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Abstract—Cyber attacks have become increasingly complicated, persistent, organized, and weaponized. Faces with this situation, drives a
rising number of organizations across the world are showing a growing willingness to leverage the open exchange of cyber threat intelligence
(CTI) for obtaining a full picture of the fast-evolving cyber threat situation and protecting themselves against cyber-attacks. However, modeling
CTI is challenging due to the explicit and implicit relationships among CTI and the heterogeneity of cyber-threat infrastructure nodes involved in
CTI. Owing to the limited labels of cyber threat infrastructure nodes involved in CTI, automatically identifying the threat type of infrastructure
nodes for early warning is also challenging. To tackle these challenges, a practical system called HinCTI is developed for modeling cyber threat
intelligence and identifying threat types. We first design a threat intelligence meta-schema to depict the semantic relatedness of infrastructure
nodes. We then model cyber threat intelligence on heterogeneous information network (HIN), which can integrate various types of infrastructure
nodes and rich relations among them. Following, we define a meta-path and meta-graph instances-based threat Infrastructure similarity (MIIS)
measure between threat infrastructure nodes and present a MIIS measure-based heterogeneous graph convolutional network (GCN) approach
to identify the threat types of infrastructure nodes involved in CTI. Moreover, through the hierarchical regularization strategy, our model can
alleviate the problem of overfitting and achieve good results in the threat type identification of infrastructure nodes. To the best of our knowledge,
this work is the first to model CTI on HIN for threat identification and propose a heterogeneous GCN-based approach for threat type
identification of infrastructure nodes. With HinCTI, comprehensive experiments are conducted on real-world datasets, and experimental results
demonstrate that our proposed approach can significantly improve the performance of threat type identification compared to the existing
state-of-the-art baseline methods. Our work is beneficial to greatly relieve security analysts from heavy analysis work and efficiently protect
organizations against cyber-attacks.

Index Terms—Cyber threat intelligence, threat type identification, heterogeneous information network, graph convolutional network, threat
infrastructure nodes.
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1 INTRODUCTION

NOWADAYS, to obtain the overall picture of the fast-
evolving cyber threat situation and protect themselves

from the complicated, persistent, organized, and weaponized
cyber-attacks, a rising number of organizations across the world
are showing an increasing willingness to leverage the open
exchange of cyber threat intelligence (CTI) [1]. CTI is evidence-
based knowledge about an existing or emerging threat to assets
and can be used to inform decisions regarding a subject’s
response to the threat [2]. As we know, cyber criminals usually
make full use of network infrastructures (e.g., domain names
and Internet Protocol or IP addresses) to conduct cyber-attacks.
The Pyramid of Pain model [3] indicates six levels of threat
indicators for detecting attack activities, and the lower three
levels are file hashes, IP addresses, and domain names. These
three levels are atomic indicators and can be consumed by
network security devices such as intrusion detection system
(IDS), firewall, and spam filters on email servers. Through the
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application program interfaces (APIs) provided by the threat
intelligence sharing platforms (TISPs), users can acquire huge
amounts of CTI about file hashes, IP addresses, and domain
names (i.e., the lower three levels of the Pyramid of Pain model
that are the focus of this study). Generally, diverse intelligence
sources can help depict cyber-threat infrastructure nodes from
different perspectives. For instance, a domain name can be de-
scribed with information not only from commercial CTI sources
such as IBM X-Force Exchange Platform1 and ThreatBook2 but
also from the related datasets such as passive domain name
system (DNS) and domain name blacklist. Facing increasingly
sophisticated cyber-attacks, modeling CTI provides numerous
advantages [4], [5], [6], [7], such as obtaining a full picture of
the fast-evolving cyber threat situation and unveiling potential
groups that are behind specific attacks. Take domain name
infrastructure nodes as an example, the threat types of domain
names can be spam URLs, brute force login attacks, malware
activity, and botnet node activity. Identifying the threat types
of infrastructure nodes not only benefits the fine-grained threat
warning but also facilitates targeted defensive measures. Note
that we only consider CTI represented in structured data in this
research. The extraction of structured data from unstructured
data such as security technique reports is another important
research direction [8], [9].

1. https://api.xforce.ibmcloud.com/doc
2. https://x.threatbook.cn/private_api
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1.1 Motivation
The modeling of CTI and the threat type identification of infras-
tructure nodes should undoubtedly be the most fundamental
requirements for any cyber threat defense and warning system.
In the past few years, academic and industry communities in the
fields of cybersecurity and data mining have been attracted to
this topic, and many state-of-the-art studies have been carried
out, such as [7], [10] and [11]. Some of them are very creative
and elaborate, but most of them face the following two key
limitations that must be solved.

First, few studies have focused on the problem of limited
threat type labels of infrastructure nodes involved in CTI. Ow-
ing to the high cost of manual labeling, the threat labels of cyber-
threat infrastructure nodes is incomplete in the CTI database,
and the labels are annotated with threat types by intelligence
providers or security analysts [11]. Thus, how to accurately and
effectively learn from the limited labeled infrastructure nodes
and a large number of relationships among them to predict the
threat types of unlabeled nodes is a paramount concern and key
task for most security analysts and operators [11].

Furthermore, few studies have focused on the higher-level
semantic relations among cyber-threat infrastructure nodes
from the perspective of heterogeneous information network
(HIN) [12]. In a large-scale CTI sharing environment, graph-
based automatic analysis has attracted significant research ef-
forts in recent years [5], [10], [13]. However, most of these works
primarily focus on homogeneous information networks or bi-
partite graphs, which cannot discover the higher-level semantic
relations among different types of nodes. As a special type of
information network, HIN involves multiple types of nodes
or relations, which have different semantic meanings. Such
complex and semantically enriched information networks have
great potential for knowledge discovery [14], [15]. However,
the application of HIN in CTI mining is largely unexplored.
Although some works have considered multiple types of nodes
and relations, they have not considered higher-level semantics.
Modeling CTI on HIN can provide an efficient and compact
representation of linked cyber-threat infrastructure nodes in var-
ious semantics, such as capturing the complex relations among
different types of infrastructure nodes, distinguishing different
cyber-attacks based on the differences of network behaviors,
and exploring how adversaries organize campaigns and adapt
their techniques. Thus, a practical model for CTI on HIN, which
leverages network correlations for better mining of CTI, should
be further explored to relieve security analysts from heavy
analysis work [16].

1.2 Our Contributions
To the best of our knowledge, we are the first to simultaneously
design a HIN for CTI modeling, and propose a meta-path and
meta-graph instances-based threat infrastructure similarity (MI-
IS) measure-based heterogeneous graph convolutional network
(GCN) approach for threat type identification of cyber-threat
infrastructure nodes. The main innovations of our mechanism
go beyond those of existing approaches in terms of the following
three aspects:

1) A CTI modeling approach based on HIN is proposed from the
perspective of computation (meta-path and meta-graph instances-
based computing). By modeling CTI based on HIN, the
proposed framework can not only integrate infrastructure
nodes involved in CTI in a semantically meaningful way,

Fig. 1: Examples of two cyber threat intelligence instances in-
volving different types of threat infrastructure nodes and edges.

including domain name, IP addresses, malware hashes,
email addresses, and their relations but also extract and
incorporate higher-level semantics of infrastructure nodes.

2) A MIIS measure-based heterogeneous GCN approach is proposed
to identify the threat types of infrastructure nodes. We define
a MIIS measure between threat infrastructure nodes, and
present a MIIS measure-based heterogeneous GCN ap-
proach to identify the threat type of infrastructure nodes.
Through hierarchical regularization, the approach can alle-
viate the problem of overfitting and achieve good results
in the threat type identification of infrastructure nodes.
This research can also promote cyber security investigations
with partial or incomplete information.

3) A practical system called HinCTI is developed for modeling
cyber threat intelligence and identifying threat types. With the
system, we conduct comprehensive experiments on real-
world datasets, and experimental results demonstrate that
our proposed approach can significantly improve the per-
formance of threat type identification compared with the
existing state-of-the-art baseline methods.

These innovative designs collectively make HinCTI an effi-
cient solution that can be used in the complex cyber security
environment. A series of comprehensive experiments based on
the real-world cyber-threat data from IBM X-Force Exchange
Platform and other sources are conducted to evaluate the effec-
tiveness and efficiency of the proposed approach. Experimental
results demonstrate the superiority of the proposed approach
by comparison with the state-of-the-art baseline methods.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 depicts the modeling of CTI
on HIN, presents preliminary concepts, and gives an overview
of the system architecture. Section 4 gives a detailed description
of the proposed heterogeneous GCN-based threat type iden-
tification approach. Section 5 describes the experiments and
performance results of the proposed approach by comparison
with the state-of-the-art baseline methods. Section 6 summarizes
the paper and outlines future work.
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2 RELATED WORK

The main contributions of our mechanism benefit from many
existing representative work. In this section, we first review the
typical work of modeling of CTI. We then analyze the graph-
based threat identification and the network representation learn-
ing for threat identification.

2.1 Modeling of CTI

From the perspective of CTI sharing, numerous exchange for-
mats, such as Structured Threat Information eXpression (STIX)
[17], Incident Object Description and Exchange Format (IODEF)
[18], and OpenIOC [19], are proposed to describe security inci-
dents and observations related to attack campaigns. However,
STIX, IODEF, and OpenIOC are not used for computational
purposes. To extract and incorporate higher-level semantics of
infrastructure nodes, CTI must be modeled from the perspective
of computation.

The modeling of CTI based on multiple intelligence sources
(e.g., IBM X-Force Exchange, and ThreatBook) can be very
beneficial to discover the correlations among various cyber-
attack events, facilitate the analysis of cyber attacks, and obtain
a complete visibility across Kill Chain phases [20]. For instance,
referring to IP and DNS registration information can be useful
for malware database, and referring to malware database en-
tries is useful for IP and DNS blacklists wherever appropriate.
Likewise, a vulnerability database can refer to any malware
samples, which exploit that vulnerability, and vice versa. Modi
et al. [4] proposed an automated CTI fusion framework called
ATIS, which considers multiple threat sources and connects
apparently isolated cyber events. Gascon et al. [21] proposed
MANTIS, a platform for CTI that provides a unified presentation
for numerous standards and correlates threat data from differ-
ent sources through a novel type-agnostic similarity algorithm
based on attributed graphs. However, the similarity algorithm
only considers the similarity of fingerprints (hash values) of any
two objects, and the available higher-level semantics (indirect
relations involving other types of nodes) are totally neglected.
Boukhtouta et al. [5] presented an approach to investigate cyber-
threats, in which tens of types of nodes are considered. Howev-
er, the higher-level semantics among infrastructure nodes are
not further analyzed.

Researchers have proposed approaches to automatically ex-
tract nodes and relations from unstructured CTI text, such as
tweets, blogs, and forums [8], [9]. Liao et al. [8] proposed an
approach to automatically extract Indicators of Compromises
(IoCs) from blog posts in natural language. They model the
problem as graph similarity problem and identify the IoC item if
it has a similar graph structure as the training set. However, the
identified IoCs do not preserve their roles in a malicious cam-
paign, which makes analyzing the characteristics of campaign
in different stages and correlating with field measurements
difficult. Husari et al. [9] proposed TTPDrill, leveraging natural
language processing (NLP) and information retrieval (IR) to
extract threat actions from unstructured CTI text. However, we
do not focus on the extraction of nodes and their relations from
unstructured text, and we simply utilize the extraction results.

2.2 Graph-based Threat Identification

Graph-based threat identification is an important research ap-
proach in the fields of network security and data mining, and

it offers the characterization of the interaction between infras-
tructure nodes and the identification of influential entities and
groups. By leveraging the linkage information between infras-
tructure nodes of interest, graph-based methods can uncover the
potential relationships, which are relatively harder for attackers
to evade because making a cyber attack unavoidably generate
plenty of links in the graph [22].

In recent years, a number of innovative graph-based threat
identification methods have been developed for cyber security.
However, existing research heavily focuses on homogeneous in-
formation networks, which can only perform simple correlation
analysis. Manadhata et al. [13] leveraged graph inference and
adapted belief propagation to detect malicious domain names.
However, only the host-domain graph is constructed, and ig-
noring IP-domain graph and other informative graphs greatly
hinders the accuracy of identification. Shi et al. [23] proposed
a malicious domain name identification approach based on
extreme machine learning (ELM), in which construction-based,
IP-based, TTL-based, and Whois-based features are extracted
to characterize a domain name and fed into ELM. However,
ignoring relationships among different types of infrastructure n-
odes can greatly reduce the performance of identification. Some
scholars developed an ontology for cyber security knowledge
graphs to represent the rich relations between cyber entities
[24], [25], [26]. However, the approach requires a significant
amount of work to build and is somewhat difficult to use. In
our previous work [27], we proposed a graph mining-based
trust evaluation mechanism with multidimensional features for
heterogeneous CTI. In this paper, we further analyze the higher-
level relationship between heterogeneous infrastructure nodes
and study the infrastructure nodes in a complex and semanti-
cally enriched HIN, which is simple to build and use.

Topic modeling techniques such as Latent Dirichlet Alloca-
tion (LDA) have been widely used for automatically identifying
the topics of large amounts of source code whose purposes are
unknown [28], [29]. Samtani et al. [30] applied classification
and topic modeling techniques to explore the functions and
characteristics of assets in hacker forums. In [31], the authors
proposed AZSecure Hacker Assets Portal, in which LDA is
utilized on online hacker forum source code to identify major
hacker code topics. In [32], the authors leveraged topic modeling
to analyze hacker community source code and explore emerging
hacker assets and key hackers for proactive CTI. Given that
we only consider CTI represented in structured data in this
research, topic modeling-based approaches, which are usually
used for textual data, are unsuitable for this task. The extraction
of structured data from textual data has been studied, e.g.,
[8], [9]. Log analysis techniques are widely used in threat
identification, such as analysis of DNS log data for detecting
malicious domain names [33], [34] and analysis of system audit
logs for finding entry point of an attack [9]. Pei et al. [35]
presented HERCULE, which conducts community discovery on
logs from multiple systems to reconstruct a complete, intuitive,
and human-understandable attack story. However, the aim of
our research is a re-mining of CTI data for threat identification,
which is quite different from log analysis-based anomaly detec-
tion.

2.3 Network Representation Learning for Threat Identifica-
tion
Network representation learning, i.e., network embedding, aims
to embed network into a low dimensional space while pre-
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serving the network structure and property so that the learned
embedding can be easily applied by machine learning tech-
niques. Recently, many efficient network embedding methods
have been proposed to address representation learning problem
for homogeneous network, such as DeepWalk [36], Node2Vec
[37]. Compared to the widely studied homogeneous information
network, the heterogeneous properties of HIN (i.e., containing
multiple types of nodes or links) make directly apply homoge-
neous techniques for HIN representation learning difficult. To
tackle this challenge, Dong et al. [38] proposed Metapath2Vec,
which designs a meta-path-based random walk and utilizes
skip-gram to perform heterogeneous graph embedding. Howev-
er, Metapath2Vec can only utilize one meta-path and may ignore
useful information. Fu et al. [39] proposed HIN2Vec to explore
meta-paths in HINs for representation learning. Graph neural
network (GNN) [40], [41] is proposed to extend the deep neural
network to deal with arbitrary graph-structured data. Wang
et al. [42] proposed heterogeneous graph attention network
(HAN) to handle heterogeneous graph, considering node-level
and semantic-level attentions. Compared to the research on
areas such as bibliographic networks (classifying and clustering
author and paper nodes) [38] and recommendation systems [43],
[44], network representation learning has only recently been
applied to the research on cybersecurity such as [45], [46].

3 CTI MODELING

In this section, we first define the problem of modeling CTI on
HIN. We then introduce preliminary concepts. Finally, we give
an overview of the system architecture.

3.1 CTI Modeling based on HIN

The definition and characterization of “CTI” have received
substantial attention across academic communities, including
network security [10] and data mining [11], [27]. A piece of
CTI generally refers to cyber-attack-related evidence, involv-
ing a group of different types of threat infrastructures, such
as malicious IP addresses, malicious domain names, malware
hashes, and malicious email addresses. We name the above
infrastructures as threat infrastructure nodes. Relationships exist
between threat infrastructure nodes, including relationships be-
tween nodes of the same type and between nodes of different
types, i.e., relationships between domain names, relationships
between IP addresses, relationships between malware hashes,
relationships between email addresses, and relationships among
them. We name the above relationships as threat infrastructure
relations.

Through the APIs provided by threat intelligence providers,
including open-source communities such as IoC Bucket3 and
commercial CTI service providers such as ThreatBook, we
can derive huge amounts of relations (i.e., domain-IP, domain-
malware, IP-malware, domain-email, and IP-email) among different
types of threat infrastructure nodes (i.e., domain names, IP
addresses, email addresses, and malware hashes) to construct
the cyber threat intelligence HIN. As for the relations between
nodes of the same type, we extract related information from
various sorts of external sources to enrich the context of threat
infrastructure nodes. As shown in Fig. 1, the direct relations
between two domain names can be enriched by domain-related

3. https://www.iocbucket.com/

service, such as from Whois4 database to get relations of co-
owner, co-organization, co-location of DNS, and co-registrar.
The direct relations between two IP addresses can be enriched
by IP-related service, such as from IP2Location5 service to get
relation of having the same internet service providers (ISPs). The
direct relations between two malware hashes can be enriched
by open-source malware analysis tools, such as from Common
Vulnerabilities and Exposures (CVE) database to get relations of
exploiting the same vulnerability. The direct relations between
two email addresses can be enriched by the relation of same host
name.

After extracting the above threat infrastructure nodes and
threat infrastructure relationships from CTI instances and ex-
ternal sources, we can build a cyber threat intelligence HIN,
as shown in Fig. 1, which contains four types of threat in-
frastructure nodes, i.e., malware hashes, IP addresses, domain
names, and email addresses. The threat intelligence can be
regarded as a group of threat infrastructure nodes and threat
infrastructure relationships that can contribute to explain the
relationship between various types of nodes. Thus, a piece of
threat intelligence instance can be treated as a subgraph of the
whole HIN. One particular advantage of HIN is that meta-paths
(defined in Section 3.2) and meta-graphs (defined in Section 4.2)
defined over node types can reflect semantically meaningful
information about similarities and, thus, can naturally provide
explainable results for threat analysis and identification. For
instance, a relation between two domain names can be revealed
by meta-path Domain-Malware-Domain, which describes two
domain names are visited by the same malware, or by meta-
path Domain-Email-Domain which describes two domain names
registered by the same email address.

3.2 Preliminaries
Definition 1 (Cyber-Threat Infrastructure Nodes [5]). As cyber-
criminals usually make full use of network resources to conduct their
malicious activities, we define that cyber-threat infrastructure nodes
consist of IP addresses, domain names, malware hashes, and email
addresses.

The collected CTI from intelligence providers is generally
in the form of hash values of malwares, malicious IP addresses
and malicious domain names. Thus, we only consider the lower-
level basic CTI and represent them as a HIN in this paper.
The nodes in the graph represent cyber-threat infrastructures,
i.e., domain names, IP addresses, malware hashes, and email
addresses. In this paper, we investigate how to leverage the HIN
to facilitate the mining of CTI datasets.

Definition 2 (HIN [47]). A HIN is a graph G = (V, E) with a node
type mapping φ : V → A and a relation type mapping ψ : E → R,
where V denotes the node set, andE denotes the link set.A denotes the
node type set, and R denotes the relation type set, where the number
of node types |A| > 1 or the number of relation types |R| > 1.

Fig. 1 gives an example of two CTI instances connected with
different types of nodes and relationships. After given a complex
HIN for CTI modeling, describing its meta-level (i.e., schema-
level) is necessary for better understanding.

Definition 3 (Meta-Schema (or Network Schema)). Given a HIN
G = (V, E) with the node type mapping φ : V → A and the relation

4. https://www.whois.com/
5. https://www.ip2location.com

Authorized licensed use limited to: University of Canberra. Downloaded on April 28,2020 at 12:11:36 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2987019, IEEE
Transactions on Knowledge and Data Engineering

5

Fig. 2: CTI modeling based on HIN. (a) Four types of nodes (i.e., Domain Name (D), IP Address (I), Malware Hash (M), Email
Address (E)). (b) The cyber threat intelligence HIN consists of four types of nodes and five types of relationships. Five different
colored lines represent five distinct relations among various types of nodes. (c) Meta-schema of cyber threat intelligence HIN. (d)
Examples of meta-paths and meta-graphs involved in HinCTI (e.g., domain-malware-domain, domain-IP-domain).

type mapping ψ : E → R, the meta-schema (or network-schema) for
network G, denoted as TG = (A,R), is a graph with nodes as node
types from A and edges as relation types from R.

As described in Fig. 2, CTI modeling involves four types of
nodes (i.e., domain names, IP addresses, malware hashes, and
email addresses), and five types of relations among different
types of nodes (i.e. R, S, G, C, N, as shown in Table 2). Fig. 2(c)
shows an example of the HIN meta-schema characterizing the
relationships of threat infrastructures described in CTI. Another
important concept of HIN is meta-path defined over types,
which can formulate the semantics of higher-level relationships
among nodes and, thus, can naturally provide explainable re-
sults for threat infrastructure modeling. Here, we follow this
concept and extend it to our HinCTI model.

Definition 4 (Meta-Path [47]). A meta-path P is a path defined on
the graph of network schema TG = (A,R) and is denoted in the form
of A1

R1−−→ A2
R2−−→ . . .

Rd−−→ Ad+1, which defines a composite relation
R = R1 ·R2 ·. . .·Rd between node types A1 and Ad+1, where symbol
· denotes the composition operator on relations, and d is the length of
P .

In general, a meta-path corresponds to a type of path within
the network schema, containing a certain sequence of link types.
For simplicity, we use object types connected by symbol “,” to
denote the meta-path when there is only one relationship be-
tween a pair of types: P = (A1, A2, . . . , Ad+1). If ∀l, φ(vl) = Al

and edge el = 〈vl, vl+1〉 belongs to relation type Rl ∈ P , then a
meta-path instance p = (v1, v2, . . . , vd+1) between v1 and vd+1

in network G follows the meta-path P = (A1, A2, . . . , Ad+1).
We further introduce semantically meaningful meta-paths that
describe infrastructure node relations in Section 4.2.

The literature gives many definitions of the term “threat
type identification”, and they vary from team to team and from
project to project. Here, we give a clear definition for describing
the purpose of the paper as follows [48].

Definition 5 (Threat Type Identification). For the collected cyber-
threat infrastructure nodes without threat labels, threat type identi-
fication means to identify their threat type labels by the constructed
heterogeneous GCN-based threat type identification model, leveraging
those cyber-threat infrastructure nodes with threat labels and the
relations among them.

On the threat intelligence sharing platforms, a large number
of threat-infrastructure nodes are without threat labels, which
is incomplete for CTI consumers. Thus, predicting the threat

types of nodes without threat labels leveraging the threat-
infrastructure nodes and their relations involved in the large
amount of basic CTI is of great significance.

3.3 System Architecture

The architecture of our proposed CTI modeling and identifica-
tion system based on HIN, called HinCTI, is shown in Fig. 3,
which mainly consists of the following four modules:

• CTI Modeling based on HIN. Through the APIs provided
by various CTI providers, we can obtain a large amount of
valuable CTI, involving massive threat infrastructure nodes
and relationships among them. In cyber threat intelligence
HIN, the more context information correlates with nodes, the
more conducive for CTI analysis. Thus, to enrich the context
of infrastructure nodes, we extract information from external
databases to establish relations between nodes of the same
type and different types, e.g., “Whois” database for both
domain name and IP nodes, “CVE” database for malware
nodes, and “Passive DNS” database for both domain name
and email address nodes. In this way, cyber threat intelligence
HIN is constructed to depict the relationships among various
types of infrastructure nodes.

• Feature Extractor and Meta-path and Meta-graph Builder.
Based on the meta-schema designed for cyber threat intelli-
gence HIN, we build a set of meta-paths and meta-graphs to
capture the higher-level relatedness over infrastructure nodes
from different semantic meanings.

• Heterogeneous GCN-based Threat Type Identification. We
first extract infrastructure node features and generate node
feature matrix X . Then, meta-graph based adjacent matrices
are aggregated to obtain the weighted adjacent matrix B.
Finally, we leverage heterogeneous GCN to fuse X and B
to learn the threat types of cyber-threat infrastructure nodes.

• Threat Type Identifier. For each newly collected unknown
threat infrastructure node, the node features will be first
extracted, then its related infrastructure nodes will be ex-
tracted from external sources. The relationships among these
infrastructure nodes will be further analyzed. Based on the
extracted features and the constructed heterogeneous GCN-
based threat type identification model, the threat type of the
infrastructure node will be labeled by the threat identifier.
Based on the identified threat type label, security analysts can
give early warning and adopt defensive strategies.

Authorized licensed use limited to: University of Canberra. Downloaded on April 28,2020 at 12:11:36 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2987019, IEEE
Transactions on Knowledge and Data Engineering

6

Fig. 3: System architecture of the proposed HinCTI. (1) Modeling of CTI on HIN, and generation of cyber threat intelligence HIN.
(2) Extraction of node features and designing of a set of meta-paths and meta-graphs based on cyber threat intelligence HIN. (3)
The node feature matrix X and the MIIS measure-based adjacent matrix B of domain name infrastructure nodes are the inputs of
the heterogeneous GCN model. (4) The heterogeneous GCN model predicts the threat types of domain name infrastructure nodes,
such as spam, and botnet C&C server. The threat type identification results of infrastructure nodes can be used for giving early
warning and adopting defensive strategies. Note that the threat type identification task of different types of nodes (i.e., D, I, M,
and E) in HinCTI are carried out separately, and we take the domain name infrastructure node (i.e., D) as an example.

4 PROPOSED THREAT TYPE IDENTIFICATION AP-
PROACH

In this section, we first introduce feature extraction, followed
by the building of meta-paths and meta-graphs. We then de-
scribe the heterogeneous GCN-based threat type identification
approach, and finally depict how the hierarchical regularization
strategy alleviate the problem of overfitting. As CTI about
domain names is more static and efficient than other types of
infrastructure nodes in cybersecurity [3], we specifically focus
on the threat type identification of domain name infrastructure
nodes. Before the detailed description of the proposed approach,
we first list key notations and their descriptions in Table 1.

4.1 Feature Extraction

Node features. Domain names are frequently used by attackers
to keep in touch with server. The malicious domain names
have different attributes compared with benign domain names.
Legitimate web owners choose a succinct domain name so
that users can remember it better, whereas malicious domains
are usually generated by domain name generation algorithm
(DGA) in batches. That is, the average length of malicious
domain names is longer than that of benign domain names [49].
Regarding the information entropy of distribution of alphanu-
merics within a domain name, the entropy is an expression
of the disorder, and the higher the entropy, the more chaotic
the distribution [50]. The character distribution of Domain-Flux
based malicious domain names is usually chaotic [50]. Thus, we
choose the length and information entropy of domain name as
the character-based features in the threat type identification of
domain names.

TABLE 1: Notations and their descriptions.

Notation Description
X feature matrix of infrastructure nodes
m dimension of infrastructure node features
N number of infrastructure nodes

Φ
meta-path and meta-graph set Φ = {Φk|k =
1, 2, . . . , n}

vi the ith infrastructure node

NumPΦk
(vi, vj)

number of meta-path and meta-graph instances
under Φk between two infrastructure nodes vi
and vj

MIIS(vi, vj)
meta-path and meta-graph instances-based sim-
ilarity between infrastructure nodes vi and vj

Bk adjacent matrix based on Φk

β

weight vector of meta-path and meta-graph set
Φ, where β = [β1, β2, . . . , βn] and βk is the
weight of Φk .

B MIIS measure-based adjacent matrix
UΦk

commuting matrix under Φk

L
threat type label set, where L = {li|i =
1, 2, . . . ,K} and K is the number of labels.

Li

child threat type label set of li, where Li =

{l(j)
i |j = 1, 2, . . . ,Ki}, l

(j)
i is the jth child label

of li, and Ki is the number of li’s child labels.

W

parameter vector of labels in the final out-
put layer of GCN model, where W =
[wl1 , wl2 , . . . , wlK ] and wli is that of label li.
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The active time of domain names for malicious purpose is
considered short [23]. Whenever old domain names are deac-
tivated by authorities, attackers register new ones rapidly and
employ them for malicious purpose before they are detected
and blocked by authorities, which typically makes the life time
of malicious domain name much shorter. By contrast, benign
web owners usually register their domain names for long-term
business. Thus, we define the active time of domain name as the
interval (counted in days) between registration expiration date
and creation date based on the Whois data. Moreover, given
that a legitimate domain name is frequently queried by users,
owners of legitimate domain names will promptly update their
Whois information to ensure the domain names serve users
well. To the contrary, owners of malicious domain names do
not update Whois information, and their update frequency is
lower than that of owners of benign domain names. Following,
we take the active time and update frequency of domain name
as the time-related node features.
Relation-based Features. Although node features of a domain
name can be used to reflect their behaviors and detect malicious
domain names like “amazon-gst-sale.com”, the intrinsic and
complex relationships between it and its associated malwares
can provide more critical information the identification. The
relationships extracted among the nodes can provide a higher
level of representation than that of the simple statistics, which
requires more efforts for attackers to evade the detection. The
area of attack will be greatly reduced if the attackers reduce
communication with the related malwares, domain names, and
IP addresses. Thus, to analyze the increasingly sophisticated
malicious domain names, we consider not only the node fea-
tures, but also the relationships summarized in Table 2, in which
“element” denotes the element in the related relation matrices.
• R: To describe the relation between a domain name and the

IP address it resolved to, we build the domain-resolvedTo-IP
matrix R where each element rij ∈ {0, 1} means if domain i
is resolved to IP address j.

• S: To represent the relation between a malware and a do-
main name, we generate the domain-visitedBy-malware matrix
S where each element sij ∈ {0, 1} denotes whether domain
name i is visited by malware j.

• G: To describe the relation between a domain name and
an email address, we generate the domain-registeredBy-email
matrix G where each element gij ∈ {0, 1} denotes if domain
name i is registered by email address j.

• C: To denote the relation that an IP address communicates
with malware, we generate the IP-communicateWith-malware
matrixC where each element cij ∈ {0, 1} denotes if IP address
i has communicated with malware j.

• N : To represent the relation that an IP address connects to
an email address, we generate the IP-connectTo-email matrix N
where each element nij ∈ {0, 1} denotes whether IP address
i has connected to email address j. Note that matrix RT , ST ,
GT , CT ,and NT represent the transposed matrix of R, S, G,
C, and N , respectively.

4.2 Meta-path and Meta-graph Builder
Although meta-path can be used to depict the correlations
between nodes, it fails to capture a more complex relationship.
Meta-graph [51] is proposed to use a directed acyclic graph of
nodes to handle more complex relationship between HIN nodes,
which can be defined as follows:

TABLE 2: Descriptions of relation matrices.

Matrix Element Description

R rij If domaini is resolved to IPj , then rij = 1;
otherwise, rij = 0.

S sij If domaini is visited by malwarej , then sij = 1;
otherwise, sij = 0.

G gij If domaini is registered by emailj , then gij = 1;
otherwise, gij = 0.

C cij If IPi communicates with malwarej , then cij =
1; otherwise, cij = 0.

N nij If IPi connects to emailj , then nij = 1; other-
wise, nij = 0.
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Fig. 4: Meta-paths and meta-graphs designed for threat type
identification of domain name infrastructure nodes. The symbol
D stands for domain name, I stands for IP address, M stands
for malware hash, and E stands for email-address.

Definition 6 (Meta-Graph [51]). A meta-graph Φi is a directed
acyclic graph with single source node ns and single target node nt,
defined on a HIN G = (V, E) with schema TG = (A,R). Formally,
a meta-graph is defined as Φi = (VΦi

, EΦi
,AΦi

,RΦi
, ns, nt), where

VΦi
⊆ V and EΦi

⊆ E are constrained by AΦi
⊆ A and RΦi

⊆ R,
respectively.

As depicted in Fig. 4, different meta-paths and meta-graphs
characterize the relatedness over threat infrastructure nodes
from different aspects, i.e., with varying semantic meanings.
For instance, meta-path Φ1 depicts the relatedness over threat
infrastructures through the domain-IP relations (i.e., two domain
names are both resolved to the same IP address). Meta-path
Φ2 describes the relatedness over infrastructure nodes through
the domain-malware relations (i.e., two domain names are both
visited by the same malware). Meta-graph Φ11 depicts the relat-
edness over threat infrastructures from a more comprehensive
view which incorporates both external and intrinsic connections.
That is, in meta-graph Φ11, two domain names are connected as
they are both visited by the same malware (external connection),
and their resolved IP addresses not only connect to the same e-
mail address but communicate with the same malware (intrinsic
connection).

In our approach, to detect the threat types of infrastructure
nodes, meta-path and meta-graph are jointly considered to
capture the complex relatedness among infrastructure nodes
which is more expressive than pure meta-path-based or pure
meta-graph-based approaches. Different meta-paths and meta-
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graphs measure the relatedness between two infrastructure n-
odes from different views. That is, the more meaningful meta-
paths and meta-graphs enumerated by the meta-schema, the
higher accuracy of the similarity measure is. To detect the threat
type of domain name infrastructure nodes, based on the meta-
schema described in Fig. 2(c) and the domain knowledge of
human experts in the field of cyber security, we enumerate 12
meaningful symmetric meta-paths and meta-graphs (i.e., Φ1–
Φ12 shown in Fig. 4) over different lengths to characterize the
relatedness over domain name infrastructure nodes.

4.3 Heterogeneous GCN-based Threat Type Identification
After extracting the features of infrastructure nodes and design-
ing the meaningful meta-paths and meta-graphs depicted in the
previous subsections, we introduce the proposed MIIS measure-
based heterogeneous GCN approach to identify the threat types
of infrastructure nodes involved in CTI. This heterogeneous
GCN, which simultaneously integrates node features and mean-
ingful meta-path and meta-graph-based similarity adjacency
relations, enables the representation of infrastructure nodes in
a more comprehensive way. Before the definition of MIIS, we
present the definition of number of meta-path and meta-graph
instances under Φk, called NumPΦk

, as follows:

Definition 7 (Number of meta-Path and meta-graph instances
under Φk, NumPΦk

). Given a network G = (V, E), its network
schema TG = (A,R) and a symmetric meta-path or meta-graph Φk,
the number of meta-path/meta-graph instances under Φk between two
domain name infrastructure nodes vi, vj , denoted as NumPΦk

(vi, vj),
can be defined as

NumPΦk
(vi, vj) = UΦk

(vi, vj), (1)

where UΦk
is the commuting matrix between domain name infrastruc-

ture nodes under Φk.

As for meta-path Φk = (A1, A2 . . . , Ad+1), its commuting
matrix between node type A1 and Ad+1 can be calculated as

UΦk
= QA1A2

·QA2A3
· . . . ·QAdAd+1

, (2)

where QAiAi+1 is the adjacency matrix between type Ai and
type Ai+1, and symbol · represents the matrix multiplication.
However, as for meta-graph, the problem of calculating its
commuting matrix to get the count of meta-graph instances
becomes more complicated. Taking meta-graph Φ10 in Fig. 4
as an example, the two ways to pass through the meta-graph
are path (D, I,E, I,D) and path (D, I,M, I,D). Note that D
represents the type of domain name infrastructure node in cyber
threat intelligence HIN. In the path (D, I,E, I,D), (I, E, I)
means that two IP addresses (I) have similarities if they both
connect to the same email address (E). Similarly, in the path
(D, I,M, I,D), (I,M, I) means that two IP addresses (I) have
similarities if they both communicate with the same malware
(M). Inspired by [51], we define our logic of similarity when
there are multiple ways for a flow passing through the meta-
graph from the source node to the target node. When there
are multiple paths, we constrain a flow to satisfy all of them,
which requires one more matrix operation than simple matrix
multiplication, i.e., the Hadamard product (Schur product).
Taking meta-graph Φ10 in Fig. 4 as an example, Algorithm 1
depicts how to calculate its commuting matrix, where � is the
Hadamard product and N , C, and R represent the IP-email,
IP-malware, and domain-IP adjacency matrices, respectively, as

shown in Table 2. After obtaining UPr
, it is easier to obtain

the whole commuting matrix UΦ10
by the multiplication of a

sequence of matrices. In practice, all the meta-paths and meta-
graphs (i.e., Φ1–Φ12 shown in Fig. 4) defined in this paper can be
computed by multiplication operations and Hadamard product
on the corresponding matrices.

Algorithm 1: Calculation of commuting matrix for MΦ10
.

1 Calculate UP1 = QIE ·QT
IE = N ·NT , where P1 is the

subpath (I, E, I);
2 Calculate UP2 = QIM ·QT

IM = C · CT , where P2 is the
subpath (I,M, I);

3 Calculate UPr = UP1 � UP2 ;
4 Calculate UΦ10 = QDI · UPr ·QT

DI = R · UPr ·RT .

As described in Section 4.2, we design 12 meta-paths and
meta-graphs (i.e., Φ1–Φ12) with different types of nodes and
relations. As different meta-paths and meta-graphs can define
different similarities and introduce different higher-level se-
mantics, it is natural to incorporate all useful meta-paths and
meta-graphs when identifying the threat type of infrastructure
nodes. However, different meta-paths and meta-graphs have
varying importance. Treating different meta-paths and meta-
graphs equally is unpractical and weakens the semantic in-
formation provided by the meaningful meta-paths and meta-
graphs. For example, domain name D1 can either connect to
domain name D2 via meta-path (D1, E1, D2) (both registered
by the same email address E1) or connect to domain name D3

via meta-path (D1,M1, D3) (both visited by the same malware
M1). When considering more on the source of threat, meta-
path (D,E,D) usually plays a more important role than that
of (D,M,D); however, it will be the other way around when
considering more on the behavior of threat. Thus, given that
different meta-paths and meta-graphs depict the relatedness
over threat infrastructures in very diverse ways, to explore the
complementary nature of these different aspects, we propose to
leverage a meta-path and meta-graph-based weighted adjacent
matrix to incorporate different semantics. Here, we define a
similarity with weights for any two threat infrastructure nodes
vi and vj , which is denoted as MIIS(vi, vj) and defined as
follows:

Definition 8 (MIIS). Given a meta-path and meta-graph set, denoted
as Φ = {Φk|k = 1, 2, . . . , n}, the MIIS measure between two
infrastructure nodes vi and vj can be defined as

MIIS(vi, vj) =
n∑

k=1

βk
2×NumPΦk

(vi, vj)

NumPΦk
(vi, vi) + NumPΦk

(vj , vj)
, (3)

where NumPΦk
(vi, vj) is the number of meta-path and meta-

graph instances between infrastructure nodes vi and vj under Φk,
NumPΦk

(vi, vi) is that between vi and vi, NumPΦk
(vj , vj) is that

between vj and vj . We use the parameter vector β = [β1, β2, . . . , βn]
to denote the weights of Φ, where βk is the weight of meta-path/meta-
graph Φk and satisfies βk ≥ 0,

∑n
k=1 βk = 1.

The MIIS measure is defined from the perspective of two
parts: the semantic overlap, which is defined by the number of
paths between threat infrastructures vi and vj , and the semantic
broadness, which is defined by the number of path instances
between themselves (i.e., paths from vi to vi, and paths from vj
to vj). The weight vector β, which can be learned automatically,
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is leveraged to incorporate the meta-path and meta-graph-based
node similarities together.

After calculating the similarity of any two domain name
infrastructure nodes by the MIIS measure, we can construct a
matrix B with dimension of N ×N , where N is the number of
domain name nodes and Bij = Bji = MIIS(vi, vj). According
to the description in Section 4.1, we can derive the domain name
node feature matrix X with dimension of N ×m. Doing so is an
obvious way to leverage the popular two-layer GCN [52] archi-
tecture to identify the threat types of infrastructure nodes. Here,
the category labels represent the threat types of infrastructure
nodes. The input of the GCN-based identification model is B
and X , with B ∈ RN×N , X ∈ RN×m, which contains the m-
dimensional original domain name node features. We first cal-
culate B̂ = D̃−

1
2 B̃D̃−

1
2 , where B̃ = B+IN is the MIIS measure-

based adjacency matrix with added self-connections, IN is the
identity matrix, and D̃ is diagonal matrix with D̃ii =

∑
j B̃ij .

Then, the forward model takes the following simple form:

Z = f(X,B) = softmax(B̂ ReLU (B̂XW (0))W (1)), (4)

where ReLU denotes an activation function defined as
ReLU(·) = max(0, ·), and the softmax activation function is ap-
plied row-wise, which is defined as softmax(xi) = exi/

∑
j e

xj .
The neural network weights W (0) ∈ Rm×h is an input-to-
hidden trainable weight matrix for a hidden layer with h feature
maps; the neural network weights W (1) ∈ Rh×K is a hidden-to-
output trainable weight matrix, where K is the number of threat
type labels. Both are trained using gradient descent, and we
perform batch gradient descent using the full dataset for every
training iteration, which is a viable option as long as datasets
fit in memory. Stochasticity in the training process is introduced
via dropout [53].

Given a set of threat type labeled threat infrastructures, our
model optimizes the cross-entropy H between the true label
distribution and the predicted distribution as follows:

H = −
∑
i∈YL

K∑
k=1

(lk(vi)lnZk(vi)+(1−lk(vi))ln(1−Zk(vi))), (5)

YL is the set of domain name infrastructure node indices that
have labels, K is the number of labels in the hierarchy, lk(vi) is
a binary label to indicate whether infrastructure node vi belongs
to label k, and Zk(vi) refers to the probability of neural network
prediction of label k for infrastructure node vi.

4.4 Hierarchical Regularization

If we simply treat each label as an independent decision, then
Eq. (5) can be used directly to train the neural network. Howev-
er, there is usually a hierarchy structure among the threat type
labels, in which a parent label contains several child labels. Fig. 5
shows examples of threat label hierarchy of all threat infrastruc-
ture nodes. The parent label “BotNet” contains multiple child
labels, such as BruteForce, spam, Command and Control (C&C)
server, backdoor, etc. Thus, introducing hierarchical dependen-
cies among labels can improve the performance of threat type
identification. That is, when a leaf label (which has no child
label in the hierarchical structure) has few training examples,
the decision can be regularized by its parent label. Inspired by
[54] and [55], we use a hierarchical regularization over the final
output layer of GCN model. As a simplification, the hierarchical
dependencies among labels encourage the parameters of labels
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Fig. 5: Simplified example of threat label hierarchy of all threat
infrastructure nodes, where R2L represents unauthorized access
from a remote machine to a local machine and U2R represents
unauthorized access to local superuser privileges by a local
unprivileged user.

with hierarchical relationships to be similar. For instance, in Fig.
5, there is an edge between labels “BotNet” and “C&C Server”,
so the parameters of these two labels tend to be similar to each
other.

Formally, we denote the threat type label set as L = {li|i =
1, 2, . . . ,K}, where K is the number of labels. As we focus on
the hierarchical relationships of labels, we denote Li = {l(j)

i |j =
1, 2, . . . ,Ki} as the child label set of label li where Ki is the
number of li’s child labels. We denote W = [wl1 , wl2 , . . . , wlK ]
as the parameters of labels in the final output layer of GCN
model, where wli is that of label li. We then use the following
hierarchical regularization strategy to regularize the parameters
in the final output layer:

λ(W ) =
K∑
i=1

Ki∑
j=1

1

2
||wli − wl

(j)
i
||2. (6)

Finally, we use the following loss function with hierarchical
regularization to optimize the parameters:

J = H + Cλ(W ), (7)

where C is the penalty parameter.
From above, the overall process of HinCTI can be briefly

described as Algorithm 2.

4.5 Analysis of the Proposed Approach

The proposed HinCTI can deal with various types of in-
frastructure nodes and relations and fuse rich semantics in a
heterogeneous graph. Information can transfer from one type of
node to another via diverse relationships. Benefitted from such
a cyber threat intelligence HIN, diverse semantics can enhance
the threat identification of infrastructure nodes. We then give the
analysis of computational complexity of our proposed approach
as follows. With regard to MIIS measure, multiplying adjacency
matrices of a meta-path/meta-graph in a natural sequence way
can be inefficient. However, the classic matrix chain multiplica-
tion problem can be optimized by dynamic programming [56]
in O(d3), where d is the length of a meta-path/meta-graph
which is usually very small. With regard to GCN training,
inspired by [52], we leverage TensorFlow [57] for an efficient
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Algorithm 2: Overall process of HinCTI.

Input: The heterogeneous graph G = (V, E); meta-path
and meta-graph set Φ = {Φ1,Φ2, . . . ,Φn}; feature
matrix of infrastructure nodes X ; the set of node
indices that have labels in the training set YL and
their labels L = {li|i = 1, 2, . . . ,K}.

Output: Predicted labels of nodes in the testing set.
1 for Φi ∈ {Φ1,Φ2, . . . ,Φn} do
2 Calculate commuting matrix UΦk

using Eq. (2) and
Algorithm 1;

3 Calculate the number of meta-path and meta-graph
instances using Eq. (1);

4 end
5 Calculate MIIS(vi, vj) using Eq. (3), and get B;
6 Fuse X and B using Eq. (4);
7 Calculate cross-entropy H ←
−
∑

i∈YL

∑K
k=1(lk(vi)lnZk(vi)+(1−lk(vi))ln(1−Zk(vi)));

8 Calculate hierarchical regularization term
λ(W )←

∑K
i=1

∑Ki

j=1
1
2 ||wli − wl

(j)
i
||2 ;

9 Calculate loss function J ← H + Cλ(W ) ;
10 Back propagation and update parameters in

heterogeneous GCN-based threat type identification
model;

11 return The predicted labels of nodes in the testing set.

TABLE 3: Statistics of the evaluation datasets.

Node Type #Train #Validataion #Test #Class

Domain name 2,827 354 353 47
IP address 3,360 420 420 23

Malware hash 1,670 209 208 15
Email address 1,215 152 152 3

GPU-based implementation of Eq. (4) using sparse-dense matrix
multiplications. The computational complexity of evaluating Eq.
4 is O(|ε|mhK), which scales linearly in terms of the number of
graph edges denoted as |ε|.
5 EXPERIMENTS

In this section, we conduct comprehensive experimental stud-
ies to demonstrate the effectiveness of the presented practical
system HinCTI, which integrates the above proposed approach.

5.1 Experimental Setup
Datasets. We collect real-world data from two popular threat
intelligence sharing platforms, namely, IBM X-Force Exchange
Platform and VirusTotal6, and enrich the data as described in
Section 3.1. Although the collected data set involves 126,933
infrastructure nodes, only 11,340 nodes are left after prepro-
cessing due to crawler constraints and data sparsity. Labels for
10,833 infrastructure nodes are crawled from the intelligence
companies, and the remaining 507 unlabeled infrastructure n-
odes are labeled by three recruited security researchers with the
help of third-party analysis tools. The statistics of the evaluation
datasets is described in Table 3, including number of nodes for
train, validation, and test and number of classes (i.e., number of
threat types) for different types of infrastructure nodes.
Baselines. We compare our proposed approach with the follow-
ing baselines, including state-of-the-art network representation

6. https://www.virustotal.com

TABLE 4: Metrics involved in performance evaluation of threat
type identification methods.

Metrics Description

TPt
# of infrastructure nodes correctly classified as the
tth label in label set L

FPt
# of infrastructure nodes mistakenly classified as
the tth label in label set L

FNt
# of infrastructure nodes in the tth label in label set
L mistakenly classified

Pre TP/(TP + FP )

Rec TP/(TP + FN)

F1 2× Pre×Rec / (Pre+Rec)

Macro-F1 averaged F1 of all different labels in the hierarchy

Micro-F1
a type of F1 score considering the overall precision
and recall of all labels in the hierarchy

learning methods and several traditional threat type identifica-
tion methods.
• Node2Vec [37] + SVM: A random walk-based network

embedding method for homogeneous graphs. Here, we use
p = 1 and q = 1 and ignore the heterogeneity of nodes and
perform Node2Vec on the whole heterogeneous graph.

• Metapath2Vec [38] + SVM: A heterogeneous graph em-
bedding method, which performs meta-path-based random
walk and utilizes skip-gram to embed the heterogeneous
graphs. Here we test all the meta-paths and report the best
performance.

• HAN [42] + SVM: A semi-supervised heterogeneous graph
neural network, which considers node-level attention and
semantic-level attention to learn the importance of nodes
and meta-paths, respectively.

• HinCTI-: The HinCTI model that does not consider hierar-
chical regularization.

Evaluation Metrics. To quantitatively evaluate the threat type
identification performance of different methods, we follow [54]
to use Macro-F1 score and Micro-F1 score as our evaluation
metrics. The metrics involved in performance evaluation are
shown in Table 4. We apply 10-fold cross-validation and report
the average performance measures in terms of Macro-F1 and
Micro-F1 scores with significance level α = 0.05.Macro-F1 is a
type of F1 score that evaluates averaged F1 of all different labels
in the hierarchy. Let TPt, FPt, FNt denote the true-positives,
false-positives, and false-negatives for the tth label in label set L
respectively. Macro-F1 can be defined as:

Macro-F1 =
1

|L|
∑
t∈L

2× Precisiont ×Recallt
Precisiont +Recallt

,

P recisiont =
TPt

TPt + FPt
, Recallt =

TPt

TPt + FNt
.

(8)

Micro-F1 is another type of F1 score that considers the over-
all precision and recall of all labels. Micro-F1 can be defined as:

Micro-F1 =
2× Precision×Recall
Precision+Recall

,

Precision =

∑
t∈L TPt∑

t∈L TPt +
∑

t∈L FPt
,

Recall =

∑
t∈L TPt∑

t∈L TPt +
∑

t∈L FNt
.

(9)
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TABLE 5: Performance evaluation of different meta-paths and
meta-graphs.

ID Meta-paths included Macro-F1 Micro-F1

Φ1 / 0.7244 0.7646
Φ2 / 0.7115 0.7594
Φ3 / 0.7076 0.7588
Φ4 / 0.7450 0.7764
Φ5 / 0.7047 0.7469
Φ6 / 0.7247 0.7682
Φ7 / 0.7144 0.7604
Φ8 Φ2 & Φ3 0.7307 0.7746
Φ9 Φ1 & Φ2 0.7361 0.7764
Φ10 Φ6 & Φ7 0.7366 0.7823
Φ11 Φ2 & Φ6 & Φ7 0.7451 0.7892
Φ12 Φ3 & Φ6 & Φ7 0.7424 0.7833

Based on the experimental setup described, we conduct
experiments of threat type identification of infrastructure nodes
on the operating system Ubuntu 18.04.2, Intel(R) Core(TM) i5-
6600K CPU@ 3.50GHz and NVIDIA GeForce GTX 1080 Ti GPU.
The software platforms are TensorFlow-gpu 1.13.1 and Python
3.7.3.

5.2 Evaluation of Different Meta-paths and Meta-graphs

In this set of experiments, based on the dataset described in Sec-
tion 5.1, we evaluate the performance of different correlations
among threat infrastructures depicted by different meta-graphs
(i.e., Φ1–Φ12). In the experiments, given a meta-graph Φk, we
calculate the Φk based on MIIS measure described in Section 4.3
and leverage hierarchical regularization described in Section 4.4
to learn the threat type label of the nodes with type of domain
names in the HIN. The optimal identification results of different
meta-graphs are presented in Table 5. Different meta-graphs
show different performances in threat type identification. Each
of them represents a specific semantics in the task of threat type
identification.

From Table 5, we can also observe that: (1) some meta-paths,
e.g., Φ4, perform well on the testing set, whereras other meta-
paths do not perform well on their own, such as Φ5, which
may be because the semantics of the meta-path cannot reflect
the problem of threat type identification of infrastructure nodes
well. (2) The approach based on meta-graph is generally more
expressive than that based on pure meta-path in terms of de-
picting more complex and comprehensive relationships among
nodes and thus achieve better identification performance. a) The
performance of Φ10, which integrates Φ6 and Φ7, outperforms
that of both Φ6 and Φ7. b) The relationships among nodes
depicted by the meta-graphs consisting of complicated corre-
lations (e.g.,Φ10–Φ12) can provide much higher-level semantics
and obtain better identification results than others (e.g., Φ1-
Φ3). Exploring the performance when different meta-paths and
meta-graphs are incorporated together for the identification is
meaningful, which is evaluated in the next set of experiments.

5.3 Performance Evaluation of HinCTI

In this set of experiments, we evaluate our proposed approach
HinCTI by comparisons with several typical network represen-
tation learning methods combined with the SVM algorithm
(i.e., Node2Vec [37] + SVM, Metapath2Vec [38] + SVM, and
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Fig. 6: Performance comparisons of different threat type iden-
tification approaches in terms of Macro-F1 score (Left) and
Micro-F1 score (Right).

HAN [42] + SVM) and HinCTI-. For node2vec, we ignore the
heterogeneous property of HIN and directly feed the HIN for
representation learning. For metapath2vec, we test meta-path
Φ1-Φ7 to guide the random walks in metapath2vec and report
the best performance. For node2vec and metapath2vec, which
are random walk-based methods, we set window size to 5,
walk length to 100, and walks per node to 500. To facilitate
the comparisons, we use the experimental procedure provided
in [37], [42] and implement the algorithm according to the
description of [38]. For a fair comparison, the dimension of
embedding is set to 64. The learned node representation vector
and node features are input of SVM algorithm to identify the
threat types of infrastructure nodes.

We randomly select a portion of the samples described in
Section 5.1 (ranging from 10% to 80%) as the training set, 10%
of samples as validation set, and the remaining 10% of samples
as the testing set. Fig. 6 shows the comparison results of HinCTI
and several typical network representation learning methods in
the task of threat type identification of infrastructure nodes in
terms of Macro-F1 score (left) and Micro-F1 score (right). On
the whole, the proposed model HinCTI consistently and sig-
nificantly outperforms all these typical network representation
learning methods: an improvement of approximately 4%–11%
in Macro-F1 and 3%–10% in Micro-F1. That is, HinCTI can
identify the threat type of infrastructure nodes better than those
of the existing state-of-the-art network representation learning
methods. The success of HinCTI lies in the proper consideration
and accommodation of the heterogeneous property of HIN (i.e.,
the multiple types of nodes and relations) and the advantage
of meta-path and meta-graph-guided similarity computing for
infrastructure nodes.

In addition, as shown in Fig. 6, we compare HinCTI (the red
line) and HinCTI- (the green line). HinCTI, which considers hier-
archical regularization, consistently achieves approximately 1%
improvement in terms of both Macro-F1 and Micro-F1, which
can demonstrate the effectiveness of hierarchical regularization
leveraged in our system.

Furthermore, from Table 5 and Fig. 6, we observe that
compared with any node representations learned based on
individual meta-path or meta-graph (i.e., Φ1–Φ12), the proposed
HinCTI, which efficiently incorporates different meta-paths and
meta-graphs together and learns higher-level semantics of node
representations, can significantly improve the performance of
threat type identification of infrastructure nodes: an improve-
ment of more than 6% in Macro-F1 and Micro-F1.
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Fig. 7: Performance comparisons among HinCTI and traditional
identification methods on Macro-F1 score (Left) and Micro-F1

score (Right). “NB-1”, ‘DT-1‘”, “SVM-1”, and “KNN-1” repre-
sent the algorithms that take the original node features as input.
“NB-2”, ‘DT-2‘”, “SVM-2”, and “KNN-2” represent the algo-
rithms that HIN-related nodes and relations are also leveraged
as features for algorithms to learn.

5.4 Comparisons among HinCTI and Traditional Identifica-
tion Methods

In this set of experiments, we compare HinCTI with four other
typical identification methods, i.e., Naive Bayes (NB), Decision
Tree(DT), Support Vector Machine (SVM), and K-Nearest Neigh-
bors (KNN). In NB-1, DT-1, SVM-1, and KNN-1, we take the
original node features discussed in Section 4.1 as input. In NB-
2, DT-2, SVM-2, and KNN-2, we put all HIN-related nodes and
relations as features for algorithms to learn. All the algorithms
are implemented in Python and trained and executed with best
parameter values. For SVM, we use GridSearchCV in sklearn to
obtain the best combination of parameters.

The experimental results are shown in Fig. 7. The proposed
HinCTI significantly outperforms all these traditional identifi-
cation methods. Compared to the performance results of NB-
1, NB-2 achieves roughly 7%–9% improvements in Macro-F1

and Micro-F1. Compared to the performance results of DT-1,
DT-2 achieves around 6%–8% improvements in Macro-F1 and
5%–8% in Micro-F1. Compared to the performance results of
SVM-1, SVM-2 achieves approximately 5%–7% improvements
in Macro-F1 and 4%–7% in Micro-F1. Similarly, compared
to the performance results of KNN-1, KNN-2 achieves nearly
4%–6% improvements in Macro-F1 and 6%–7% in Micro-F1.
That is, HIN-related nodes and relations leveraged by machine
learning methods can help improve the performance of threat
type identification of infrastructure nodes, which demonstrates
that rich semantics encoded in different types of relations can
bring more information.

Moreover, compared to the performance results of NB-2, DT-
2, SVM-2, and KNN-2, HinCTI achieves approximately 10%–
20% improvements in Macro-F1 and 11%–19% in Micro-F1.
HinCTI is significantly better than the best baseline methods
we compared. The reason is that the inputs of traditional i-
dentification algorithms are simply flat features, i.e., the simple
combination of different features. By contrast, in HinCTI, we
design the expressive representation and build the connection
between the higher-level semantics of the infrastructure node
data and their threat type labels. To identify the threat types
of the increasingly sophisticated threat infrastructures, HinCTI
using meta-graph based approach over HIN can build the
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Fig. 8: Performance of HinCTI for other types of infrastructure
nodes on Macro-F1 score (Left) and Micro-F1 score (Right).

higher-level semantic and structural connection between threat
infrastructures with a more expressive and comprehensive view
and thus achieves better identification performance.

5.5 Performance of HinCTI for Other Types of Nodes

The proposed approach is relatively general in threat type
identification and can be applied to nodes of domain names and
other types of nodes. For the threat type identification of other
infrastructure nodes considered in this research (i.e., IP address,
malware hash, and email address), Fig. 8 shows preliminary
results of HinCTI. On the whole, the proposed approach HinCTI
consistently outperforms all other typical methods and achieves
approaximately 6%–8% improvements inMacro-F1 and 6%–7%
in Micro-F1.

5.6 Discussions and Limitations

A large amount of structured CTI can be first collected, and
then the proposed approach can be leveraged to extract diverse
semantic information. This is significant not only for threat
type identification of threat infrastructure nodes but also for the
mining of CTI, as demonstrated by our measurement study. Ac-
tually, our current design is still preliminary, and we discuss its
limitations here. In this research, considering the limitations of
data acquisition, only four types of infrastructure nodes and five
types of relations are considered explicitly. However, our model
is extensible, in which more types of nodes and relations can be
introduced to produce higher-level semantics, such as organiza-
tions, domain owners, techniques and tools utilized to achieve
the attack, occurrence time and locations of the attacks incidents,
and relations among them. Moreover, we have not considered
the dynamic nature of infrastructure nodes’ threat type, that is,
we only process the latest threat type of infrastructure nodes in
this research. However, ignoring infrastructure nodes’ history
threat types affects the performance of identification.
6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a CTI modeling and threat type
identification system based on HIN, called HinCTI. We design
meta-schema and a set of meta-paths and meta-graphs to model
CTI on HIN, which can extract and incorporate higher-level
semantics of cyber-threat infrastructure nodes involved in C-
TI. Through the proposed MIIS measure-based heterogeneous
GCN-based threat type identification approach, we overcome
the challenge of limited labels of cyber-threat infrastructure
nodes. Through the hierarchical regularization, our identifica-
tion approach can also alleviate the problem of overfitting.
Experiments based on real-world dataset demonstrate that our

Authorized licensed use limited to: University of Canberra. Downloaded on April 28,2020 at 12:11:36 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2987019, IEEE
Transactions on Knowledge and Data Engineering

13

developed system HinCTI that integrates our proposed ap-
proach can significantly improve the performance of threat
type identification compared with the existing state-of-the-art
baseline methods.

For future work, we plan to explore other information to
enrich the node features and relations of the cyber threat in-
telligence HIN for further improving the performance of our
approach. Another interesting direction for future work is the
extraction of fine-grained structured data (including node and
their relationships) from intelligence reports recorded in natu-
ral language, leveraging topic modeling and natural language
processing techniques. Doing so will greatly enrich the hetero-
geneous information network and enhance the performance of
threat identification.
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