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ABSTRACT
The clustering of social media objects provides intrinsic un-
derstanding of the similarity relationships between docu-
ments, images, and their contextual sources. Both content
and link structure provide important cues for an effective
clustering algorithm of the underlying objects. While link
information provides useful hints for improving the cluster-
ing process, it also contains a significant amount of noisy
information. Therefore, a robust clustering algorithm is
required to reduce the impact of noisy links. In order to
address the aforementioned problems, we propose hetero-
geneous random fields to model the structure and content
of social media networks. We design a probability measure
on the social media networks which output a configuration
of clusters that are consistent with both content and link
structure. Furthermore, noisy links can also be detected,
and their impact on the clustering algorithm can be signif-
icantly reduced. We conduct experiments on a real social
media network and show the advantage of the method over
other state-of-the-art algorithms.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering

General Terms
Algorithms

Keywords
Social media networks, robust clustering, noisy links

1. INTRODUCTION
Social media networks represent social repositories for the

sharing of multimedia objects between users, and a platform
for interactions which are based on this content. The media
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objects may correspond to images, videos, or even text con-
tent. An example of such a network would be Flickr which
provides a platform for the sharing of images between user-
s. While the problem of clustering has been widely studied
with the use of pure content, the social interactions in such
networks provide vitally important information which can
be used in order to improve the clustering process. The so-
cial links can be used as vital clues which can be used in
order to cluster the media objects with consistent themes
together. One interesting characteristic of such social media
networks is that they provide a way to consistently cluster
not just the social media objects, but also the users who
contribute these objects. The content of the social media
objects, and the user links to these objects provide mutually
re-enforcing information which can be leveraged for a robust
clustering process. In addition, user tagging information (or
comments) are available to enhance the clustering process.
A major challenge in this problem is that it requires us to
simultaneously cluster data of many different kinds, such
as images, user tags, user nodes and the links which repre-
sent the relationships between them. Clearly, an integrated
and holistic approach to social media object clustering is re-
quired, which can help us understand the content themes in
the different clusters with the help of user-centered social
hints.

As illustrated in Figure 1, there are two types of links
in generic social media networks - the links between the
users and the social media objects, as well as the context
links between media objects and their context objects such
as user tags or comments. These links, along with the as-
sociated content of the media objects, play an important
role in determining the clustering of the social media ob-
jects with a holistic approach. In this paper we will use a
heterogeneous random field to model the natural clusters in
the social media content and their underlying linkages in a
seamless framework.

The social links between objects and users are often noisy,
in which the links between users and objects could be spam,
erroneous, or incidental links. Thus, the presence of such
links may actually reduce the quality of the clustering, if
such misleading social cues are used blindly. The detection
and removal of such outlier links are useful in improving the
underlying clustering quality. The traditional problem of
clustering focusses on determining the outliers in the under-
lying objects rather than the links. However, since links form
one of the key social cues in the clustering process, it implies
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Figure 1: Illustration of social media network. Such network consists of three component graphs - the graphs
of users, multimedia objects, and the annotated tags. Users indicate their preferences on media objects,
while each object can be linked with multiple tags.

that the abnormalities in the linkages should be removed in
order to enhance clustering quality. Our model will joint-
ly detect the outlier links as well as model the underlying
clustering structure. We will see that accurately identifying
the abnormal links can improve the consistency of cluster-
ing the social media objects. On the other hand, a better
understanding of the clustering structure can improve the
accuracy of detecting of outlier links in the social networks.
These two tasks enhance the effectiveness of each other, are
therefore presented in a unified framework.

The remainder of this paper is organized as follows. In
section 2, we introduce related work on clustering with so-
cial media networks. We formally define the problem in
Section 3 and propose the heterogeneous random fields for
clustering in Section 4. In Section 5 we present efficient in-
ference algorithms for determining the cluster configuration
with the highest probability. We present experiments on re-
al data sets in Section 6. Finally, we present the conclusions
in Section 7.

2. RELATED WORK
The problem of clustering has been studied extensively in

the database, machine learning, multi-media and text liter-
ature. An extensive overview of clustering algorithms from
a very generic context may be found in [14]. In the contex-
t of different kinds of multi-media data, especially text and
images, a variety of content based algorithms have also been
proposed [1, 5, 8, 13, 16, 20, ?]. However, such methods do

not use the rich information which are available in a social
network, such as the linkage information and user activity
in the form of tags and comments.

On the other hand, from a linkage viewpoint, clusters may
be considered as a group of nodes which are densely connect-
ed by edges in the networks. For example, a variety of node
clustering algorithms for graphs have been proposed in [7,
12, 4, 6, 15, 18]. Some recent work [17, 21, 22, 23] uses
a combination of content and link structure for clustering
purpose, however, they do not consider the noisy links, and
other kinds of social cues which are helpful for clustering
social media objects. In particular, some recent work has
been focussed on clustering web images [3, 10] with the use
of surrounding text from the web page. However, this ap-
proach requires a copious amount of text unlike the tags and
comments in social media, and also does not use social link-
age structure for the clustering process. In this paper, we
develop a robust clustering algorithm that is sensitive to the
noisy links in the networks for determining the underlying
clusters. Our approach is much more general than the meth-
ods discussed in earlier work in terms of combining data of
many different kinds such as multi-media objects, tags, and
social-linkage structure of actors to objects.

3. PROBLEM DEFINITION
In this paper, we consider jointly clustering the media

objects, textual context objects, and users in social medi-
a networks. As a mathematical abstraction, we use a tri-
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partite graph G = (U ,D, T ) to denote the social media
networks, where U = {u1, u2, · · · , un} is the set of users,
D = {d1, d2, · · · , dm} is the set of social media objects, and
T = {t1, t2, · · · , tl} is a set of tags or comment keywords
made by users on the social media objects D. The users
and objects in U and D are connected between each other
by a set of links E(U ,D) = {(ui, dj)} which correspond to
user ui interest in object dj . In addition, collections of links
E(D, T ) exist between D and T , which means one object
dj in D is annotated with user tag keyword tl if the link
(dj , tl) ∈ E(D,T ). In the event that the comment or tag
contains multiple keywords, then a link exists from multiple
nodes to the corresponding objects. The content of each ob-
ject dj in D is also summarized by a feature vector xj ∈ R

d

of dimensionality d. For example, this feature vector could
be the image features such as the visual words, or the tf-idf
scores of a text document. The goal is to cluster the social
media objects, users, and tags in this tri-partite graph si-
multaneously by investigating the associated link structure
between component graphs as well as the object content.
Associated with each user ui, object dj and tag tl, there
will be variables c(ui), c(dj) and c(tl) taking the same set of
values from {1, 2, · · · , k} to indicate their cluster member-
ship. Intuitively, the links between graphs should connect
the objects in the same cluster.

While the social media objects may be clustered purely
with the use of content, this ignores the fact that similar so-
cial cues for different objects can provide very useful hints.
For example, images which are preferred by similar users, or
have similar tags are much more likely to belong to the same
cluster. One complicating factor with such an approach is
that the social links between social media objects, users,
and tags are quite noisy and often inconsistent. In order to
mitigate this negative effect, we propose a robust clustering
algorithm that can detect and remove the noisy links during
the clustering process. Associated with each link in E(U ,D)
we introduce the binary variable n(ui, dj) to indicate that
the link e(ui, dj) is noisy if it makes on the value of 1. Simi-
larly, we introduce the variable n(dj , tl) to indicate that the
link e(dj, tl) is noisy.

4. HETEROGENEOUS RANDOM
FIELD MODEL

In this section, we present our heterogeneous random field
model (HRF), to determine the clusters of social media ob-
jects. In order to facilitate the random field model, we in-
troduce an energy function on the edges. We show that
minimizing the energy function will yield the most proba-
ble cluster configuration on G, which is consistent with the
social media content and link structure. The noise on the
links are detected and utilized in order to determine their
relevance to the clustering process.

We define the following energy functions for model con-
struction. The first type of energy function is defined on the
social links connecting users and media objects.

Eij (c (ui) , c (dj) , n (ui, dj))
= n (ui, dj) ε+ (1− n (ui, dj)) δ [[c (ui) �= c (dj)]]

=

{
δ [[c (ui) �= c (dj)]] , n (ui, dj) = 0
ε, n (ui, dj) = 1

(1)

Here, δ [[·]] is the indicator function which outputs 1 when
the condition in [[·]] holds true and 0 otherwise. The variable

ε ≥ 0 denotes the confidence level of the links. A lower
value of ε indicates a high level of noise on the links. In
the extreme case, when ε = 0, all the links will be judged
by the HRF as noisy links since the energy function will
be minimized by n(ui, dj) = 1. On the other hand, when
ε = 1, the links are treated as very relevant and the cluster
membership of ui and dj will be regulated by this. We note
that the clustering process outputs not just the membership
of social media objects to clusters, but also the users to the
analogous clusters. Thus, such an approach can also be used
to facilitate recommendations in social media networks.

The second type of energy function is defined on the links
between objects and tags.

Ejl (c (dj) , c (tl) , n (dj , tl))
= n (dj , tl) ε+ (1− n (dj , tl)) δ [[c (dj) �= c (tl)]]

=

{
δ [[c (dj) �= c (tl)]] , n (dj , tl) = 0
ε, n (dj , tl) = 1

(2)

Here ε ≥ 0 denotes the confidence level on the quality of the
context links between objects and tags. A larger value of ε
indicates higher quality of the underlying social cues based
on the context information for the clustering process.

In addition, we model the feature vector {x1,x2, · · · ,xm}
associated with the social media objects, given their clus-
ter membership. For simplicity, we assume the objects are
composed by a set of discrete features {w1, w2, · · · , wq}. For
generality, we assume that such features may be of different
kinds depending upon the kind of object at hand. For ex-
ample, for an image object, the feature could correspond to
visual words, whereas for a text object, it could correspond
to the actual word. For each object dj , each element of

its content vector xj = [xj1, xj2, · · · , xjq]
T counts the num-

ber of occurrences of this feature in the object. Now we
use parameters γk = {γk1, γk2, · · · , γkq} to denote the prob-
ability of the features appearing in the k-th cluster, i.e.,
γcv = P (wv|c(dj) = c), 1 ≤ v ≤ q. Then the feature counts
xj of the object dj are generated following the multi-nomial
distribution as follows:

P (xj |c (dj) = c) =

q∏
v=1

P (xjv|c (dj) = c) =

q∏
v=1

γ
xjv
cv (3)

Based on the above two types of energy functions and gen-
erative model of the feature vectors, we can define a random
field on the heterogeneous tri-partite graph G as follows:

P (C,N ,X ) ∝

exp

⎧⎨
⎩−λ

∑
e(ui,dj)∈E(U,D)

Eij (c (ui) , c (dj) , n (ui, dj))

⎫⎬
⎭

· exp

⎧⎨
⎩−λ

∑
e(dj ,tl)∈E(D,T )

Ejl (c (dj) , c (tl) , n (dj , tl))

⎫⎬
⎭

·
∏

dj∈D
P (xj |c (dj) = c)

(4)
Here, C = {c(ui), c(dj), c(tl)|ui ∈ U , dj ∈ D, tl ∈ T } is
the configuration of the cluster membership over the whole
graph G,N = {n(ui, dj), n(dj , tl)|e(ui, dj) ∈ E(U ,D), e(dj , tl) ∈
E(D, T )} denotes the noisy links, and X = {x1, x2, · · · , xm}
is the set of all feature vectors associated with the social
media objects in the network. The optimal configuration of
cluster memberships of the objects in G, which is consistent
with the link structure and object content, can be solved by
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Figure 2: Illustration of the Markov blanket upon
which c (dj) is dependent.

maximizing this probability measure given by P (C,N ,X ).
At the same time, the noise on the links can be detected
by the edge-based variables, since these are included in the
model.

4.1 Analysis
The probability measure given by Eq. (4) defines an inter-

dependency structure between the cluster assignment C, the
noisy link detection N and the social media object content
D. Before giving the inference and learning algorithm of this
probabilistic model, we discuss some of its properties which
are beneficial to understanding the dependency between the
cluster assignment task and the link relevance in the social
media network.

From the probability measure in Eq. (4), we can obtain
the conditional probability of the object dj belonging to clus-
ter k when the cluster membership of the other objects, and
the corresponding link relevance variables:

P (c (dj) = c|C\c (dj) ,N ,X ) ∝ P (c (dj) = c|Bj)
∝

∏
e(ui,dj)∈E(U,D)

P (c (dj) = c|n (ui, dj) , c (ui))

·
∏

e(dj ,tl)∈E(D,T )

P (c (dj) = c|n (ui, dj) , c (ui))

·P (xj |c (dj) = c)

(5)

Here, C\c (dj) denotes the variables of cluster membership
of the objects excluding the object dj , and Bj is the Markov
Blanket upon which c (dj) is dependent. As illustrated in
Figure 2, c(dj) only depends on the objects which are linked
to dj as well as the noisy link variables that connect dj .
Formally, we have

Bj = {xj , c (ui) , c (tl) , n (ui, dj) , n (dj , tl) |e (ui, dj)
∈ E (U,D) , e (dj , tl) ∈ E (D, T )} (6)

For each link e(ui, dj) in E(U ,D), there are the following two
cases depending on the value of the associated link variable:

• when n(ui, dj) = 1, it indicates e(ui, dj) is a noisy link.
Then, we have:

P (c (dj) = c|n (ui, dj) , c (ui)) ∝ exp{−λε} (7)

In this case, the membership of dj is uniformly dis-
tributed over all the clusters since the cluster mem-
bership of its adjacent user ui should not affect its
membership since the link between the two is noisy.

• when n(ui, dj) = 0, it is a normal link, and we have:

P (c (dj) = c|n (ui, dj) , c (ui)) ∝ exp {−λδ [[c (ui) �= c]]}
(8)

In this case, when the linked user ui also belongs to
the cluster k, the belief of the object di being in cluster
k is enhanced; otherwise, such belief will be reduced.

On the other hand, the conditional probability of noisy
link variables n(ui, dj) and n(dj , tl) is defined as follows:

P (n (ui, dj) |C,N\n (ui, dj) ,X ) ∝ P (n (ui, dj) |c (ui) , c (dj))
(9)

with c(ui) and c(dj) in its Markov blanket. We differentiate
two different cases for this conditional probability

• When c (ui) = c (dj), user ui and social media object
dj belong to the same cluster, and we have

P (n (ui, dj) = 0|c (ui) , c (dj)) =
1

1 + exp (−λε)
The posterior that e(ui, dj) is not a noisy link is greater
than 0.5 in this case. This implies that the belief that
the link is not noisy is greater than the opposite belief
that the link is noisy.

• When c (ui) �= c (dj), user ui and object dj are in
different clusters, we have:

P (n (ui, dj) = 0|c (ui) , c (dj)) =
1

exp (λ (1− ε)) + 1

This enhances the belief that e(ui, dj) is a noisy link.
Actually, when 0 ≤ ε ≤ 1, the posterior probability of
e(ui, dj) being a normal link is less than 0.5. While
ε > 1, the probability that e(ui, dj) is a normal link is
greater than 0.5. It is reasonable since a larger εmeans
a stronger belief on normal links. When ε → +∞,
P (n (ui, dj) = 0|c (ui) , c (dj))→ 1.

A similar discussion can be applied to links between social
media objects and tags. The above property of the probabil-
ity measure is consistent with our intuition that the objects
connected by normal links should have similar cluster mem-
bership and the belief of a normal link can be enhanced by
the linked objects belong to the same cluster.

5. INFERENCE AND PARAMETRIC
ESTIMATION WITH HRF

In this section, we present an efficient algorithm to infer
the most probable configuration of clusters on social media
networks based on the probability measure in Equation (4),
as well as the model parameters.

5.1 Inference
The most probable configuration of clusters and the de-

tection of noisy links in social media networks can be jointly
inferred as follows:

C�,N � = argmax
C,N

P (C,N ,X )

It is an NP -hard problem to find the exact solution to
the above optimization problem. Fortunately, efficient algo-
rithms exist to find the approximate solutions to the HRF
model. In general, we use the Gibbs Sampling [11] algo-
rithm to sample a sequence of values for the variables in
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Algorithm 1 Gibbs Sampling of Heterogeneous Random
Fields
input the number of sampling iterations T .

Initialize s(ui, c), s(dj , c), s(tl, c) ← 0 for al-
l c ∈ {1, 2, · · · ,K}, ui ∈ U , dj ∈ D, tl ∈ T ; and
s(e(ui, dj), 0), s(e(ui, dj), 1), s(e(dj , tl), 0), s(e(dj , tl), 1)←
0 for each e(ui, dj) ∈ E(U ,D) and e(dj , tl)inE(D, T ).
Initialize the variables in C and N .
for t = 1, · · · , T do

for each ui in U do
Sample c(ui) from {1, 2, · · · , k} according to the pos-
terior probability P (c(ui)|C\c(ui),N ,X ).
s(ui, c(ui))← s(ui, c(ui)) + 1

end for
for each dj in D do

Sample c(dj) from {1, 2, · · · , k} according to the pos-
terior probability P (c(dj)|C\c(dj),N ,X ).
s(dj, c(dj))← s(dj , c(dj)) + 1.

end for
for each tl in D do

Sample c(tl) from {1, 2, · · · , k} according to the pos-
terior probability P (c(tl)|C\c(tl),N ,X ).
s(tl, c(tl))← s(tl, c(tl)) + 1.

end for
for each e(ui, dj) in E(U ,D) do

Sample n(ui, dj) from {0, 1} according to the poste-
rior probability P (n(ui, dj)|C,N\n(ui, dj),X ).
s(e(ui, dj), n(ui, dj))← s(e(ui, dj), n(ui, dj)) + 1.

end for
for each e(dj, tl) in E(U ,D) do

Sample n(dj , tl) from {0, 1} according to the posterior
probability P (n(dj , tl)|C,N\n(dj , tl),X ).
s(e(dj, tl), n(dj , tl))← s(e(dj, tl), n(dj , tl)) + 1.

end for
end for

output s(ui, ·), s(dj , ·), s(tl, ·), s(e(ui, dj), ·), s(e(dj , tl), ·)

HRF. Then the most probable cluster configuration can be
obtained by the most frequent samples for each cluster vari-
ables in C. Moreover, these sampled variables will also be
used to estimate the model parameters as in the following
subsection.

First, all the variables in C and N are randomly initial-
ized. Then, in each sampling step, one variable is sampled
based on the conditional probability of the current variable,
given that others are fixed. In Eqn (5), we computes the
conditional probability of cluster variables for each object
given the other variables (including the other cluster vari-
ables in C and the link variables in N ) are fixed. A new
variable is sampled according to this conditional probabili-
ty. Algorithm 1 summarizes this sampling process and stores
the number of sampled values in s(ui, c), s(dj , c), s(tl, c) and
s(e(ui, dj), 0), s(e(ui, dj), 1), s(e(dj , tl), 0), s(e(dj , tl), 0) for each
variables in C andN . Accordingly, the most probable cluster
configuration can be inferred by the most frequently sampled
cluster of each object as follows:

c� (ui) = argmax
c

s (ui, c)

c� (dj) = argmax
c

s (dj , c)

c� (tl) = argmax
c

s (tl, c)

(10)

5.2 Parametric Estimation
The model parameters of the proposed HRF include Γ =
{γc}, 1 ≤ q ≤ k, for the multinomial distribution of each
cluster. The parameters can be obtained by maximizing
the likelihood of the model from the observed social media
objects X as follows:

Γ� = argmax
Γ

logP (X|Γ) = argmax
Γ

∑
C,N

logP (C,N ,X|Γ)

(11)
It is intractable to directly optimize the above likelihood to
obtain Γ� since the marginalization of the hidden variables
C and N involve an exponentially large number of terms.
In this subsection, we use Expectation-Maximization (EM)
[9] algorithm based on Gibbs Sampling results in the above
subsection to obtain an efficient solution to the model pa-
rameters. The parameter Γ is first initialized by Γ(0). At
each step τ , an expectation of the complete joint distribution
with respect to the posterior P (C,N|X ,Γ(τ)) is computed as
follows:

Q
(
Γ|Γ(τ)

)
=

∑
C,N

P (C,N|X ,Γ(τ)) logP (C,N ,X|Γ)

The new parameters are then updated by maximizing this
expectation as follows:

Γ(τ+1) = argmax
C,N

Q
(
Γ|Γ(τ)

)

It is not trivial to compute Q
(
Γ|Γ(τ)

)
. Fortunately, we can

approximate this expectation by the sampled values in Algo-
rithm 1. It is not difficult to see that the model parameters
Γ only depend on the variables c(dj) regarding the social
media object clusters. Then, we have:

Q
(
Γ|Γ(τ)

)

=
∑

dj∈D

k∑
c=1

s(dj , c) logP (xj |c(dj) = c, γc)
k∑

c=1

s(dj , c)

+ Const

=
∑

dj∈D

k∑
c=1

s(dj , c)
q∑

v=1

xjv log γcv

k∑
c=1

s(dj , c)

+ Const

All the constant terms in the parameter set are merged into
Const term above. Then we have:

γ(τ+1)
cv ←

∑
dj∈D

s(dj , c)xjv

∑
dj∈D

k∑
c=1

s(dj , c)xjv

for 1 ≤ c ≤ k, 1 ≤ v ≤ q. It is equivalent to soft-counting the
mean of the number of feature occurrences for each cluster
in D based on the sampling results. The above update rule
can iterate until convergence.

6. EXPERIMENTS
In this section, we will compare the effectiveness of the

HRF model with the other state-of-the-art multimedia clus-
tering algorithms on the social media networks. In the fol-
lowing, we will describe the data sets, performance metrics
and the experimental setup in detail.
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Group 
Name

Favored Images in the Group Top 10 tags in the 
group

Family family portrait 
children fun girl 
love hmmlargeart
baby tucson child

Street 
Art

streetart art street 
tag graf pochoir
peinture urban 
bombe arosol

Folk 
Music

music folk 
folkmusic concert 
festival guitar 
lastfm live 
performance 
singer

Magic 
City

birmingham
alabama al iphone
iphoneography
snow hdr stanroth
urban downtown

Pet 
Portrait

dog pet cat portrait 
cute nikon animal 
puppy chien feline

Figure 3: Illustration of favored images and top 10 user tags in five user groups of Flickr social media network
data set.

6.1 Data Set
We collected the following Flickr Social Network Data Set

for evaluation purpose.

• Flickr Social Network Data Set: This data set con-
tained 121 popular Flickr user groups, including “fam-
ily”, “auto” , “concerts”, “pet portraits”, “kids and na-
ture”, “street art,” “wide party,” “folk music,” “magic
city,”“party favors”, “British politics”, “youth basket-
ball”, “fast food”, “fancy dress party”, and “great sky.”
These groups are collected using the keyword-based
group search functionality provided by Flickr. The
most popular tags were used as queries. This social
media network has 13, 826 users in these 121 groups,
and each user can join more than one group. We note
that users have the ability to mark their favored images
in these groups. We use these favored images in order
to create a graph of users in which the edges reflect
an interest in the same image. In order to enable this,
a total of 36, 300 favored images were collected from
Flickr. Since these images belong to user groups, we
were able to use their group membership as the ground
truth of the clustering. In order to construct the social

media network, two users are linked by edges if they
favor the same images. For each image, users also tag
some keywords to describe its content. The user tags
are stemmed and the stop words and meaningless key-
words are removed. This results in 5, 000 user tags
in this Flickr data set. Figure 3 illustrates some fa-
vored images and top 10 user tags in five user groups
of Flickr social media network data set. In general,
the user tags provided a richly descriptive characteri-
zation of the underlying images as well as user sharing
intention. These favored images and their associated
user tags are collected to represent the edge content in
social media graph. We also extract visual features in
order to construct a multi-dimensional representation
for image content. These include 8000 dimensional bag
of words based on SIFT descriptions.

6.2 Performance Metrics
As mentioned in the previous section, each image is asso-

ciated with cluster labels in addition to the content. These
labels were used as the ground truth for measuring the ef-
fectiveness of the clustering process. Two metrics are used
in the experiments. These were the pairwise F-measure (P-
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Algorithm 2 Parametric Estimation for HRF model

input the sampled squences
s(ui, ·), s(dj , ·), s(tl, ·), s(e(ui, dj), ·), s(e(dj, tl), ·) in
Algorithm 1.

Uniformly initialize γ
(0)
cv ←

1

q
.

set τ ← 0.
repeat

Sample a sequence of values from the current model,
and count the occurrence of clusters for each object in
s(dj , c).
Update the model parameters as

γ(τ+1)
cv ←

∑
dj∈D

s(dj , c)xjv

∑
dj∈D

k∑
c=1

s(dj , c)xjv

τ ← τ + 1.
until Convergence

output Model parameters Γ.

WF) and average cluster purity (ACP) respectively. These
metrics are both supervised metrics, which are constructed
with the use of the cluster ground truth (or class labels)
collected in the data sets. Since clustering is an unsuper-
vised problem, the ground truth information was not used
during the clustering process. The class information about
the communities is only used for evaluation purposes. This
provides a robust evidentiary measure about the quality of
the clustering.

Pairwise Precision, Recall and F-measure. We adopt the
commonly used pairwise precision and recall measures for
clustering algorithms [21], in order to create a meaningful
measure. Let G denote the set of images that share one
cluster class. Similarly, let H denote the set of images that
are assigned to the same cluster by the algorithm. Then, we
can compute the pairwise precision and recall as follows:

pr =
|H ∩G|
|H | , rc =

|H ∩G|
|G|

The afore-mentioned measures of precision and recall can be
used in order to define the pairwise F-measure as follows:

PWF =
2× pr× rc

pr + rc

A higher value of the pairwise F-measure (PWF) suggests
that the underlying clustering is of good quality.

Average Cluster Purity: The average cluster purity is com-
puted as the average percentage of the dominant community
in the different clusters. Formally, let C = {C1, · · · , CK} be
the k clusters determined by the algorithms. Let us assume
that the number of points in Ci, are denoted by ni. The cor-
responding set of ni vertices is denoted by {v1,i, · · · , vni,i}.
Let Ml,i denote the set of communities that vl,i truly be-
longs to in the ground truth of labels. Then, the average
cluster purity (ACP) is defined as follows:

ACP =
1

k

k∑
i=1

ni∑
l=1

δ (domi ∈Ml,i)

ni

Here, δ(·) is an indicator function, which indicates whether

the dominant class domi of cluster Ci matches with at least
one of the labels for a vertex.

6.3 Compared Algorithms
In order to validate the effectiveness of our algorithms, we

used the following baselines:

• We used a pure content-based approach where we are
simply clustering the documents on the edges, with
the use of a clustering approach. We used the LDA-
WORD [2] algorithms in order to cluster the content
of the data sets.

• We used some link-based techniques in which we clus-
ter the nodes using known structural methods. In par-
ticular, we tested with the use of the normalized cut
(NCUT) [19] which is a spectral clustering algorith-
m. In this algorithm, we consider two types of links -
the user favor link and tag links. Specifically, for user
favor links, two images are considered to be linked if
they are favored by the same user. For tag links, two
images are linked together if they are annotated by the
same tag. The link weights are defined by the number
of times that two images are either co-favored or anno-
tated by the same tag keywords. We apply NCUT on
a graph that combines these two kinds of links. The
link structure is used to partition the images without
any content information.

• We also compare with the clustering algorithm with
both social links and the image content. In particular,
we tested with a graph theoretical clustering algorith-
m, which simultaneously integrates visual and textual
features in a trigraph for efficient Web image cluster-
ing [17]. This algorithm is referred to as Consistent
Isoperimetric High-order Co-clustering (CIHC), and it
uses the user tags as well as image content to partition
the object in social media networks.

We describe some implementation details about the ini-
tialization of the HRF clustering model. The Gibbs sam-
pling approach needs to be be initialized with an initial clus-
ter configuration. For this purpose, we apply the k-means
clustering algorithm on the content of Flickr images without
any link structure. Such content-based initialization may af-
fect the first few iterations of Gibbs sampling process. How-
ever, the link structure will be gradually incorporated into
the modeling process after several iterations.

6.4 Results
The results for the different algorithms on the Flickr im-

age network are illustrated in Table 1. The value of the pa-
rameter λ was fixed at 0.5. We present the results in terms
of pairwise precision, recall and F-measure. The proposed
HRF clustering algorithm outperforms the other algorithms,
including the pure content and pure link-based algorithms,
and also the algorithms which combine both link and con-
tent. This demonstrates that the combination of the dif-
ferent kinds of content and linkage information in a social
media network provides more effective results. For example,
CIHC, which combines both image content and the links
to user tags in a trigraph, outperforms the LDA-WORD
and NCUT. However, the CIHC algorithm is not quite as
effective at incorporating different kinds of heterogeneous
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Table 1: Comparison of different clustering algorithms on Flickr social media data set.

Algorithms Flickr Social Media Data Set
precision recall PWF ACP

Content LDA-WORD 0.4350 0.5569 0.4885 0.4989

Link only NCUT 0.4960 0.7189 0.5870 0.5237

content + tags CIHC 0.5504 0.7484 0.6343 0.6403

Our approach HRF 0.6350 0.8526 0.7279 0.8296

content such as the tags, the social structure and the ob-
ject content. As the result, the HRF algorithm outperforms
CIHC as well. An interesting observation is that the pure
link-based clustering algorithm NCUT obtain better perfor-
mances than pure content-based information. This suggests
that the linkage information in the networks often contain
more useful semantic information for the clustering process
than the content.

Our algorithm, which combines not only content but also
the context and social links, achieves the best performances.
This is because in social media networks, in addition to the
content, both tag and social links provide important net-
work structural information for the discovering the image
clusters. In addition to modeling content and links, the pro-
posed HRF algorithm detects and removes the noisy links
from the clustering process. This improves the robustness
of clustering algorithm, which avoids the negative effect of
noisy links. Therefore, the HRF algorithm is able to deter-
mine the useful clustering by separating out the noise from
the useful clustering hints. This is particularly important
in social media networks which are known to be noisy for
mining purposes.

One interesting aspect of the clustering algorithm is that
it outputs user clusters, tag clusters, and object cluster si-
multaneously. This can be very useful for a wide variety of
applications, because the tag clusters can be used in order to
determine the semantic interpretability of the images, and
the user clusters can be leveraged in order to do group rec-
ommendations. This is particularly useful in cases where the
multi-media objects are available on social sharing platform-
s. For example, Figure 4 also illustrates five image clusters
and the associated tag clusters obtained by the HRF cluster-
ing algorithm. We can find that the images and associated
tags are well clustered based on their content and descriptive
tag words. It is evident that the tag keywords provide the
descriptive theme in each cluster very well. For example, the
images in the first cluster correspond to restaurants, and the
corresponding tag keywords reflect this semantic theme well.
Such objects can be recommended to the corresponding user-
s in this cluster. Furthermore, new images which are tagged
with the corresponding keywords can also be immediately
recommended to the users in the cluster. Alternatively, the
new users containing the appropriate frequent keywords in
their comments or profile can be recommended the appropri-
ate images. Thus, this clustering process not only improves
the quality of the clustering, but also provides useful social
and semantic interpretability which can be leveraged for a
wide variety of applications.

6.5 Parameter Sensitivity
We also tested the sensitivity of the HRF model to differ-

ent choices of the parameter λ. This is a particularly im-

Table 2: Comparison of computing time spent by
different clustering algorithms on Flickr social media
data set.

Algorithm Computing Time

LDA-WORD 457 min

NCUT 375 min

CIHC 421 min

HRF 189 min

portant parameter, because it regulates the importance of
linkage information in the clustering process. For the pur-
poses of our previously presented results in Table 1, we set
the value of λ to 0.5, so that an approximately equal amount
of importance is placed on linkage and content. Neverthe-
less, it is interesting to test how the quality of clustering is
influenced by varying the value of this parameter. We il-
lustrate the variation of the algorithm with λ in Figure 5.
The value of λ is illustrated on the X-axis, and it varies
from 0.1 to 0.8 with 0.1 as the step size. The F-measure
and cluster purity measures of clustering quality are illus-
trated on the Y -axis in the different charts. It is evident
from the results that when little link information is incor-
porated (λ = 0.1), the HRF model does not perform well
on the data sets. However, as λ increases, more link infor-
mation is combined together with content and it performs
better. However, the effectiveness starts reducing after a cer-
tain point, because the use of a value of λ which is too large
discounts the importance of the content information. This
verifies that both content and link information do help in
modeling the clustering structure. One observation is that
the two different measures provide slightly different peaks
in terms of clustering quality, though they both suggest ro-
bustness within a wide range of parameter values. We find
that in the interval [0.1, 0.8], the proposed HRF model con-
sistently outperforms the other algorithms in terms of both
the ACP and PWF measures.

6.6 Computational Efficiency
Finally, we also compare the computing time spent by d-

ifferent algorithms for performing the clustering. The com-
parison is performed on a Server platform with Intel Xeon
CPU 2.4 GHz and 33 GM physical memory. For the sake
of fair comparison, we apply all the algorithm to compute
50 clusters. Table 2 reports the computational time of the
different algorithms. We find that the algorithm HRF is
much faster than the other algorithms. In fact the the HRF
algorithm was twice as fast as the next fastest algorithm,
corresponding to the NCUT method. This is in spite of the
fact that the NCUT method works with only the link struc-
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Image Clusters Associated tag
clusters

food restaurant 
dessert canon lunch 
chocolate dinner 
cheese recipe 
breakfast

party birthday 
babyshower pink 
decoration wedding 
baby cupcake fiesta 
paper

dog pet cat portrait 
cute animal nikon
puppy chien photo

portrait people girl 
retrato portret face 
tribe tribal woman 
hair

postoffice rural 
historic office post 
indiana smalltown
architecture 
downtown building

Figure 4: Illustration of five image and tag clusters obtained by the HRF clustering algorithm.

ture, whereas our approach uses both the content and links
for clustering. The LDA-WORD algorithm was the slowest,
and was about 2.5 times slower than the HRF method. The
efficiency of our approach is because of our use of the Gibbs
sampling strategy, which is able to provide robust results for
samples of reasonable size. Thus, the approach presented in
this paper provides an effective tradeoff between the quality
and efficiency of the results.

7. CONCLUSIONS AND SUMMARY
In this paper, we present a robust clustering algorithm on

social media networks based on heterogeneous random field-
s. We use a combination of linkage information and social
cues in order to perform the clustering. These are used to
infer the highest probability cluster configuration in an ef-
ficient way. The algorithm is able to explicitly detect the
noisy links, which is particularly important in the noisy so-
cial media scenario. We present experimental results, which
network demonstrate the effectiveness of our algorithm com-
pared to other state-of-the-art methods.
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