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ABSTRACT
Recent years have witnessed the emerging success of graph

neural networks (GNNs) for modeling structured data. However,
most GNNs are designed for homogeneous graphs, in which all
nodes and edges belong to the same types, making it infeasible to
represent heterogeneous structures. In this paper, we present the
Heterogeneous Graph Transformer (HGT) architecture for model-
ing Web-scale heterogeneous graphs. To model heterogeneity, we
design node- and edge-type dependent parameters to characterize
the heterogeneous attention over each edge, empowering HGT to
maintain dedicated representations for different types of nodes
and edges. To handle Web-scale graph data, we design the hetero-
geneous mini-batch graph sampling algorithm—HGSampling—for
efficient and scalable training. Extensive experiments on the Open
Academic Graph of 179 million nodes and 2 billion edges show
that the proposed HGT model consistently outperforms all the
state-of-the-art GNN baselines by 9%–21% on various downstream
tasks. The dataset and source code of HGT are publicly available at
https://github.com/acbull/pyHGT.
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1 INTRODUCTION
Heterogeneous graphs have been commonly used for abstracting

and modeling complex systems, in which objects of different types
interact with each other in various ways. Some prevalent instances
of such systems include academic graphs, Facebook entity graph,
LinkedIn economic graph, and broadly the Internet of Things net-
work [13]. For example, the Open Academic Graph (OAG) [23]
contains five types of nodes: papers, authors, institutions, venues
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Figure 1: The schema and meta relations of Open Academic
Graph (OAG).

(journal, conference, or preprint), and fields, as well as different
types of relationships between them.

Over the past decade, a significant line of research has been
explored for mining heterogeneous graphs. One of the classical
paradigms is to define and use meta paths to model heterogeneous
structures, such as PathSim [14] and metapath2vec [2]. Recently,
in view of graph neural networks’ (GNNs) success [4, 6, 17], there
are several attempts to adopt GNNs to learn with heterogeneous
networks [11, 18, 21, 22]. However, these works face several issues:
First, most of them involve the design of meta paths or variants
for each type of heterogeneous graphs, requiring specific domain
knowledge; Second, they either simply assume that different types
of nodes/edges share the same feature and representation space or
keep distinct non-sharing weights for either node type or edge type
alone, making them insufficient to capture heterogeneous graphs’
properties; Finally, their intrinsic design and implementation make
them incapable of modeling Web-scale heterogeneous graphs.

In light of these limitations and challenges, we propose to study
heterogeneous neural networks with the goal of maintaining node-
and edge-type dependent representations, avoiding customized
meta paths, and being scalable to Web-scale heterogeneous graphs.
In this work, we present the Heterogeneous Graph Transformer
(HGT) architecture to deal with all these challenges.

To handle graph heterogeneity, we introduce the node- and edge-
type dependent attention mechanism. Instead of parameterizing
each type of edges, the heterogeneous mutual attention in HGT is
defined by breaking down each edge e = (s, t) based on its meta
relation triplet, i.e., ⟨ node type of s , edge type of e between s &
t , node type of t⟩. Figure 1 illustrates the meta relations of hetero-
geneous academic graphs. In specific, we use these meta relations
to parameterize the weight matrices for calculating attention over
each edge. As a result, nodes and edges of different types are al-
lowed to maintain their specific representation spaces. Meanwhile,
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connected nodes in different types can still interact, pass, and aggre-
gate messages without being restricted by their distribution gaps.
Due to the nature of its architecture, HGT can incorporate informa-
tion from high-order neighbors of different types through message
passing across layers, which can be regarded as “soft” meta paths.
That said, even if HGT take only its one-hop edges as input without
manually designing meta paths, the proposed attention mechanism
can automatically and implicitly learn and extract “meta paths” that
are important for different downstream tasks.

To model Web-scale heterogeneous graphs, we design the first
heterogeneous sub-graph sampling algorithm—HGSampling—for
mini-batch GNN training. Its main idea is to sample heteroge-
neous sub-graphs in which different types of nodes are with sim-
ilar proportion, since the direct usage of existing (homogeneous)
GNN sampling methods, such as GraphSage [4], FastGCN [1] and
LADIES [24], results in highly imbalanced ones regarding to both
node and edge types. In addition, it is also designed to keep the
sampled sub-graphs dense for minimizing the loss of information.
With HGSampling, all the GNN models, including our proposed
HGT, can train and infer on arbitrary-size heterogeneous graphs.

We demonstrate the effectiveness and efficiency of the proposed
Heterogeneous Graph Transformer on the Web-scale Open Aca-
demic Graph comprised of 179 million nodes and 2 billion edges,
making this the largest-scale representation learning yet performed
on heterogeneous graphs. Experimental results suggest that HGT
can significantly improve various downstream tasks over state-of-
the-art GNN baselines by 9%–21%. We further conduct case studies
to show the proposed method can indeed automatically capture the
importance of implicit meta paths for different tasks.

2 HETEROGENEOUS GRAPH TRANSFORMER
In this section, we present the Heterogeneous Graph Trans-

former (HGT). Its idea is to use the meta relations of heteroge-
neous graphs to parameterize weight matrices for the heteroge-
neous mutual attention, message passing, and propagation steps.

2.1 Heterogeneous Graphs
Heterogeneous graphs [13] (a.k.a., heterogeneous information

networks) are an important abstraction for modeling relational data
and many real-world complex systems. Formally, a heterogeneous
graph is defined as a directed graph G = (V, E,A,R) where each
node v ∈ V and each edge e ∈ E are associated with their type
mapping functions τ (v) : V → A and ϕ(e) : E → R, respectively.
Meta Relation. For an edge e = (s, t) linked from source node s to
target node t , its meta relation is denoted as ⟨τ (s),ϕ(e),τ (t)⟩. Natu-
rally, ϕ(e)−1 represents the inverse of ϕ(e). The classical meta path
paradigm [13–15] is defined as a sequence of such meta relations.

Notice that, to better model real-world heterogeneous networks,
we assume that there may exist multiple types of relations between
two nodes. For example, in OAG there could be different types of
relations between the author and paper nodes by considering the
authorship order, e.g., “the first author of” and “the last author of”.

2.2 Overall HGT Architecture
Figure 2 shows the overall architecture of Heterogeneous Graph

Transformer. Given a sampled heterogeneous sub-graph (Cf. Sec-
tion 3), HGT extracts all linked node pairs, where target node t is
linked by source node s via edge e . The goal of HGT is to aggregate
information from s to get a contextualized representation for target
node t . Such process can be decomposed into three components:
Heterogeneous Mutual Attention, Heterogeneous Message Passing and
Target-Specific Aggregation.

We denote the output of the (l)-th HGT layer as H (l ), which is
also the input of the (l+1)-th layer. By stacking L layers, we can get
the node representations of the whole graph H (L), which can be
used for end-to-end training or fed into downstream tasks.

2.3 Heterogeneous Mutual Attention
The first step is to calculate the mutual attention between source

node s and target node t . We first give a brief introduction to the
general attention-based GNNs as follows:

H l [t] ← Aggregate
∀s ∈N (t ),∀e ∈E(s,t )

(
Attention(s, t) ·Message(s)

)
(1)

where there are three basic operators: Attention, which estimates
the importance of each source node;Message, which extracts the
message by using only the source node s; and Aggregate, which
aggregates the neighborhood message by the attention weight.

For example, the Graph Attention Network (GAT) [17] adopts
an additive mechanism as Attention, uses the same weight for
calculatingMessage, and leverages the simple average followed by
a nonlinear activation for the Aggregate step. Formally, GAT has

AttentionGAT (s, t) = Softmax∀s ∈N (t )

(
®a
(
WH l−1[t] ∥WH l−1[s]

))
MessageGAT (s) =WH l−1[s]

AggregateGAT (·) = σ
(
Mean(·)

)
Though GAT is effective to give high attention values to important
nodes, it assumes that s and t have the same feature distributions by
using one weight matrixW . Such an assumption, as we’ve discussed
in Section 1, is usually incorrect for heterogeneous graphs, where
each type of nodes can have its own feature distribution.

In view of this limitation, we design the Heterogeneous Mu-
tual Attentionmechanism. Given a target node t , and all its neigh-
bors s ∈ N (t), which might belong to different distributions, we
want to calculate their mutual attention grounded by theirmeta
relations, i.e., the ⟨τ (s),ϕ(e),τ (t)⟩ triplets.

Inspired by the architecture design of Transformer [16], we map
target node t into a Query vector, and source node s into a Key vec-
tor, and calculate their dot product as attention. The key difference
is that the vanilla Transformer uses a single set of projections for all
words, while in our case each meta relation should have a distinct
set of projection weights. To maximize parameter sharing while
still maintaining the specific characteristics of different relations,
we propose to parameterize the weight matrices of the interac-
tion operators into a source node projection, an edge projection,
and a target node projection. Specifically, we calculate the h-head
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Figure 2: The Overall Architecture of Heterogeneous Graph Transformer. Given a sampled heterogeneous sub-graph with t as
the target node, s1 & s2 as source nodes, the HGT model takes its edges e1 = (s1, t) & e2 = (s2, t) and their corresponding meta relations
< τ (s1),ϕ(e1),τ (t) > & < τ (s2),ϕ(e2),τ (t) > as input to learn a contextualized representation H (L) for each node, which can be used for
downstream tasks. Color decodes the node type. HGT includes three components: (1) meta relation-aware heterogeneous mutual attention,
(2) heterogeneous message passing from source nodes, and (3) target-specific heterogeneous message aggregation.

attention for each edge e = (s, t) (See Figure 2 (1)) by:

AttentionHGT (s, e, t) = Softmax∀s ∈N (t )
(
∥

i ∈[1,h]
ATT -headi (s, e, t)

)
(2)

ATT -headi (s, e, t) =
(
K i (s)W ATT

ϕ(e) Qi (t)T
)
·
µ ⟨τ (s),ϕ(e),τ (t )⟩

√
d

K i (s) = K-Lineariτ (s)
(
H (l−1)[s]

)
Qi (t) = Q-Lineariτ (t )

(
H (l−1)[t]

)
First, for the i-th attention head ATT -headi (s, e, t), we project the
τ (s)-type source node s into the i-th Key vector K i (s) with a linear
projection K-Lineariτ (s) : Rd → R

d
h , where h is the number of

attention heads and d
h is the vector dimension per head. Note that

K-Lineariτ (s) is indexed by the source node s’s type τ (s), meaning
that each type of nodes has a unique linear projection to maximally
model the distribution differences. Similarly, we also project the
target node t with a linear projection Q-Lineariτ (t ) into the i−th
Query vector.

Next, we need to calculate the similarity between the Query
vector Qi (t) and Key vector K i (s). One unique characteristic of
heterogeneous graphs is that there may exist different edge types
(relations) between a node type pair, e.g., τ (s) and τ (t). Therefore,
unlike the vanilla Transformer that directly calculates the dot prod-
uct between the Query and Key vectors, we keep a distinct edge-
based matrixW ATT

ϕ(e) ∈ R
d
h ×

d
h for each edge type ϕ(e). In doing so,

the model can capture different semantic relations even between
the same node type pairs. Moreover, since not all the relation-
ships contribute equally to the target nodes, we add a prior tensor

µ ∈ R |A |×|R |×|A | to denote the general significance of each meta
relation triplet, serving as an adaptive scaling to the attention.

Finally, we concatenate h attention heads together to get the
attention vector for each node pair. Then, for each target node t ,
we gather all attention vectors from its neighbors N (t) and conduct
softmax, making it fulfill

∑
∀s ∈N (t ) AttentionHGT (s, e, t) = 1h×1.

2.4 Heterogeneous Message Passing
Parallel to the calculation of mutual attention, we pass informa-

tion from source nodes to target nodes (See Figure 2 (2)). Similar
to the attention process, we would like to incorporate the meta
relations of edges into the message passing process to alleviate the
distribution differences of nodes and edges of different types. For a
pair of nodes e = (s, t), we calculate its multi-headMessage by:

MessageHGT (s, e, t) = ∥
i ∈[1,h]

MSG-headi (s, e, t) (3)

MSG-headi (s, e, t) = M-Lineariτ (s)
(
H (l−1)[s]

)
WMSG
ϕ(e)

To get the i-th message headMSG-headi (s, e, t), we first project the
τ (s)-type source node s into the i-th message vector with a linear
projection M-Lineariτ (s) : Rd → R

d
h . It is then followed by a matrix

WMSG
ϕ(e) ∈ R

d
h ×

d
h for incorporating the edge dependency. The final

step is to concat all h message heads to get theMessageHGT (s, e, t)
for each node pair.

2.5 Target-Specific Aggregation
With the heterogeneous multi-head attention and message cal-

culated, we need to aggregate them from the source nodes to the
target node (See Figure 2 (3)). Note that the softmax procedure in
Eq. 2 has made the sum of each target node t ’s attention vectors
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to one, we can thus simply use the attention vector as the weight
to average the corresponding messages from the source nodes and
get the updated vector H̃ (l )[t] as:

H̃ (l )[t] = ⊕
∀s ∈N (t )

(
AttentionHGT (s, e, t) ·MessageHGT (s, e, t)

)
.

This aggregates information to the target node t from all its neigh-
bors (source nodes) of different feature distributions.

The final step is to map target node t ’s vector back to its type-
specific distribution, indexed by its node type τ (t). To do so, we
apply a linear projection A-Linearτ (t ) to the updated vector H̃ (l )[t],
followed by a non-linear activation and residual connection [5] as:

H (l )[t] = σ
(
A-Linearτ (t )H̃ (l )[t]

)
+ H (l−1)[t]. (4)

In this way, we get the l-th HGT layer’s outputH (l )[t] for the target
node t . Due to the “small-world” property of real-world graphs,
stacking the HGT blocks for L layers (L being a small value) can
enable each node reaching a large proportion of nodes—with differ-
ent types and relations—in the full graph. That is, HGT generates
a highly contextualized representation H (L) for each node, which
can be fed into any models to conduct downstream heterogeneous
network tasks, such as node classification and link prediction.

Through the whole model architecture, we highly rely on using
the meta relation—⟨τ (s),ϕ(e),τ (t)⟩—to parameterize the weight
matrices separately. This can be interpreted as a trade-off between
the model capacity and efficiency. Compared with the vanilla Trans-
former, our model distinguishes the operators for different relations
and thus is more capable to handle the distribution differences in
heterogeneous graphs. Compared with existing models that keep a
distinct matrix for each meta relation as a whole, HGT’s triplet pa-
rameterization can better leverage the heterogeneous graph schema
to achieve parameter sharing. On one hand, relations with few oc-
currences can benefit from such parameter sharing for fast adapta-
tion and generalization. On the other hand, different relationships’
operators can still maintain their specific characteristics by using a
much smaller parameter set.

3 HGSampling FORWEB-SCALE TRAINING
In this section, we present an efficient Heterogeneous Mini-

Batch Graph Sampling algorithm—HGSampling—to enable both
HGT and traditional GNNs to handle Web-scale heterogeneous
graphs. HGSampling is able to 1) keep a similar number of nodes
and edges for each type and 2) keep the sampled sub-graph dense
to minimize the information loss and reduce the sample variance.

Algorithm 1 outlines the HGSampling algorithm. Its basic idea
is to keep a separate node budget B[τ ] for each node type τ and
to sample an equal number of nodes per type with an importance
sampling strategy to reduce variance. Given node t already sampled,
we add all its direct neighbors into the corresponding budget with
Algorithm 2, and add t ’s normalized degree to these neighbors in
line 5, which will then be used to calculate the sampling probability.
Such normalization is equivalent to accumulate the random walk
probability of each sampled node to its neighborhood, avoiding the
sampling being dominated by high-degree nodes. Intuitively, the
higher such value is, the more a candidate node is correlated with

Algorithm 1 Heterogeneous Mini-Batch Graph Sampling

Require: Adjacency matrix A for each ⟨τ (s),ϕ(e),τ (t)⟩ relation
pair; Output node Set OS ; Sample number n per node type;
Sample depth L.

Ensure: Sampled node set NS ; Sampled adjacency matrix Â.
1: NS ← OS // Initialize sampled node set as output node set.
2: Initialize an empty Budget B storing nodes for each node type

with normalized degree.
3: for t ∈ NS do
4: Add-In-Budget(B, t , A, NS) // Add neighbors of t to B.
5: end for
6: for l ← 1 to L do
7: for source node type τ ∈ B do
8: for source node s ∈ B[τ ] do
9: prob(l−1)[τ ][s] ← B[τ ][s]2

∥B[τ ] ∥22
// Calculate sampling prob-

ability for each source node s of node type τ .
10: end for
11: Sample n nodes {ti }ni=1 from B[τ ] using prob(l−1)[τ ].
12: for t ∈ {ti }ni=1 do
13: OS[τ ].add(t) // Add node t into Output node set.
14: Add-In-Budget(B, t , A, NS) // Add neighbors of t to B.
15: B[τ ].pop(t) // Remove sampled node t from Budget.
16: end for
17: end for
18: end for
19: Reconstruct the sampled adjacency matrix Â among the sam-

pled nodes OS from A.
20: return OS and Â;

the currently sampled nodes, and thus should be given a higher
probability to be sampled.

After the budget is updated, we then calculate the sampling
probability in Algorithm 1 line 9, where we calculate the square of
the cumulative normalized degree of each node s in each budget.
As proved in [24], using such sampling probability can reduce the
sampling variance. Then, we sample n nodes in type τ by using the
calculated probability, add them into the output node set, update
its neighborhood to the budget, and remove it out of the budget
in lines 12–15. Repeating such procedure for L times, we get a
sampled sub-graph with L depth from the initial nodes. Finally, we
reconstruct the adjacency matrix among the sampled nodes. By
using the above algorithm, the sampled sub-graph contains a similar
number of nodes per type (based on the separate node budget), and
is sufficiently dense to reduce the sampling variance (based on the
normalized degree and importance sampling), making it suitable
for training GNNs on Web-scale heterogeneous graphs.

4 EVALUATION
In this section, we evaluate the proposed Heterogeneous Graph

Transformer on the Open Academic Graph (OAG) [23]—the largest
publicly available heterogeneous academic dataset. We conduct
the Paper-Field prediction, Paper-Venue prediction, and Author
Disambiguation tasks. We also take case studies to demonstrate
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Dataset #nodes #edges #papers #authors #fields #venues #institutes #P-A #P-F #P-V #A-I #P-P

OAG 178,663,927 2,236,196,802 89,606,257 88,364,081 615,228 53,073 25,288 300,853,688 657,049,405 89,606,258 167,449,933 1,021,237,518

Table 1: Open Academic Graph (OAG) Statistics.

Algorithm 2 Add-In-Budget
Require: Budget B storing nodes for each type with normal-

ized degree; Added node t ; Adjacency matrix A for each
⟨τ (s),ϕ(e),τ (t)⟩ relation pair; Sampled node set NS .

Ensure: Updated Budget B.
1: for each possible source node type τ and edge type ϕ do
2: D̂t ← 1 / len

(
A ⟨τ ,ϕ,τ (t )⟩[t]

)
// get normalized degree of

added node t regarding to ⟨τ ,ϕ,τ (t)⟩.
3: for source node s in A ⟨τ ,ϕ,τ (t )⟩[t] do
4: if s has not been sampled (s < NS) then
5: B[τ ][s] ← B[τ ][s] + D̂t // Add candidate node s to

budget B with target node t ’s normalized degree.
6: end if
7: end for
8: end for
9: return Updated Budget B

how HGT can automatically learn and extract meta paths that are
important for downstream tasks∗.

4.1 Web-scale Datasets
To examine Heterogeneous Graph Transformer and its real-

world applications, we use the OpenAcademic Graph (OAG) [12, 23]
as our experimental basis. OAG consists of more than 178 million
nodes and 2.236 billion edges, making them at least two–three
magnitudes larger than the other datasets that are commonly used
in existing heterogeneous GNN and heterogeneous graph mining
studies. Besides, it is far more distinguishable than previously wide-
adopted small citation graphs used in GNN studies, such as Cora,
Citeseer and Pubmed [6, 17], which only contain thousands of nodes.
The graph statistics are listed in Table 1, in which P–A, P–F, P–V,
A–I, and P–P denote the edges between paper and author, paper
and field, paper and venue, author and institute, and the citation
links between two papers. In addition, the ‘Field’ nodes in OAG are
categorized into six levels from L0 to L5, which are organized with
a hierarchical tree. Therefore, we differentiate the ‘Paper–Field’
edges corresponding to the field level.

4.2 Experimental Setup

Tasks and Evaluation. We evaluate the HGT model on four dif-
ferent real-world downstream tasks: the prediction of Paper–Field
(L1), Paper–Field (L2), and Paper–Venue, and Author Disambigua-
tion. The goal of the first three node classification tasks is to predict
the correct L1 and L2 fields that each paper belongs to or the venue
it is published at, respectively. We use different GNNs to get the
contextual node representation of the paper and use a softmax out-
put layer to get its classification label. For author disambiguation,
∗The dataset and code are publicly available at https://github.com/acbull/pyHGT.

we select all the authors with the same name and their associated
papers. The task is to conduct link prediction between these papers
and candidate authors. After getting the paper and author node
representations from GNNs, we use a Neural Tensor Network to
get the probability of each author-paper pair to be linked.

For all tasks, we use papers published before the year 2015 as
the training set, papers between 2015 and 2016 for validation, and
papers between 2016 and 2019 as testing. We choose NDCG and
MRR, which are two widely adopted ranking metrics [7, 8], as the
evaluation metrics. All models are trained for 5 times and, the mean
and standard variance of test performance are reported.
Baselines.We compare HGT with several state-of-the-art GNNs,
including both homogeneous—GCN [6] and GAT [17]—and het-
erogeneous GNNs—RGCN [11], HetGNN [22], and HAN [18]. To
examine the effectiveness of the heterogeneous components in our
model, we also propose the HGTnoHeter model, which uses the same
set of weights for all meta relations, as the ablation study. All base-
lines as well as our own model are implemented via the PyTorch
Geometric (PyG) package [3].

We use our HGSampling algorithm proposed in Section 3 for
all baseline GNNs to handle the large-scale OAG graph. To avoid
data leakage, we remove out the links we aim to predict (e.g. the
Paper-Field link as the label) from the sub-graph.
Input Features. As we don’t assume the feature of each node
type belongs to the same distribution, we are free to use the most
appropriate features to represent each type of nodes. For each paper,
we use a pre-trained XLNet [19, 20] to get the representation of each
word in its title. We then average them weighted by each word’s
attention to get the title representation for each paper. The initial
feature of each author is then simply an average of his/her published
papers’ representations. For the field, venue, and institute nodes,
we use the metapath2vec model [2] to train their node embeddings
by reflecting the heterogeneous network structures.

The homogeneous GNN baselines assume the node features be-
long to the same distribution, while our feature extraction doesn’t
fulfill this assumption. To make a fair comparison, we add an adap-
tation layer between the input features and all used GNNs. This
module simply conducts different linear projections for nodes of
different types. Such a procedure can be regarded to map hetero-
geneous data into the same distribution, which is also adopted in
literature [18, 22].
Implementation Details. We use 256 as the hidden dimension
throughout the neural networks for all baselines. For all multi-head
attention-based methods, we set the head number as 8. All GNNs
keep 3 layers so that the receptive fields of each network are exactly
the same. All baselines are optimized via the AdamW optimizer [10]
with the Cosine Annealing Learning Rate Scheduler [9]. For each
model, we train it for 200 epochs and select the one with the lowest
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GNN Models GCN [6] RGCN [11] GAT [17] HetGNN [22] HAN [18] HGTnoHeter HGT

#Parameter / Batch Time 1.69M / 0.46s 8.80M / 1.24s 1.69M / 0.97s 8.41M / 1.35s 9.45M / 2.27s 3.12M / 1.11s 7.44M / 1.48s

Paper–Field (L1)
NDCG .508±.141 .511±.128 .534±.103 .543±.084 .544±.096 .571±.089 .595±.089
MRR .556±.136 .565±.105 .610±.096 .616±.076 .622±.092 .649±.081 .675±.082

Paper–Field (L2)
NDCG .218±.074 .228±.046 .239±.049 .236±.062 .242±.051 .250±.045 .258±.052
MRR .222±.067 .232±.052 .248±.045 .250±.053 .258±.049 .262±.057 .271±.064

Paper–Venue
NDCG .265±.066 .276±.051 .270±.057 .262±.071 .280±.062 .297±.058 .306±.064
MRR .258±.070 .236±.047 .260±.052 .246±.059 .278±.067 .293±.061 .317±.048

Author
Disambiguation

NDCG .612±.064 .619±.057 .645±.063 .649±.052 .660±.049 .668±.059 .683±.066
MRR .738±.042 .755±.048 .797±.044 .803±.058 .821±.056 .835±.043 .847±.043

Table 2: Experimental results of different methods on Open Academic Graph (OAG).

validation loss as the reported model. We use the default parameters
used in GNN literature and donot tune hyper-parameters.

4.3 Results
We summarize the experimental results of the proposed model

and baselines in Table 2. All experiments for the four tasks are
evaluated in terms of NDCG and MRR. It shows that in terms of
both metrics, the proposed HGT model significantly and consis-
tently outperforms all baselines for all tasks. Take, for example,
the Paper–Field (L1) classification task, HGT achieves performance
gains over baselines by 9–19% in terms of NDCG and 9–21% in
terms of MRR (i.e., the performance difference divided by the base-
line performance). When compared to HetGNN and HAN—the two
dedicated heterogeneous GNN baselines, on average, the relative
NDCG improvements of HGT for all four tasks are 8% and 6%,
respectively. Moreover, HGT has fewer parameters and compara-
ble batch time than all the heterogeneous graph neural network
baselines, including RGCN, HetGNN, and HAN. This suggests that
by modeling heterogeneous edges according to their meta rela-
tion schema, we are able to have better generalization with fewer
resource consumption.
Ablation Study. The core component in HGT is the meta relation
parameterization. To further analyze its effect, we conduct an abla-
tion study. HGTnoHeter only maintains a single set of parameters
for all relations, which is equivalent to the vanilla Transformer
applied on graphs. We can see that after removing this component,
the NDCG performance drops 3.2%, demonstrating the importance
of our meta relation parameterization.

Besides, we also try to implement a baseline that keeps a unique
weight matrix for each relation. However, such a baseline contains
too many parameters so that our experimental setting doesn’t have
enough GPU memory to optimize it. This also indicates that using
the meta relation to parameterize weight matrices can achieve
competitive performance with fewer resources.

4.4 Visualize Meta Relation Attention
To illustrate how the incorporated meta relation schema can

benefit the heterogeneous message passing process, we pick the
schema that has the largest attention value in each of the first

Figure 3: Hierarchy of the learned meta relation attention.

two HGT layers and plot the meta relation attention hierarchy
tree in Figure 3. For example, to calculate a paper’s representation,
⟨Paper, is_published_at , Venue, is_published_at−1, Paper⟩, ⟨Paper,
has_L2_f ield_o f , Field,has_L5_f ield_o f −1, Paper⟩, and ⟨Institute,
is_af f iliated_with−1, Author, is_f irst_author_o f , Paper⟩ are the
three most important meta relation sequences, which can be re-
garded as meta paths PVP, PFP, and IAP, respectively. Note that
these meta paths and their importance are automatically learned
from the data without manual design. Another example of calcu-
lating an author node’s representation is shown on the right. Such
visualization demonstrates that Heterogeneous Graph Transformer
is capable of implicitly learning to construct important meta paths
for specific downstream tasks, without manual customization.

5 CONCLUSION
In this paper, we propose the Heterogeneous Graph Transformer

(HGT) architecture for modeling Web-scale heterogeneous graphs.
To model heterogeneity, we use the meta relation ⟨τ (s),ϕ(e),τ (t)⟩
to decompose the interaction and transformation matrices, enabling
HGT to have the similar modeling capacity with fewer resources.
To conduct efficient and scalable training of HGT on Web-scale
data, we design the heterogeneous Mini-Batch graph sampling
algorithm—HGSampling. We conduct comprehensive experiments
on the Open Academic Graph to show that the proposed HGT
model can capture graph heterogeneity and outperform all the
state-of-the-art GNN baselines on various downstream tasks.
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