of size |V | × |V | involved.

3 METHODOLOGY
3.1 Problem Statement
In this paper, we aim to produce meaningful representations for
arrival time estimation. Existing ETA solutions have introduced
a variety of features, such as weather information, personalized
information, traffic information and temporal information. And
the system architecture such as WDR [32] based on these features
is set up, representing all of information with the form of a row.
However, such type of features can not fully mine the spatial corre-
lations in geospatial information which is in the form of structural
networks. Therefore, we define the estimated time of arrival task
as the spatiotemporal network embedding problem:

Definition 3.1 (Spatiotemporal network embedding for ETA). Given
a departure query q = (oq ,dq , tq , Pq ) at time tq , from origin oq to
destination dq via the path route Pq , our goal is to estimate the
travel time yq by embedding spatiotemporal traffic networks in
history {G(tq−τ+1),G(tq−τ+2), . . . ,G(tq )}, where tq − τ + 1 denotes
the time period and τ is the number of previous time periods. A
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spatiotemporal traffic network at time t is represented as a directed
multi-relational graph G(t ) = (V , E,R,X (t )), where V = {vi }

|V |

i=1
denotes the set of vertices (i.e., road segments) and E denotes the
set of edges. An edge ei jk = (vi ,vj , rk ) ∈ E indicates the vertex
vi ∈ V links to the vertexvj ∈ V with a relation type rk ∈ R, where
R = {ri }

|R |

i=1 is the set of relation types. The features of vertices
X (t ) = {x

(t )
i ∈ Rn }

|V |

i=1 contain static features that characterize road
segments (e.g., length, width) and dynamic features at time t (e.g.,
traffic speed, volume). Here, n is the total dimension of features.

This problem is challenging because of two aspects: 1) complex
heterogeneous structure of graphs, which is hard to represent and
preserve in a low-dimensional space; 2) intricate correlation that
exists among road segments and time periods. To tackle these chal-
lenges, we propose a HIN embedding framework for ETA task,
namely HetETA, which is detailed in the next subsection.

3.2 HetETA
As the graph neural network (GNN) has proven to be a successful
graph structure based model to learn vectorized node representa-
tions, we employ GNNs to learn spatial correlations and extract
meaningful representation on the heterogeneous information road
network and vehicle-trajectories based network. Recent research
shows convolution neural networks (CNNs) have the advantages
of parallelization, trainability and inference speed compared with
recurrent neural networks (RNNs) [24, 34]. Thus, we employ CNNs
to analyze temporal correlations on time-series axis. The overall
architecture of HetETA is illustrated in Figure 5. GNNs and CNNs
work together under the structure of the double-stuffed sandwich in
three components, to learn the correlations in spatiotemporal het-
erogeneous information of recent periods, daily periods and weekly
periods respectively. Layer normalization is implemented within
the double-stuffed sandwich to deal with overfitting. To train Het-
ETA to predict the travel time yq given a query q = (oq ,dq , tq , Pq )

conditioned on the graphG(tq−τ+1):(tq ), we minimize the loss func-
tion as follows:

L

(
ŷq ;G(tq−τ+1):(tq ),Θ

)
=

|ŷq − yq |

yq
+ γ | |Θ| |, (1)

where the prediction value ŷq =
∑

p∈Pq
ŷp , and ŷp denotes the pre-

dicted transit time of road segment p. We train the parameters of
HetETA Θ by the AMSGrad [26] optimizer.

3.2.1 Three Components for Recent, Daily and Weekly Periods.
As shown in Figure 5, we intercept three sequences in length of
LR , LD and LW , respectively, as the input of the recent, daily-
period and weekly-period components. For the recent component,
XR = [X (tq−LR+1),X (tq−LR+2), . . . ,X (tq )] ∈ RLR×|V |×n represents
current traffic status. To learn periodic and trend patterns, we uti-
lize historical traffic data in the last LD /LW days/weeks, which
has the same time period as the next future period. That is, XD =

[X (tq+1−LD∗TD ),X (tq+1−(LD−1)∗TD ), . . . ,X (tq+1−TD )] ∈ RLD×|V |×n

for daily-period component, and weekly-period component XW =

[ X (tq+1−LW∗TD∗7) , X (tq+1−(LW−1)∗TD∗7) , . . . , X (tq+1−TD∗7) ] ∈
RLW×|V |×n , where TD is the number of time periods in one day.
Note that all of graphs G(t ) have the same vertices and edges, and

Figure 6: Layer structure of temporal gated CNN.

only the features of the verticesX (t ) change over time.We construct
three components with the same deep network structure, i.e., three
gated convolutional layers and a double-stuffed graph convolution
layer in between. In the following, we omit the subscript R/D/W

which denotes the identity of the component for simplicity.

3.2.2 Gated CNNs for Temporal Correlations. Inspired by [34], we
employ the causal convolution withCout kernels of size LK ×1×Cin
to sequentially convolve information along time axis, where Cin
and Cout are the number of input channels and output channels,
respectively. To adapt the dynamics of temporal correlations, we
control temporal information flow in CNN by means of gating
mechanisms, which is crucial in recurrent neural networks. As
shown in Figure 6, a gated CNN layer outputs the hidden state H
given the input x ∈ RLin×|V |×Cin following the convolution rule:

H = (K1 ⋆ x) ⊙ σ (K2 ⋆ x) ∈ R(Lin−LK+1)×|V |×Cout , (2)

where K1 and K2 are convolution kernels with the same size of
[LK × 1 ×Cin,Cout]. And ⊙ denotes the element-wise Hadamard
product. The sigmoid function σ (·) plays the role of gate to control
the ratio of information flowing to the next layer.

For the first gated CNN layer in the structure of double-stuffed
sandwich, x = X ∈ RL×|V |×n and the output state H = H1 ∈

R(L−LK+1)×|V |×C1 . The Het-ChebNet we designed in interlayer
operates graph convolution and keep the output in the same di-
mension as the input. That is the output of the double-stuffed
graph convolution layer, which consists of two Het-ChebNets, is
H2 ∈ R(L−LK+1)×|V |×2∗C1 . Thereby, the next gated CNN layer, with
x = H2 as the input, outputs H = H3 ∈ R(L−2∗(LK−1))×|V |×C3 . To
obtain a comprehensive hidden state for the given spatiotempo-
ral information, a gated CNN layer with a kernel size of [(L − 2 ∗
(LK − 1)) × 1×C3,C3] is used as the last layer of the double-stuffed
sandwich, i.e., x = H3 and H = H4 ∈ R1×|V |×C3 .

3.2.3 Het-ChebNet for Spatial Correlations. We model the spatial
correlations by considering the traffic flow as spatial information
propagation process on the road network.We propose Het-ChebNet,
which is primarily motivated as an adaptation of ChebNet [7] per-
forming localized spectral filtering by Chebyshev polynomials:

дθ ⋆G x = дθ (L)x =
Z∑
z=0

θzΓz (L̃)x, (3)

where the vector of polynomial coefficients θ ∈ RZ+1 is trainable
parameters. L is the normalized Laplacian matrix formulated as
L = I−D− 1

2 AD− 1
2 ∈ R |V |× |V | , in which I denotes the identity

matrix. The weighted adjacency matrix A records the connection
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Figure 7: The structure of double-stuffed graph convolution
layer, where two Het-ChebNets are employed for road net-
work and vehicle trajectories.

weight between two vertices in the graph, and the diagonal degree
matrix D sums up the weights of each vertex, i.e., Dii =

∑
j Ai j .

Γz (L̃) ∈ R |V |× |V | is the Chebyshev polynomial, which performs
spectral filtering on order z evaluated at the scaled Laplacian L̃ =
2L/λmax − I, where λmax is the largest eigenvalue of L. Chebyshev
polynomial Γz (L̃) of order z can be computed by the recurrence
formula Γz (L̃) = 2L̃Γz−1(L̃) − Γz−2(L̃) with Γ0(L̃) = I and Γ1(L̃) = L̃.

Though ChebNet has proven its power in processing graph struc-
ture data, it suffers an inadequate characterization of multiple rela-
tionships in the road network, which is important to learn behaviors
of traffic flow as we mentioned in Section 1. In pursuit of better
representation, we introduce attention mechanism to ChebNet and
rewrite the graph convolution operation in Eq. (3) as:

дθ ⋆G x = дθ (L)x =
Z∑
z=0

θz
(
Γz (L̃) ⊙ f (Uz )

)
x, (4)

where ⊙ denotes the element-wiseHadamard product.Uz ∈ R |V |× |V |

is an attention sparse matrix encoding the score of edges in the
multi-relational graph. Given an edge ei jk = (vi ,vj , rk ), its atten-
tion score can be computed in the form as:

αi jk = σ
(
wrk

T [
hi | |hj

] )
, (5)

where σ is an activation function implemented by LeakyReLU(·)
[22], and | | refers to the concatenation between vectorshi ∈ Rd and
hj ∈ R

d , denoting the low-dimensional representations of vi and
vj respectively.wrk ∈ R2d is the trainable parameter to adapt the
relation type rk . Note that vertex vi may link to vj with multiple
relation types in a graph, so an element in the attention matrix Uz
is the summation of attention scores of edges that vi links to vj :

uji =
∑

k ,(vi ,vj ,rk )∈E

αi jk . (6)

Then we apply a softmax function f (·) over the in-coming edges
of each vertex to normalize the attention matrix:

f (uji ) = exp(uji )/
∑

k ,(vk ,vj )∈E

exp(ujk ). (7)

Recall that the ChebNet conducts graph Fourier transform on
a symmetric adjacency matrix A, which is usually an undirected
graph. However, the road network is defined as a directed graph,
i.e., a vehicle can travel from road segment vi to vj while it may

not be able to travel from vj to vi due to traffic regulations. To
better deal with ETA task involved with directed road networks,
we add reverse edges of out-going edges and set them with reverse
relations. For instance, we link vi to vj with relation “out-going
when turn left” when vj links to vi with relation “turn left” in the
road network. As a result, the road network becomes a bidirectional
graph which presents a symmetric adjacency matrix, and it offers
attention mechanism more semantic information to capture spatial
correlations both on upstream and downstream traffic. In addition
to the turning direction relationships between road segments, we
exploit vehicles historical trajectories and establish a new type of
relationship named “likely going to”, which indicates vehicles at
the road segment vi are most likely going to the road segment vj
with β-hop2. More details of Het-ChebNet are provide in Appendix
A.

Adouble-stuffed graph convolution layer. Wedivide themulti-
relational graph G(t ) into two networks, i.e., the road network
(denoted as G(t )

road) and the vehicle-trajectories based network (de-

noted as G(t )
vehicle). Both of them share the same vertices and the

same input signals of vertices. The edges of road network are con-
structed according to the turning direction relationships between
road segments. And the vehicle-trajectories based network con-
sists of edges with the relationship “likely going to” (including its
reverse relation “out-going when likely going to”). As shown in
Figure 7, the double-stuffed graph convolution layer consists of
two Het-ChebNets to model the spatial correlations of road net-
work and vehicle-trajectories based network, respectively. In the
structure of double-stuffed sandwich, the input signal of the double-
stuffed graph convolution layer is H1 ∈ R(L−LK+1)×|V |×C1 . We
generalize Het-ChebNet to 3-D variables by performing C1 spec-
tral filtering operations in Eq. (4) on graph G(t ) with parameters
{θ

(t )
1 , θ

(t )
2 , . . . , θ

(t )
C1

}, where t = 1, 2, . . . , L−LK+1. Let a time slice of

H1, i.e., H(t )
1 ∈ R |V |×C1 be the low-dimensional representations of

vertices, the attention scoring function Eq. (5) becomes as follows:

α
(t )
i jk = σ

(
wrk

T
[
H(t )
1i | |H

(t )
1j

] )
, (8)

where H(t )
1i is i-th row of H(t )

1 . Conducting such convolution both
on G(t )

road and G
(t )
vehicle, we obtain Hroad and Hvehicle with the same

size of (L−LK +1)×|V |×C1. Then we concatenate them along the
channel axis and use it as input into the next gated CNN layer as
follows:

H2 = [Hroad | |Hvehicle] ∈ R
(L−LK+1)×|V |×2∗C1 . (9)

3.2.4 Fusion Layer for Prediction. With the output of three compo-
nents HR4, HD4 and HW4, which have the same shape of |V | ×C3,
HetETA predicts the transit time of road segments by a full con-
nected layer:

Ŷ =
S

σ
( [

HR4 | |HD4 | |HW4
]

W + b
)
∗ 120

, (10)

where W ∈ R3∗C3×1 is the learnable weight to fuse the outputs of
three components, and b ∈ R |V | is a vector of biases. S ∈ R |V |×1

2β -hop means that vehicles pass β − 1 road segments from vi to vj , i.e., vertex vi is
β -hop reachable to vertex vj in vehicles historical trajectories.
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Table 1: Statistics of Datasets

Dataset Split Date Pickup Trip

training set 6.9-6.15 (2019) 687K 800K
SY_6 validation set 6.16-6.22 (2019) 700K 820K

test set 6.23-6.29 (2019) 611K 709K

training set 7.9-7.15 (2019) 715K 816K
SY_7 validation set 7.16-7.22 (2019) 756K 853K

test set 7.23-7.29 (2019) 665K 746K

denotes the length of each road segment and the division refers
to element-wise division. The combination of sigmoid σ (·) and
multiplication is used to scale prediction values which is favorable
to model training, where 120 indicates the speed limit of 120km/h.

4 EXPERIMENTS
In this section, we present the experimental evaluations of HetETA
and the competing baselines over four large-scale offline datasets.
The heart of HetETA is to learn informative representations for
ETA task by embedding spatiotemporal networks. To make fair and
impartial comparisons, we evaluate comparison models not only
on ETA task, but also on traffic speed prediction task for which
GNN-based spatiotemporal graph embedding methods were origi-
nally designed. Whereafter, we incorporate the low-dimensional
representations learned by HetETA with the hand-crafted features
in Wide-Deep-Recurrent (WDR) [32], which is the state-of-the-art
method for ETA task, to verify the effectiveness of HIN embedding.

4.1 Datasets
We perform our experiments on Shenyang, capital city of Liaon-
ing Province in China. We build a road network of Shenyang city
according to the commercial map provided by Didi Chuxing. It
is a multi-relational graph with 74, 685 vertices and 94, 127 edges,
where the relation type indicates the turning direction between
road segments, including straight forward, slight left, left, sharp
left, slight right, right, sharp right and turn around. The node fea-
tures are divided into static and dynamic ones. The static features,
including road type, segment width, segment length, speed limits,
lane number, etc., do not change over time. On the contrary, the
dynamic features change by period of 5 minutes. Here, we calculate
the average speed of passing cars in each road segment and use
it as the dynamic feature. Note that, because of the data sparsity,
there are still some road segments without any vehicle passing by
in certain periods. For these road segments, we set default values
instead, according to their historical speed or the average speed of
the same road type (like highway, local street, etc.). We collect the
floating-car data in Shenyang from May 1st to July 31st, 2019 on
DiDi platform. The floating-car data can be divided into two types:
pickup data and trip data. A pickup sample records the car trajec-
tory from the moment the driver receives the request until he/she
picks up the passenger. A trip sample records the trajectory from
the passenger is on board until the car arrives at the destination.

With the historical floating-car information provided, we design
a vehicle-trajectories based network to catch the co-occurrence

Table 2: Comparison Performance on ETA Task

Dataset SY_6_Trip SY_6_Pickup
Metric MAPE MAE RMSE MAPE MAE RMSE

GRU 13.84% 129.99 216.52 24.89% 52.37 91.86
DCRNN 13.21% 124.01 208.10 24.09% 49.62 85.69
STGCN 12.88% 119.96 200.76 23.33% 47.55 82.24
GWN∗ 12.89% 121.60 205.39 23.64% 48.96 85.54
ASTGCN∗ 12.57% 117.53 119.17 23.39% 48.50 86.13
HetETA 12.32% 116.44 197.26 22.96% 47.16 82.77
Dataset SY_7_Trip SY_7_Pickup
Metric MAPE MAE RMSE MAPE MAE RMSE

GRU 13.99% 123.27 193.06 23.77% 51.75 83.28
DCRNN 13.28% 116.80 183.48 23.04% 49.09 77.62
STGCN 12.94% 113.48 178.42 22.29% 46.59 74.01
GWN∗ 13.01% 114.08 179.25 22.60% 47.66 75.98
ASTGCN∗ 12.66% 111.26 175.95 22.28% 47.22 76.27
HetETA 12.39% 109.17 173.03 21.89% 46.23 73.78

between road segments, which is not provided in road network. It is
a directed and weighted graph, where each vertex represents a road
segment in the same way and each edge from vertex i to j indicates
that some vehicles traveled from i to j in history. In addition, to
avoid the constructed graph being dense, we add constraints on
β-hop and frequency. Specifically, a directed edge from i to j in a
β-hop vehicle-trajectories network means that there are β−1 road
segments between i and j in some trajectories. Edgeweight indicates
the frequency of co-occurrence and we only keep the top κ frequent
adjacency edges for each vertex. In our experiments, β is set to 3 and
κ is set to 5, and we construct vehicle-trajectories based network
by historical data in May. The final graph contains 727, 666 edges
in total. In the preprocessing stage, we remove some inappropriate
cases from the data: 1) short travel time less than 30 seconds; 2)
abnormal trajectories caused by bad GPS signals; 3) pickup samples
of reserving ride-hailing orders. After preprocessing, the path route
of per query involves 20 road segments in the pickup data and 97
road segments in the trip data. Finally, we construct two datasets
SY_6 and SY_7 in June and July 2019, respectively. Each of them
contains pickup and trip records of 3 weeks, with details in Table 1.

4.2 Comparison Methods and Metrics
The experimental settings of our proposed model HetETA and the
baseline methods for comparison are listed as following:

• HetETA: We implement HetETA in Python based on Tensor-
flow toolbox3. The sequences length of three components are
LR = LD = LW = 4. The size LK of the causal convolution
kernels in the gated CNN is set to 2, with the output channels
C1 = 8 and C3 = 11 respectively. Both of two Het-ChebNets,
convolving on the road network and the vehicle-trajectories
based network respectively, have Z = 2 Chebyshev polyno-
mials. The regularization factor γ = 0.0001 and the batch
size of input queries is set as the number of queries in the

3Available at https://github.com/didi/heteta
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Figure 8: BCR-µ comparison on ETA task.

same period. We train HetETA with an initial learning rate
0.01 and drop learning rate by 0.15 every 5 epochs.

• GRU [4]: Gated Recurrent Unit Network used to process
recent sequential information. We input recent 4 historical
periods, i.e., X = XR for each query, into GRU, which does
not involve the spatial information such as road network.

• DCRNN [21]: Diffusion Convolutional Recurrent Neural
Network incorporates both spatial and temporal dependency
into a seq2seq framework for traffic flow prediction. We
input recent 4 periods as well as the road network as the
spatiotemporal information to DCRNN. Note that DCRNN
requires a single-relational network so we offer the single-
relational road network, where edges indicate the connection
between two road segments but not the turning direction.

• STGCN [34]: Spatio-Temporal Graph Convolutional Net-
works combines graph convolution with 1-D convolution
to process spatiotemporal information for traffic prediction.
The spatiotemporal information provided as the input is the
same as DCRNN. Again, we employ the single-relational
road network for STGCN, which uses a conventional GCN
to learn graph data.

• GWN∗ [33]: Graph WaveNet (GWN) stacks dilated casual
convolutions and graph convolutions to handle spatiotem-
poral graph data. We remove the self-adaptive adjacency
matrix in GWN for large-scale problems due to the multipli-
cation of two matrices of size |V | × d involved (producing a
dense matrix of size |V | × |V |). Again, we provide the same
spatiotemporal information as DCRNN in GWN∗.

• ASTGCN∗ [9]: Attention Based Spatial-Temporal Graph
Convolutional Network (ASTGCN) includes both spatial at-
tention and temporal attention layer. However, the spatial
attention operation is based on a densematrix of size |V |×|V |,
which is hard to scale up for our road network. To make a
comparison in our experiment, we revise the attention oper-
ation in ASTGCN as the attention mechanism in GAT [29],
reducing the space complexity to O(|E |). ASTGCN∗ accepts
temporal information from three different time scales: re-
cent, daily-periodic and weekly-periodic information, same
as HetETA, i.e., LR = LD = LW = 4.

All comparison methods are evaluated by metrics below:
• MAPE: Mean Absolute Percentage Error computes the per-
centage between predicted values ŷ and ground truth y:
MAPE = 1

m
∑m
i=1 |ŷi − yi |/yi . MAPE is the most popular

Table 3: Comparison Results on Traffic Speed Prediction

Dataset SY_6 (5min/15min/30min)
Metric MAPE MAE RMSE

GRU 35.07%/38.26%/40.55% 2.21/2.35/2.48 3.07/3.24/3.39
DCRNN 33.18%/36.08%/38.06% 2.15/2.30/2.39 2.99/3.18/3.28
STGCN 29.63%/31.94%/33.40% 1.93/2.05/2.11 2.79/2.96/3.07
GWN∗ 30.57%/32.99%/34.65% 1.98/2.07/2.19 2.81/2.93/3.10
ASTGCN∗ 29.58%/31.66%/32.48% 1.92/2.00/2.04 2.74/2.87/2.91
HetETA 29.00%/30.93%/31.92% 1.89/1.96/2.01 2.73/2.85/2.90
Dataset SY_7 (5min/15min/30min)
Metric MAPE MAE RMSE

GRU 33.88%/37.02%/39.05% 2.10/2.24/2.30 2.94/3.12/3.21
DCRNN 31.95%/34.61%/36.38% 2.06/2.15/2.29 2.88/3.01/3.18
STGCN 28.67%/30.81%/32.27% 1.86/1.94/2.03 2.70/2.82/2.95
GWN∗ 29.59%/31.88%/33.49% 1.91/2.00/2.10 2.71/2.84/2.98
ASTGCN∗ 28.63%/30.47%/31.43% 1.82/1.92/1.97 2.62/2.75/2.82
HetETA 28.12%/29.85%/30.73% 1.80/1.90/1.95 2.60/2.74/2.82

metric for ETA task since the percentage is easier for people
to conceptualize and it is robust against the outliers.

• MAE: Mean Average Error calculates the absolute residual
for each data point:MAE = 1

m
∑m
i=1 |ŷi −yi |. A smaller MAE

suggests the model is better at prediction.
• RMSE: Root Mean Squared Error describes the spread of

residuals: RMSE =
√

1
m
∑m
i=1(ŷi − yi )

2.
• Bad Case Rate: The bad cases refer to the absolute percent-
age error of the prediction |ŷi −yi |/yi > µ% and its absolute
residual |ŷi − yi | > ν seconds. In this paper, we set ν = 300
and ν = 180 for the trip dataset and the pickup dataset re-
spectively, and present the rate of bad cases when varying µ
in {20, 30, . . . , 80, 90}, denoted as BCR-µ.

All experiments are conducted on a 64-bit machine with Nvidia
Tesla P100 GPU. Detailed parameter settings for baselines are avail-
able in Appendix B. For each method, we select the model with the
best MAPE on validation set and report its performance on test set.

4.3 Results
4.3.1 Comparison Results. We train all models with the objective
function Eq. (1) for ETA task. Table 2 lists the comparison of per-
formance among HetETA and baseline models on four datasets. As
expected, GRU with only the temporal sequences information per-
forms worst. As spatial structural information is combined, DCRNN
and STGCN achieve much lower MAPE, MAE and RMSE. It shows
the benefit of structural information and the validity of GNN to
embed graph data. GWN∗ does not perform better than STGCN,
owing to the exclusion of the self-adaptive adjacency matrix. Be-
sides, GWN∗ takes the advantages of the dilated causal convolution
to deal with long-range temporal sequences, which is ineffective
to short-range sequences used in our experiments. With the use of
daily and weekly periodicity information, ASTGCN∗ shows com-
petitive results but still performs worse than HetETA in the help of
attention mechanism optimization by us4. HetETA outperforms all

4Our revision to the attention mechanism of ASTGCN somehow protects ASTGCN
from noises caused by the full attention operation.
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Table 4: Ablation Results of HetETA on ETA Task

Dataset SY_6_Trip SY_6_Pickup
Metric MAPE MAE RMSE MAPE MAE RMSE

HetETA 12.32% 116.44 197.26 22.96% 47.16 82.77
w/o vehicle info. 12.50% 117.85 200.36 23.05% 46.70 81.21
w/o D&W cmpt. 12.46% 116.82 197.11 23.18% 47.72 83.28
w/o direction info. 12.43% 117.94 201.73 22.99% 47.00 82.12
w/o attention idea 12.45% 118.29 202.22 22.97% 47.69 83.92
Dataset SY_7_Trip SY_7_Pickup
Metric MAPE MAE RMSE MAPE MAE RMSE

HetETA 12.39% 109.17 173.03 21.89% 46.23 73.78
w/o vehicle info. 12.40% 108.43 171.70 22.04% 46.37 74.26
w/o D&W cmpt. 12.64% 111.36 175.69 22.11% 46.98 75.16
w/o direction info. 12.44% 109.35 172.77 21.91% 46.24 73.82
w/o attention idea 12.41% 108.60 171.92 21.92% 46.31 74.04

competing baselines in terms of MAPE and MAE on four datasets,
verifying the gain of introducing heterogeneous information. In par-
ticular, HetETA decreases MAPE by 1.99%, 1.59%, 2.13% and 1.79%
respectively over the most competitive baseline on four datasets.
Note that it is tough to improve performance of ETA task and a
slight decrease of MAPE usually means high commercial appli-
cations value of ETA task. The superiority of HetETA in the trip
dataset is larger than the pickup dataset, where the path route is
usually shorter than that of trip data. One possible reason is that the
vehicle-trajectories based network can helps HetETA to model the
behavior of traffic flow in a long-term view, which is more valuable
for the trip data. Figure 8 depicts the bad case rate of each model
with different threshold value µ on four datasets. It is evident that
HetETA consistently achieves substantial gains over baselines by
3.40% ∼ 46.67% and 0.69% ∼ 28.33% in the trip dataset and the
pickup dataset respectively. The improvement of BCR-µ becomes
more significant when µ is larger.

Table 3 reports the performance results of comparison models
in the traffic speed prediction task. All models are trained directly
to predict the next term (5-30 minutes) traffic speeds for road seg-
ments by minimizing MAPE loss between prediction speeds and the
ground truth. Again, HetETA achieves the best results in terms of
all evaluation metrics. We can observe that HetETA and ASTGCN∗

tend to provide more superior performance for longer-term predic-
tion, which is likely due to the utilization of periodicity information.
Benefiting from the vehicle-trajectories based network, HetETA is
superior to ASTGCN∗ in most cases.

4.3.2 Ablation Test. In this section, we further conduct ablation
tests to study the effects of different heterogeneous information
used in HetETA, including (a) the daily and weekly periodicity
information, (b) the vehicle-trajectories based network, (c) multiple
relations in the road network and (d) attention mechanism assisting
in Het-ChebNet. Table 4 shows performance of HetETA against its
ablations on ETA task, and we can observe that: (a) When the daily-
period component and weekly-period component are removed (w/o
D&W cmpt.), the model performs worst compared with other vari-
ants of HetETA but still performs better than baseline models. It
indicates that the periodicity information plays an importance role

Table 5: Effect of HetETA in Cooperation with WDR

Dataset Metric Pickup Trip
WDR WDR+HetETA WDR WDR+HetETA

SY_6

MAPE 21.13% 20.74% 12.08% 11.94%
MAE 49.1 46.5 101.7 100.1
RMSE 77.9 72.9 161.2 158.5
BCR 0.90% 0.87% 0.89% 0.83%

SY_7

MAPE 20.23% 19.99% 12.21% 11.97%
MAE 51.6 49.7 104.0 101.1
RMSE 80.0 75.1 160.7 156.0
BCR 0.95% 0.77% 0.92% 0.83%

for drawing trend patterns in ETA task; (b) Without the vehicle-
trajectories based network (w/o vehicle info.), MAPE increases
while MAE and RMSE decrease in some cases. It is a sign that the
model may be subject to overfitting due to outliers, and the traffic
flow behavior maintained in the vehicle-trajectories based network
serves more reliable information and improves generalization of
HetETA; (c) Replacing the multi-relational road network with a
single-relational road network (no more turning direction infor-
mation in the road network, w/o direction info.), the performance
becomes worse than that of HetETA in most cases. It demonstrates
that the turning direction between road segments has an effect
on traffic patterns and it should be well considered in the model
for ETA task. (d) Compared with the ablation of attention mecha-
nism (w/o attention idea), HetETA performing graph convolution
with Eq. (4) has advantage over the model that performs graph
convolution with Eq. (3). It verifies the effect of our designed Het-
ChebNet to adapt multiple relations in the graph. And it shows
again that the consideration of relations between vertices, includ-
ing “in-coming”/“out-going” or multiple types of relationship, is
beneficial to the graph representation learning. All in all, HetETA
achieves obvious performance gain by embedding various hetero-
geneous information, validating the significance of spatiotemporal
heterogeneous information embedding.

4.3.3 Cooperation withWDR. In this experiment, wewant to check
whether HetETA can help to improve the performance of some
state-of-the-art ETA frameworks applied in the industry, like WDR
[32]. We first output the dynamic representations from the HetETA
models trained for ETA task in Section 4.3.1. Then, the learned
representations are used as additional input features for the Re-
current Channel of WDR model. Together with hand-crafted fea-
tures designed by WDR, we train the WDR models and report the
results in Table 5. As we can observe, with the incorporation of
representations learned by HetETA, WDR+HetETA achieves bet-
ter performances by a large margin (decreased by 1.19% ∼ 1.94%,
1.57% ∼ 5.30%, 1.67% ∼ 6.42% and 3.33% ∼ 18.50% in terms of
MAPE, MAE, RMSE and BCR, respectively), which further proves
the power of HetETA in industrial applications. Here again, many
efforts have been made to improve performance of ETA task. There-
fore, the superior performance of HetETA indicates tremendous
potential of heterogeneous network embedding for ETA tasks.

4.3.4 Quantitative Analysis. To analyze the impact of the length
of path route, we present the MAPE results of HetETA over the
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(a) MAPE vs. Length of the path route (b) MAPE vs. Time of day

Figure 9: The trend of MAPE on SY_6.

length of path route in Figure 9(a). In general, HetETA performs
better when the path route is longer, verifying the ability of our
model to capture long-term patterns. Furthermore, we studied the
performance of HetETA over different time periods in the day.
As shown in Figure 9(b), HetETA performs better during off-peak
hours compared to peak hours. This is because of the well-known
intractability problem of traffic congestion in peak hours, which is
worthy of exploration in future studies.

5 CONCLUSION
In this paper, we propose HetETA to learn the representation of
spatiotemporal heterogeneous information networks for travel time
estimation. HetETA combines gated convolution neural networks
and graph neural networks to capture the correlations in spatiotem-
poral information. To tackle the different types of relationships
among vertices, we design an attention-based Het-ChebNet and
construct a double-stuffed graph convolution layer to embed our
induced networks, including the multi-relational road network
and vehicle-trajectories based network. Comprehensive empirical
studies on four large-scale datasets show that HetETA achieves
state-of-the-art results and demonstrate the effectiveness of the
heterogeneous information network embedding in ETA task. We
plan to apply other heterogeneous information, such as various
types of vertices, to ETA task in the future work.

REFERENCES
[1] George M Beal and Joe M Bohlen. 1956. The diffusion process. Technical Report.
[2] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral

Networks and Locally Connected Networks on Graphs. In 2nd International
Conference on Learning Representations.

[3] Chao Chen, Karl Petty, Alexander Skabardonis, Pravin Varaiya, and Zhanfeng
Jia. 2007. Freeway Performance Measurement System: Mining Loop Detector
Data. Transportation Research Record Journal of the Transportation Research Board
(2007).

[4] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[5] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. 2017. Lan-
guage modeling with gated convolutional networks. In Proceedings of the 34th
International Conference on Machine Learning. 933–941.

[6] Corrado De Fabritiis, Roberto Ragona, and Gaetano Valenti. 2008. Traffic estima-
tion and prediction based on real time floating car data. In 2008 11th International
IEEE Conference on Intelligent Transportation Systems. IEEE, 197–203.

[7] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. InAdvances
in neural information processing systems. 3844–3852.

[8] Jan-Willem Grotenhuis, Bart W Wiegmans, and Piet Rietveld. 2007. The desired
quality of integrated multimodal travel information in public transport: Customer
needs for time and effort savings. Transport Policy 14, 1 (2007), 27–38.

[9] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019.
Attention based spatial-temporal graph convolutional networks for traffic flow
forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence.

[10] Anthony Harrington and Vinny Cahill. 2004. Route profiling: putting context to
work. In Proceedings of the 2004 ACM symposium on Applied computing. ACM.

[11] Ryan Herring, Aude Hofleitner, Saurabh Amin, T Nasr, A Khalek, Pieter Abbeel,
and Alexandre Bayen. 2010. Using mobile phones to forecast arterial traffic
through statistical learning. In Transportation Research Board Annual Meeting.

[12] Aude Hofleitner and Alexandre Bayen. 2011. Optimal decomposition of travel
times measured by probe vehicles using a statistical traffic flow model. In 14th
International IEEE Conference on Intelligent Transportation Systems (ITSC). IEEE.

[13] Aude Hofleitner, Ryan Herring, Pieter Abbeel, and Alexandre Bayen. 2012. Learn-
ing the dynamics of arterial traffic from probe data using a dynamic Bayesian
network. IEEE Transactions on Intelligent Transportation Systems (2012).

[14] H. V. Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Papakonstanti-
nou, Jignesh M. Patel, Raghu Ramakrishnan, and Cyrus Shahabi. 2014. Big data
and its technical challenges. Communications of the Acm 57, 7 (2014), 86–94.

[15] Erik Jenelius and Haris N Koutsopoulos. 2013. Travel time estimation for urban
road networks using low frequency probe vehicle data. Transportation Research
Part B: Methodological 53 (2013), 64–81.

[16] Ishan Jindal, Tony Qin, Xuewen Chen, Matthew S. Nokleby, and Jieping Ye. 2017.
A unified neural network approach for estimating travel time and distance for a
taxi trip. arXiv preprint arXiv:1710.04350 (2017).

[17] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR, 2017.

[18] Yaguang Li, Dingxiong Deng, Ugur Demiryurek, Cyrus Shahabi, and Siva Ravada.
2015. Towards fast and accurate solutions to vehicle routing in a large-scale
and dynamic environment. In International Symposium on Spatial and Temporal
Databases. Springer, 119–136.

[19] Yaguang Li, Kun Fu, Zheng Wang, Cyrus Shahabi, Jieping Ye, and Yan Liu. 2018.
Multi-task representation learning for travel time estimation. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. ACM, 1695–1704.

[20] Yanying Li and Mike McDonald. 2002. Link travel time estimation using single
GPS equipped probe vehicle. In Proceedings. The IEEE 5th International Conference
on Intelligent Transportation Systems. IEEE, 932–937.

[21] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional
Recurrent Neural Network: Data-Driven Traffic Forecasting. In International
Conference on Learning Representations (ICLR ’18).

[22] Andrew LMaas, Awni Y Hannun, and Andrew Y Ng. 2013. Rectifier nonlinearities
improve neural network acoustic models. In Proc. icml, Vol. 30. 3.

[23] Santa Maiti, Arpan Pal, Arindam Pal, Tanushyam Chattopadhyay, and Arijit
Mukherjee. 2014. Historical data based real time prediction of vehicle arrival
time. In 17th International IEEE Conference on Intelligent Transportation Systems.

[24] John Miller and Moritz Hardt. 2018. When recurrent models don’t need to be
recurrent. arXiv preprint arXiv:1805.10369 4 (2018).

[25] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.
2016. Wavenet: A generative model for raw audio. arXiv:1609.03499 (2016).

[26] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. 2018. On the convergence of
adam and beyond. In 6th International Conference on Learning Representations.

[27] Raffi Sevlian and Ram Rajagopal. 2010. Travel time estimation using floating car
data. arXiv preprint arXiv:1012.4249 (2010).

[28] Yizhou Sun and Jiawei Han. 2012. Mining heterogeneous information networks:
a structural analysis approach. SIGKDD Explorations 14, 2 (2012), 20–28.

[29] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. International Confer-
ence on Learning Representations (2018).

[30] Hongjian Wang, Xianfeng Tang, Yu-Hsuan Kuo, Daniel Kifer, and Zhenhui Li.
2019. A simple baseline for travel time estimation using large-scale trip data.
ACM Transactions on Intelligent Systems and Technology (TIST) 10, 2 (2019), 19.

[31] Yilun Wang, Yu Zheng, and Yexiang Xue. 2014. Travel time estimation of a path
using sparse trajectories. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 25–34.

[32] Zheng Wang, Kun Fu, and Jieping Ye. 2018. Learning to estimate the travel time.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM, 858–866.

[33] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.
Graph WaveNet for Deep Spatial-Temporal Graph Modeling. In Proceedings of
the 28th International Joint Conference on Artificial Intelligence (IJCAI).

[34] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-temporal Graph Con-
volutional Networks: A Deep Learning Framework for Traffic Forecasting. In
Proceedings of the 27th International Joint Conference on Artificial Intelligence.

[35] Nicholas Jing Yuan, Yu Zheng, Liuhang Zhang, and Xing Xie. 2012. T-finder: A
recommender system for finding passengers and vacant taxis. IEEE Transactions
on knowledge and data engineering 25, 10 (2012), 2390–2403.

[36] Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. 2020. GMAN:
A Graph Multi-Attention Network for Traffic Prediction. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 34.

Applied Data Science Track Paper  KDD '20, August 23–27, 2020, Virtual Event, USA

2452



A MORE DETAILS ON HET-CHEBNET
Traced back to spectral graph convolutional neural networks [2], it
first defines convolution on graph data in the context of spectral
graph theory, taking the form as:

x′ = QΘQTx, (11)

where x′, x ∈ R |V | are the output signal and input signal on ver-
tices (a scalar for each vertex). Q comprises eigenvectors of graph
Laplacian matrix L, and the diagonal matrix Θ = Θ(Λ) ∈ R |V |× |V |

is learnable filters, where Λ denotes eigenvalues of L. However,
the calculation of full eigenvectors is time-consuming for large-
scale graphs. To reduce the computational complexity, ChebNet [7]
proposes a polynomial filter to approximate the spectral filter by
Chebyshev expansion:

Θ(Λ) =
Z∑
z=0

θzΓz (Λ̃), (12)

where eigenvalues are rescaled as Λ̃ = 2Λ/λmax − I for the or-
thonormal basis of Chebyshev polynomials. Γz (·) is the Chebyshev
polynomial of order z with recursive relation:

Γz (x) = 2xΓz−1(x) − Γz−2(x). (13)

Substitute Eq. (12) into Eq. (11), we obtain Eq. (14) as follows:

x′ = QΘ(Λ)QTx =
Z∑
z=0

θzQΓz (Λ̃)QTx =
Z∑
z=0

θzΓz (L̃)x, (14)

where L̃ = 2L/λmax − I and Lz = QΛzQT.

Het-ChebNet. In this paper, we generalize ChebNet to the multi-
relational graph/network by incorporating attention mechanism
into Eq. (14):

x′ =
Z∑
z=0

θz
(
Γz (L̃) ⊙ f (Uz )

)
x. (15)

where Uz is an attention matrix for each pair of vertices within
the z-hop connection of the graph. That is, when the connection
weight fromvi tovj in Γz (L̃) is not zero, Het-ChebNet computes an
attention score for this connection according to its relation type. In
addition to the original relation types in the graph, we add “high-
order” relationship for high-order adjacency linkages (see Figure
10). When the attention matrix Uz is obtained, the softmax function
f (·) would be performed on the last dimension of Uz . Figure 11
depicts the computational process of a value f (uji ) ∈ f (Uz ).
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(a) 1-localized Het-ChebNet (b) 2-localized Het-ChebNet (c) 3-localized Het-ChebNet

Figure 10: Toy example of convolutions for target vertex
v1 in Z -localized Het-ChebNet. Vertices within the gray
shadow are convolved to compute the output signal of v1.

Figure 11: Attentionmechanism employed byHet-ChebNet.

B DETAILED PARAMETER SETTINGS ON
BASELINES

All comparisonmodels are trained based on the best hyper-parameters
chosen by using grid search until convergence within 100 epochs. In
this section, we list the detailed hyper-parameters for comparison
methods mentioned in our experiments. Note that, we use the same
settings for either ETA task or traffic prediction task.

• GRU [4]: Gated Recurrent Unit Network. We apply multi-
cell RNNs with 2 GRU layers. Each GRU layer contains 11
units. The initial learning rate is set to 0.02 and reduced by
15% every 5 epochs. The max training epoch number is 100
and early stopping on the validation dataset is used.

• DCRNN [21]: Diffusion Convolutional Recurrent Neural
Network, whose implementation is available in https://github.
com/ liyaguang/DCRNN . Seq2seq architecture is used, in
which the encoder accepts sequence of length= 4 and the de-
coder outputs sequence of length= 1. The maximum steps of
diffusion convolutions, i.e.,K , is set to 2. Each recurrent layer
in DCRNN contains 11 units. The initial learning rate is set
to 0.05 and reduced by 15% every 5 epochs. The max training
epoch number is 100 and early stopping on the validation
dataset is used.

• STGCN [34]: Spatio-Temporal Graph Convolutional Net-
work, whose implementation is available in https://github.
com/VeritasYin/STGCN_IJCAI-18. The channels of three hid-
den layers in ST-Conv block are [9, 8, 11]. Chebyshev poly-
nomials kernels are applied with Ks = 3, and kernel size of
temporal convolution is Kt = 2. The initial learning rate is
set to 0.05 and reduced by 15% every 5 epochs. The max train-
ing epoch number is 100 and early stopping on the validation
dataset is used.

• Graph WaveNet [33]: Graph WaveNet, which is originally
implemented in PyTorch available at https://github.com/nnzhan/
Graph-WaveNet. We re-implement it in Tensorflow and due
to the large number of vertices in our network, we remove

Applied Data Science Track Paper  KDD '20, August 23–27, 2020, Virtual Event, USA

2453

https://github.com/liyaguang/DCRNN
https://github.com/liyaguang/DCRNN
https://github.com/VeritasYin/STGCN_IJCAI-18
https://github.com/VeritasYin/STGCN_IJCAI-18
https://github.com/nnzhan/Graph-WaveNet
https://github.com/nnzhan/Graph-WaveNet


the self-adaptive adjacency matrix. In the dilated casual con-
volutions, the kernel size is set to 2 and the dilation factors
are set to 1 and 2 for the first and second layer respectively.
The maximum diffusion step number is 2, same as DCRNN.
The dimension of output layer is also set to 11. The initial
learning rate is set to 0.02 and reduced by 15% every 5 epochs.
The max training epoch number is 100 and early stopping
on the validation dataset is used.

• ASTGCN [9]: Attention Based Spatial-Temporal Graph Con-
volutional Network, which is originally implemented in
MxNet available at https://github.com/Davidham3/ASTGCN .
We re-implement it in Tensorflow. Note that, the attention

matrix S ∈ R |V |× |V | in ASTGCN obtained from the spatial at-
tention mechanism is based on all the nodes. It causes OOM
(Out of Memory) error in Shenyang’s road network. Thus we
replace it by the sparse spatial attention layer in GAT [29],
whose code is available at https://github.com/PetarV-/GAT .
Same as HetETA, the sequences length of three components
(recent, daily, weekly) are LR = LD = LW = 4. Chebyshev
polynomials kernels are applied with Ks = 3, and kernel size
of temporal convolution is Kt = 2. The output dimension
of each component is set to 8. Similarly, the initial learning
rate is set to 0.05 and reduced by 15% every 5 epochs. The
max training epoch number is 100 and early stopping on the
validation dataset is used.
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