Constructing Topical Hierarchies in Heterogeneous
Information Networks

Chi Wangi, Marina Danilevskyi, Jialu Liu*, Nihit Desaif, Heng Jit, Jiawei Han?

{University of Illinois at Urbana-Champaign, USA

fRensselaer Polytechnic Institute

{chiwang1,danilev1,jliu64,nhdesai2,hanj}@illinois.edu, {jih}@rpi.edu

Abstract—A digital data collection (e.g., scientific publica-
tions, enterprise reports, news, and social media) can often be
modeled as a heterogeneous information network, linking text
with multiple types of entities. Constructing high-quality concept
hierarchies that can represent topics at multiple granularities
benefits tasks such as search, information browsing, and pattern
mining. In this work we present an algorithm for recursively
constructing multi-typed topical hierarchies. Contrary to tra-
ditional text-based topic modeling, our approach handles both
textual phrases and multiple types of entities by a newly designed
clustering and ranking algorithm for heterogeneous network
data, as well as mining and ranking topical patterns of different
types. Our experiments on datasets from two different domains
demonstrate that our algorithm yields high quality, multi-typed
topical hierarchies.

I. INTRODUCTION

In the real world there are many examples of collections of
interconnected multi-typed objects, which form heterogeneous
information networks (HINs). In order to facilitate tasks such
as efficient search, mining and summarization of heteroge-
neous networked data, it is very valuable to discover and
organize the concepts present in a dataset into a multi-typed
topical hierarchy. Such a construction allows a user to perform
more meaningful analysis of the terminology, people, places,
and other network entities, which are organized into topics and
subtopics at different levels of granularity.

A variety of existing work is devoted to constructing topical
or concept hierarchies from text data. However, few ap-
proaches utilize link information from heterogeneous entities
that may be present in the data. Conversely, existing methods
for heterogeneous network analysis and topic modeling have
demonstrated that multiple types of linked entities improve
the quality of topic discovery (e.g., NetClus [1]), but these
methods are not designed for finding hierarchical structures
(See Figure la for an example output of NetClus). Therefore,
there is no existing method that is able to construct a multi-
typed topical hierarchy from a heteregeneous network.

In this study, we develop a method that makes use of
both textual information and heterogeneous linked entities to
automatically construct multi-typed topical hierarchies. The
main contributions of this work are:

e We recursively construct a topical hierarchy where each
topic is represented by ranked lists of phrases and entities of
different types. We go beyond the topical hierarchies that are
constructed by analyzing textual information alone (e.g., Fig-
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Fig. 1: Sample output from three methods run on a computer science
publication network with term, author, and venue attributes

ure 1b), and enrich the topic representation with ranked lists of
heterogeneous entities, which provides additional informative
context for each topic in the hierarchy (shown in Figure 1c).

e We propose a mutually enhancing clustering and ranking
method for recursively generating subtopics from each topic
in the hierarchy. Our approach retains the benefits of NetClus,
a recently developed technique for analyzing heterogeneous
networks, but is far more robust and well-suited to the task of
topical hierarchy construction. Our unified general model is
not confined to a particular network schema, and incorporates
an inference algorithm that is guaranteed to converge.

e We develop an extension to our method which is able to
automatically determine the importance of different types of
entity links. We allow the importance of links to vary at differ-



ent levels of the topical hierarchy, since different information
may be more or less useful at a particular granularity.

II. RELATED WORK
A. Topical hierarchy construction

Topical hierarchies, concept hierarchies, ontologies, etc.,
provide a hierarchical organization of data at different levels of
granularity, and have many important applications, such as in
web search and browsing tasks [3]. Although there has been
a substantial amount of research on ontology learning from
text, it remains a challenging problem (see [4] for a recent
survey). The learning techniques can be broadly categorized as
statistics-based or linguistic-based. Many studies are devoted
to mining subsumption (‘is-a’) relationships [5], either by
using lexico-syntactic patterns (e.g., ‘x is a y’) [6], [7] or
statistics-based approaches [8], [9]. Chuang and Chien [10]
and Liu et al. [11] generate taxonomies of given keyword
phrases by supplementing hierarchical clustering techniques
with knowledge bases and search engine results.

With respect to input and output, our definition of the
construction of topical hierarchy largely follows our previous
work Wang et al. [2]. We proposed CATHY, a statistics-
based technique which constructs a topical hierarchy without
resorting to external knowledge resources such as WordNet
or Wikipedia. However, CATHY hierarchy is constructed
using only text information, while our CATHYHIN approach
works with a heterogeneous network and discovers multi-typed
topical entities.

B. Mining topics in heterogeneous networks

Basic topic modeling techniques such as PLSA (probabilis-
tic latent semantic analysis) [12] and LDA (latent dirichlet
allocation) [13] take documents as input, and output word
distributions for each topic. Recently, researchers have studied
how to mine topics when documents have additional links to
multiple typed entities [1], [14], [15], [16], [17], [18]. These
approaches make use of multiple typed links in different ways.
iTopicModel [14] and TMBP-Regu [15] use links to regularize
the topic distribution so that linked documents or entities have
similar topic distributions. Chen et al. [16] and Kim et al. [17]
extend LDA to use entities as additional sources of topic
choices for each document. Tang et al. [18] argue that this
kind of extension has a problem of ‘competition for words’
among different sources when the text is sparse. They propose
to aggregate documents linked to a common entity as a pseudo
document, and regularize the topic distributions inferred from
different aggregation views to reach a consensus.

Nearly all of these studies still model topics as distributions
over words, though they use linked entity information to help
with topic inference in various ways. NetClus [1] takes a
different approach by simultaneously clustering and ranking
terms as well as linked entities in a heterogeneous network.
It is therefore the only aforementioned approach which may
be used to recursively construct heterogeneous topical hierar-
chies (with some slight modification). We therefore examine

adapting NetClus to this task, and describe the limitations of
this construciton, which are overcome by our method.

C. NetClus

As illustrated in Figure 2, the input to the NetClus algorithm
is a heterogeneous network of star-schema. The example
network has one central object type—the star object—and
four types of attribute objects (where the type of an object is
denoted by its shape and color family). Only links between a
star object and an attribute object are allowed. For example, a
collection of papers may be transformed into a star schema
where each paper is a star object, and attributes such as
authors, venues, and terms are attribute objects.

NetClus performs hard clustering on the star objects, and
the induced network clusters consist of star objects and their
linked attribute objects. Thus, an attribute object may belong to
multiple clusters, but each star object is assigned to precisely
one cluster. Next, the attribute objects within each subnetwork
cluster are ranked via a PageRank-like algorithm, which is
based on the structure of the cluster. A generative model then
uses the ranking information to infer a cluster distribution for
each star object. The cluster memberships of the star objects
are then adjusted using a k-means algorithm, and the ranks of
attribute objects are re-calculated. Thus, the NetClus algorithm
iterates over clustering the star objects based on their inferred
membership distribution (as calculated by a generative model
based on the existing ranking information), and re-ranking the
attribute objects within each newly defined network cluster.
The heterogeneous nature of the attribute objects is respected
during the ranking step, as only objects of the same type are
ranked together, as shown in Figure 2.

The iterative clustering and ranking steps of NetClus thus
mutually enhance each other. The clustering step provides a
context for the ranking calculations, since the ranks of the
attribute objects should vary among different clusters (e.g.,
different areas of computer science). The ranking step in
turn improves the quality of found clusters, since highly
ranked objects should serve as stronger indicators of cluster
membership for their linked star objects.

NetClus can be naturally extended for topical hierarchy
construction: after each network is clustered, each of the
induced subnetworks are then used as new input, and may
thus be recursively clustered and ranked. However, several
properties of NetClus render it undesirable for the task of
topical hierarchy construction:

1. Topics are represented by ranked lists of terms, and other
individual attribute objects. For topics of fine granularity in the
hierarchy, this representation may be hard to interpret because
single terms and entities may be ambiguous.

2. NetClus assumes a star schema, which hinders its appli-
cation to more general information networks.

3. NetClus hard clusters star objects, which are usually
documents. However, a document is often related to a mixture
of topics, especially in the lower levels of a hierarchy. The
forced hard clustering can thus result in lost information, as



Fig. 2: An illustration of the NetClus framework. (L)
NetClus analyses a star schema network, where every link is
between a central object and an attribute object of some type
(central objects are denoted by stars; attribute objects of
the same type are represented by the same shape and color
family, with individual objects differentiated by hue). (M)
The star objects are partitioned into clusters so that each
star appears in exactly one cluster. (R) Attribute objects
(which may appear in multiple clusters) are ranked within
each cluster, grouped by type. NetClus iterates over these
clustering (M) and ranking (R) steps, as denoted by the
two-way circular arrow symbol

relevant documents fail to appear in relevant subtopics, further
decreasing the hierarchy’s quality.

4. The iterative algorithm used by NetClus is not guaranteed
to converge. The deeper into the hierarchy, the more severe this
problem becomes because the output of one level will be input
of the next level of the constructed hierarchy.

III. CATHYHIN FRAMEWORK

This section describes our framework CATHYHIN (shown
in Figure 3), which incorporates the two positive characteris-
tics of NetClus: the utilizing of heterogeneous link types, and
the mutually enhancing clustering and ranking steps, while
overcoming the disadvantages discussed in Section II-C.

Definition 1 (Heterogeneous Topical Hierarchy): A hetero-
geneous topical hierarchy is defined as a tree 7 in which each
node is a topic. The root topic is denoted as o. Every non-
root topic ¢ with parent topic Par(t) is represented by m
ranked lists of patterns L1, ..., L,, where L, = {P"'} is
the sequence of patterns for type x in topic ¢. The subtopics
of every non-leaf topic ¢ in the tree are its children C* =
{z € T, Par(z) = t}. A pattern can appear in multiple topics,
though it will have a different ranking score in each topic.

This definition of the heterogeneous topical hierarchy ad-
dresses the first aforementioned criticism of NetClus by repre-
senting each topic as multiple lists of ranked patterns, where
each list contains patterns of objects, rather than individual
objects (e.g., phrases rather than unigrams). For instance, the
topics in Figure 1c each contain 3 lists of patterns.

Our approach does not restrict the network schema, and does
not perform hard clustering for any objects. We discover topics
by hierarchically soft clustering the links, so that any node may
be assigned to multiple topics and subtopics. This removes the
restrictions outlined in criticisms 2 and 3 of NetClus. We only
require a collection of some kind of information chunks, such

Fig. 3: An illustration of the CATHYHIN framework. (L) Step 1: CATHY-
HIN analyses a node-typed and edge-weighted network, with no central star
objects. (M) Step 2: A unified generative model is used to partition the edge
weights into clusters and rank single nodes in each cluster (here, node rank
within each node type is represented by variations in node size). (R bottom)
Step 3: Patterns of nodes are ranked within each cluster, grouped by type.

(R top) Step 4: Each cluster is also an edge-weighted network, and is therefore
recursively analyzed. The final output is a hierarchy, where the patterns of
nodes of each cluster have a ranking within that cluster, grouped by type.

as documents, so that each chunk contains multiple objects
and we can mine frequent patterns from these chunks.

Formally, every topic node ¢ in the topical hierarchy is asso-
ciated with an edge-weighted network G* = ({V}},{E% ,}),
where V! is the set of type-z nodes in topic ¢, and E. , is
the set of link weights between type = and type y nodes (x
and y may be identical) in topic ¢. ei’jﬁt € E. , represents
the weight of the link between node v of type x and node
vﬁ»’ of type y. For every non-root node ¢ # o, we construct a
subnetwork G? by clustering the network GF9"(t) of its parent
Par(t). G* inherits the nodes from G7"(Y) but contains
only the fraction of the original link weights that belongs to
the particular subtopic t. Figure 3 visualizes the weight of
each link in each network and subnetwork by line thickness
(disconnected nodes and links with weight O are omitted).

If the original network naturally has a star schema, but the
star type is not included in the final topic representation (e.g.,
the document), we can construct a ‘collapsed’ network by
connecting every pair of attribute objects which are linked to
the same star object. In the derived network, the link weight
e;’?"" between two nodes v and v is therefore equal to the
number of common neighbors they share in the original star-
schema network.

Our framework employs a unified generative model for
recursive network clustering and subtopic discovery. The
model seamlessly integrates mutually enhanced ranking and
clustering while guaranteeing convergence for the inference
algorithm, thus addressing the final critique of NetClus.

Our framework generates a heterogeneous topical hierarchy
in a top-down, recursive way:

Step 1. Construct the edge-weighted network G°. Set t = o.

Step 2. For a topic t, cluster the network G* into subtopic
subnetworks G*, z € C* using a generative model.

Step 3. For each subtopic 2 € C?, extract candidate topical
patterns within each topic, and rank the patterns using a unified



TABLE I: Notations used in our model

Symbol | Description
G? | the HIN associated with topic ¢
VI | the set of nodes of type  in topic ¢
+ the set of non-zero link weights of type (z,y)
in topic ¢
Par(t) | the parent topic of topic t
C" | the set of child topics of topic ¢
z | child topic index of topic ¢
m | the number of node types
the total number of links between type-x and
type-y nodes
vy | the i-th node of type =
f’jy’z the link weight between v; and vJ?-’ in topic z
¢** | the distribution over type-z nodes in topic z
¢* | the overall distribution over type-z nodes
p- | the total link weight in topic z
6 | the distribution over link type (z,y)
the importance of link type (z,y)

N,y

e

Qa,y

ranking function. Patterns of different lengths are directly
compared, yielding an integrated ranking.

Step 4. Recursively apply Steps 2 - 3 to each subtopic z €
C" to construct the hierarchy in a top-down fashion.

We describe steps 2 and 3 in the following subsections.

A. Topic Discovery in Heterogeneous Information Networks

Given a topic ¢ and the associated network G*, we discover
subtopics by performing clustering and ranking with the
network. We now describe our unified generative model and
present an inference algorithm with a convergence guarantee.
We further extend our approach to allow different link types
to play different degrees of importance in the model (allowing
the model to, for example, decide to rely more on term co-
occurrence information than on co-author links).

The generative model

We first introduce the basic generative model, which consid-
ers all link types to be equally important. For a given topic ¢,
we assume C? contains k& child topics, denoted by z = 1... k.
The value of k can be either specified by users or chosen using
a model selection criterion.

In general, the network G! contains m node types and
m(#’ﬂ) link types.! Similar to NetClus, we assume each
node type x has a ranking distribution ¢™* in each subtopic
z € C", such that ¢;"* is the importance of node v{ in topic z,
subject to >, ¢;"* = 1. Each node type z also has a ranking
distribution ¢ for the background topic, as well as an overall
distribution ¢*, where ¢ is proportional to the degree of node
vy In contrast to NetClus, we softly partition the link weights
in G into subtopics. We model the generation of links so
that we can simultaneously infer the partition of link weights
(clustering) and the node distribution (ranking) for each topic.

'We assume the network is undirected, although our model can be easily
extended to directed cases.

Dy VANV

(b) The ‘collapsed’ generative pro-
cess of the link weights

(a) The generative process of
the ‘unit-weight’ links

Fig. 4: Two graphical representation of our generative model
for links in a topic ¢. The models are asymptotically equivalent.

To derive our model, we first assume the links between any
two nodes can be decomposed into one or multiple unit-weight
links (e.g., a link with weight 2 can be seen as a summation of
two unit-weight links). Later we will discuss the case where
the link weight is not an integer. Each unit-weight link has a
topic label, which is either a subtopic z € C*, or a dummy
label 0, implying the link is generated by a background topic
and should not be attributed to any topic in C*.

The generative process for a topic-z link, z € C* (or
background topic link, resp.) with unit weight is as follows:

1) Generate the link type (z,y) according to a multinomial
distribution 6.

2) Generate the first end node u; from the type-x ranking
distribution ¢™* (or ¢*°, resp.).

3) Generate the second end node uy from the type-y
ranking distribution ¢¥* (or ¢¥, resp.).

Note that when generating a background topic link, the two
nodes ¢ and j are not symmetric, so that we attribute half of
it to ¢ — 7 and the other half to ;7 — 4. The first end node is a
background node, and can have a background topic link with
any other nodes based simply on node degree, irrespective of
any topic. Highly ranked nodes in the background topic tend
to have a link distribution over all nodes that is similar to
their overall degree distribution. See Figure 4a for a graphical
representation of the model.

With these generative assumptions for each unit-weight
link, we can derive the distribution of link weight for any
two nodes (v;”,v;-’). If we repeat the generation of topic-
z unit-weight links for p, iterations, then the process of
generating a unit-weight topic-z link between v and 11;.’
can be modeled as a Bernoulli trial with success probability
0207 “0%". When p, is large, the total number of suc-
cesses e; " asymptotically follows a Poisson distribution

Pois (pzé%yqﬁf’zqﬁg’z). Similarly, the total number of back-
ground topic links eif’o asymptotically follows a Poisson
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distribution Pois <p09$y¢¢;"’¢
One important implication due to the additive property of
Poisson distribution is:
k
Z e; )" ~ Poisson (65, ysij’t) (1)
z=0

where s; ’y’t = ZZ L P05 YT + po
This leads to a ‘collapsed’ model as deplcted in Flgure 4b.

Though we have so far assumed the link weight to be an
integer, this collapsed model remains valid with non-integer
link weights (due to Property 1, discussed later).

Given the model parameters, the probability of all observed
links is:
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We learn the parameters by the Maximum Likelihood (ML)
principle: find the parameter values that maximize the likeli-
hood in Eq. (2). We use an Expectation-Maximization (EM)
algorithm that can iteratively infer the model parameters.
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We update €, ¢, p in each iteration (6, , is a constant). In
the E-step, we perform the clustering by estimating é. In the
M-step, we estimate the ranking distribution ¢. Like other
EM algorithms, the solution converges to a local maximum
and the result may vary with different initializations. The EM
algorithm can be run multiple times with random initializations
to find the solution with the best likelihood.

The subnetwork for topic z is naturally extracted from the
estimated é (expected link weight attributed to each topic). For
efficiency purposes, we remove links whose weight is less than
1, and then filter out all resulting isolated nodes. We can then
recursively apply the same generative model to the constructed
subnetworks until the desired hierarchy is constructed.
Learning link type weights

The generative model described above does not differentiate
between the importance of different link types. However, we
may wish to discover topics that are biased towards certain
types of links, and the bias may vary at different levels of

the hierarchy. For example, in the computer science domain,
the links between venues and other entities may be more
important indicators than other link types in the top level of
the hierarchy; however, these same links may be less useful for
discovering subareas in the lower levels (e.g., authors working
in different subareas may publish in the same venue).

We therefore extend our model to capture the importance of
different link types. We introduce a link type weight o, ,, > 0
for each link type (z,y). We use these weights to scale a link’s
observed weight up or down, so that a unit-weight link of type
(x,y) in the original network will have a scaled weight o ,,.
Thus, a link of type (z,y) is valued more when oy, > 1,
less when 0 < a3, < 1, and becomes negligible as a ,
approaches 0.

When the link type weights o, , are specified for our model,
the EM inference algorithm is unchanged, with the exception
that all the e Jy " in E-step should be replaced by a, ,e7 i ot
When all o, ,’s are equal, the weight-learning model reduces
to the basic model. Most of the time, the weights of the
link types will not be specified explicitly by users, and must
therefore be learned from the data.

We first note an important property of our model, justifying
our previous claim that link weights need not be integers.

Property 1 (Scale-invariant): The EM solution is invariant
to a constant scaleup of all the link weights.

Due to the scale-invariant property of the link weights, we
can assume that w.l.o.g., the product of all the non-zero link
weights remains invariant before and after scaling:
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Using the Langrange multiplier method, we can find the



optimal value for o when the other parameters are fixed:
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we can see more clearly that the link type weight is negatively
correlated with two factors: the average link weight and the
KL-divergence of the expected link weight distribution to the
observed link weight distribution. The first factor is used to
balance the scale of link weights of different types (e.g., a
type-1 link always has X times greater weight than a type-2
link). The second factor measures the importance of a link
type in the model. The more the prediction diverges from the
observation, the worse the quality of a link type.

So we have the following iterative algorithm for optimizing
the joint likelihood:

1) Initialize all the parameters.

2) Fixing «, update p, 0, ¢ using EM equations (3)-(6).

3) Fixing p, 0, ¢, update « using Eq. (12).

4) Repeat steps 2) and 3) until the likelihood converges.

i, 1,5 %]

In each iteration, the time complexity is O(ny Ngy), L€,
linear to the total number of non-zero links. The likelihood
is guaranteed to converge to a local optimum. Once again, a
random initialization strategy can be employed to choose a
solution with the best local optimum.

B. Topical Pattern Mining and Ranking

Having discovered the topics using our generative model,
we can now identify the most representative topical patterns
for each topic. This is done in two stages: topical pattern
mining and ranking the mined patterns.

Pattern mining in each topic

A pattern P* of type x is a set of type-z nodes: P* = {v¥}.
For example, a pattern of a ‘term’ type is a set of unigrams
that make up a phrase, such as {support,vector, machine}
(or ‘support vector machine’ for simpler notation). A more
general definition of a pattern can involve mixed node types
within one pattern, but is beyond the scope of this paper.

A pattern P that is regarded to be representative for a topic ¢
must first and foremost be frequent in the topic. The frequency
of a pattern f(P) is the number of documents (or other
meaningful information chunks) that contain all the nodes in
the pattern (or the number of star objects that are linked to
all the nodes). The pattern must also have sufficiently high
topical frequency in topic t.

Definition 2 (Topical Frequency): The topical frequency
fi(P) of a pattern is the number of times the pattern is

TABLE II: Hypothetical example of estimating topical frequency.
The topics are assumed to be inferred as machine learning, database,
data mining, and information retrieval from the data

Pattern ML DB DM IR Total
support vector machines 85 0 0 0 85
query processing 0 212 27 12 251
Hui Xiong 0 0 66 6 72
SIGIR conference 444 378 303 1,117 2,242

attributed to topic ¢. For the root node o, f,(P) = f(P). For
each topic node with subtopics C*, f;(P) = >, cc f2(P)
(i.e., topical frequency is the sum of sub-topical frequencies.)

Table II illustrates a hypothetical example of estimating
topical frequency for patterns of various types (term, author,
and venue) in a computer science topic that has 4 subtopics.

We estimate the topical frequency of a pattern based on two
assumptions: i) For a type-x topic-t pattern of length n, each
of the n nodes is generated with the distribution ¢®*¢, and ii)
the total number of topic-t phrases of length n is proportional
to pq.

it
Pt vaepw ¢
ZzecPar(t) Pz va'er ¢

Both ¢ and p are learned from the generative model as
described in Section III-A.

To extract topical frequent patterns, all frequent patterns
can first be mined using a pattern mining algorithm such as
FP-growth [19], and then filtered given some minimal topical
frequency threshold minsup.

Pattern ranking in each topic

There are four criteria for judging the quality of a pattern
(similar criteria are proposed for ranking phrases in [2], and
also apply to other types of patterns).

e Frequency — A representative pattern for a topic should have
sufficently high topical frequency.

o Exclusiveness — A pattern is exclusive to a topic if it is
only frequent in this topic and not frequent in other topics.
Example: ‘query processing’ is more exclusive than ‘query’
in the Databases topic.

e Cohesiveness — A group of entities should be combined
together as a pattern if they co-occur significantly more often
than the expected co-occurrence frequency given the chances
of occurring independently. Example: ‘active learning’ is a
more cohesive pattern than ‘learning classification’ in the
Machine Learning topic.

e Completeness — A pattern is not complete if it rarely
occurs without the presence of a longer pattern. Example:
‘support vector machines’ is a complete pattern, whereas
‘vector machines’ is not because ‘vector machines’ is almost
always accompanied by ‘support’ in occurrence.

The pattern ranking function should take these criteria into
consideration. The ranking function must also be able to
directly compare patterns of mixed lengths, such as ‘classi-
fication,” ‘decision trees,” and ‘support vector machines.’

ft(P?) (14)

= fPar(t) (Pw)



Let N; be the number of documents that contain at least
one frequent topic-t pattern, T a subset of CT% () that
contains ¢, and N the number of documents that contain
at least one frequent topic-z pattern for some topic z € T.
We use the following ranking function that satisfies all these
requirements [2]:

) 0,if 3P' 2 P, f,(P') > ~vf,(P)
/)" =
p(P[t) (10% s gty e log %) o
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where p(P|t) = %I;) is the occurrence probability of a
pattern P, measuring frequency; pindep(P|t) = [[,cp ! E\(,:’) is

the probability of independently seeing every node in pattern
P, measuring exclusiveness; and p(P|T) = Zt%f(m is
the probability of phrase P conditioned on a mixture 7" of ¢
and other sibling topics, measuring cohesiveness. Incomplete
patterns are filtered if there exists a superpattern P’ that has
sufficiently high topical frequency compared to P. v € [0, 1]
is a parameter that controls the strictness of the completness
criterion, where a larger value of v deems more phrases to
be complete. Complete phrases are ranked according to a
combination of the other three criteria. Frequency plays the
most important role. The weight between exclusiveness and
cohesiveness is controled by a parameter w € [0, +00), with
larger values of w biasing the ranking more heavily towards
cohesiveness. Due to space limitation, we refer to [2] for more
detailed discussion of this ranking function.

IV. EXPERIMENTS

We evaluate the performance of our proposed method on
two datasets (see Table V for summary statistics of the
constructed networks):

e DBLP. We collected 33,313 recently published computer
science papers from DBLP?. We constructed a heterogeneous
network with three node types: term (from paper title), author
and venue, and 5 link types: term-term, term-author, term-
venue, author-author and author-venue.?

o NEWS. We crawled 43,168 news articles on 16 top stories
from Google News,* and ran an information extraction algo-
rithm [20] to extract entities. We constructed a heterogeneous
network with three node types: term (from article title), person
and location, and 6 link types: term-term, term-person, term-
location, person-person, person-location and location-location.

Our recursive framework relies on two key steps: subtopic
discovery and topical pattern mining. The major contribution
of this paper is the subtopic discovery step. Hence, our
evaluation is twofold: i) we evaluate the efficacy of subtopic
discovery given a topic and its associated heterogeneous

2We chose papers published in 20 conferences related to the areas of Ar-
tificial Intelligence, Databases, Data Mining, Information Retrieval, Machine
Learning, and Natural Language Processing from http://www.dblp.org/

3As a paper is always published in exactly one venue, there can naturally
be no venue-venue links.

4The 16 topics chosen were: Bill Clinton, Boston Marathon, Earthquake,
Egypt, Gaza, Iran, Israel, Joe Biden, Microsoft, Mitt Romney, Nuclear power,
Steve Jobs, Sudan, Syria, Unemployment, US Crime.

network; and ii) we perform several ‘intruder detection’ tasks
to evaluate the quality of the constructed hierarchy based on
human judgment.

A. Efficacy of Subtopic Discovery

We first present a set of experiments designed to evaluate
just the subtopic discovery step (Step 2 in Section III).
Evaluation Measure. We extend the pointwise mutual infor-
mation (PMI) metric in order to measure the quality of our
multi-typed topics. The metric of pointwise mutual informa-
tion PMI has been proposed in [21] as a way of measuring
the semantic coherence of topics. It is generally preferred over
other quantitative metrics such as perplexity or the likelihood
of held-out data [18]. In order to measure the quality of our
multi-typed topics, we extend the definition of PMI as follows:

For each topic, PMI calculates the average relatedness of
each pair of the words ranked at top-K:

PMI(w,w) = m%_m >

1<i<j<K

p(wh wj)
108 twn)p(w,)

where PM1T € [—o00,00], and w are the top K most probable
words of the topic. PMI = 0 implies that these words
are independent; PMI > 0 (< 0) implies they are overall
positively (negatively) correlated.

However, our multi-typed topic contains not only words,
but also other types of entities. So we define heterogeneous
pointwise mutual information as:

(16)

2 p(v7vf)
KK-1) Z1§i<j§K log WP(;?)
1 p(vvy) ‘
R X< j<k 108 P IP(7)

HPMI(v*,vY) =
a7
where v* are the top K most probable type-z nodes in the
given topic. When x = y, HPMI reduces to PMI. The HPMI-
score for every link type (x,y) is calculated and averaged to
obtain an overall score. We set K = 20 for all node types.’
Methods for Comparison:
o CATHYHIN (equal weight) — The weight for every link
type is set to be 1.
e CATHYHIN (learn weight) — The weight of each link type
is learned, as described in Section III-A. No parameters need
hand tuning.
e CATHYHIN (norm weight) — The weight of each link
type is explicitly set as: a , = ﬁ This is a heuristic
normalization which forces the total v;/éight of the links for
each link type to be equal.
e NetClus — The current state-of-the-art clustering and ranking
method for heterogeneous networks. We use the implemen-
tation in Deng et al. [15]. The smoothing parameter \g is
tuned by a grid search in [0, 1]. Note that the link type weight
learning method for CATHYHIN does not apply to NetClus
because NetClus is not a single unified model.
e TopK - Select the top K nodes from each type to form a

5The one exception is venues, as there are only 20 venues in the DBLP
dataset, so we set K = 3 in this case.

r=Yy
T#yY



TABLE III: Heterogeneous pointwise mutual information in DBLP (20 Conferences and Database area)

DBLP (Database Area) \ Term-Term  Term-Author  Author-Author  Term-Venue  Author-Venue  Overall
TopK -0.5228 -0.1069 0.4545 0.0348 -0.3650 -0.0761
NetClus -0.3962 0.0479 0.4337 0.0368 -0.2857 0.0260
CATHYHIN (equal weight) 0.0561 0.4799 0.6496 0.0722 -0.0033 0.3994
CATHYHIN (norm weight) -0.1514 0.3816 0.6971 0.0408 0.2464 0.3196
CATHYHIN (learn weight) 0.3027 0.6435 0.5574 0.1165 0.1805 0.5205
DBLP (20 Conferences) ‘ Term-Term  Term-Author  Author-Author  Term-Venue  Author-Venue  Overall
TopK -0.4825 -0.0204 0.5466 -1.0051 -0.4208 -0.0903
NetClus -0.1995 0.5186 0.5404 0.2851 1.2659 0.4045
CATHYHIN (equal weight) 0.2936 0.8812 0.6595 0.5191 1.0466 0.6949
CATHYHIN (norm weight) 0.1825 0.8674 0.9476 0.7472 1.3307 0.7601
CATHYHIN (learn weight) 0.4964 1.0618 0.7161 1.1283 1.7511 0.9168

TABLE IV: Heterogeneous pointwise mutual information in NEWS (16 topics collection and 4 topics subset)

NEWS (4 topics subset) ‘ Term-Term  Term-Person  Person-Person  Term-Location  Person-Location  Location-Location  Overall
TopK -0.2479 0.1671 0.0716 0.0787 0.2483 0.3632 0.1317
NetClus 0.1279 0.3835 0.2909 0.3240 0.4728 0.4271 0.3575
CATHYHIN (equal weight) 1.0471 0.7917 0.4902 0.8506 0.6821 0.6586 0.7610
CATHYHIN (norm weight) 0.7975 0.8825 0.5553 0.8682 0.8077 0.7346 0.8023
CATHYHIN (learn weight) 0.9935 0.9354 0.5142 0.9784 0.7389 0.7645 0.8434
NEWS (16 topics) \ Term-Term  Term-Person  Person-Person  Term-Location  Person-Location  Location-Location  Overall
TopK -1.7060 -0.8663 -0.8462 -1.0238 -0.5665 -0.4578 -0.8783
NetClus -0.3847 0.0943 0.0313 -0.1114 0.1291 0.1376 -0.0274
CATHYHIN (equal weight) 0.7804 1.0170 0.8393 0.8354 0.9467 0.6382 0.8749
CATHYHIN (norm weight) 0.8579 1.1143 0.9086 0.8530 0.9624 0.7143 0.9284
CATHYHIN (learn weight) 0.9234 1.1109 0.7966 0.9731 0.9718 0.6965 0.9500

pseudo topic. This method serves as a baseline value for the
proposed HPMI metric.
Experiment Setup. We discover the subtopics of four datasets:
e DBLP (20 conferences) — Aforementioned DBLP dataset.
e DBLP (database area) — A subset of the DBLP dataset
consisting only of papers published in 5 Database conferences.
By using this dataset, which roughly repesents a subtopic of
the full DBLP dataset, we analyze the quality of discovered
subtopics in a lower level of the hierarchy.
o NEWS (16 topics) — Aforementioned NEWS dataset.
e NEWS (4 topic subset) — A subset of the NEWS dataset
limited to 4 topics, which center around different types of
entities: Bill Clinton, Boston Marathon, Earthquake, Egypt.
Experiment Results. All the methods finish in 1.5 hours for
these datasets. As seen in Tables III and IV, our generative
model consistently posts a higher HPMI score than NetClus
(and TopK) across all links types in every dataset. Although
NetClus HPMI values are better than the TopK baseline, the
improvement of our best performing method - CATHYHIN
(learn weight) - over the TopK baseline are better than the im-
provement posted by NetClus by factors ranging from 2 to 5.8.
Even the improvement over the TopK baseline of CATHYHIN
(equal weight), which considers uniform link type weights,
is better than the improvement posted by NetClus by factors
ranging from 1.6 to 4.6.

CATHYHIN with learned link type weights consistently
yields the highest overall HPMI scores, although CATHYHIN
with normalized link type weights sometimes shows a slightly

higher score for particular link types (e.g., Author-Author
for both DBLP datasets, and Person-Person for both NEWS
datasets). CATHYHIN (norm weight) assigns a high weight
to a link type whose total link weights were low in the origi-
nally constructed network, pushing the discovered subtopics
to be more dependent on that link type. Normalizing the
link type weights does improve CATHYHIN performance in
many cases, as compared to using uniform link type weights.
However, this heuristic determines the link type weight based
solely on their link density. It can severely deteriorate the
coherence of desne but valuable link types, such as Term-
Term in both DBLP datasets, and rely too heavily on sparse
but uninformative entities, such as Venues in the Database
subtopic of the DBLP dataset.

We may conclude from these experiments that CATHY-
HIN’s unified generative model consistently outperforms the
state-of-the-art heterogeneous network analysis technique Net-
Clus. In order to generate coherent, multi-typed topics at each
level of a topical hierarchy, it is important to learn the optimal
weights of different entity types, which depends on the link
type density, the granularity of the topic to be partitioned, and
the specific domain.

B. Topical Hierarchy Quality

Our second set of evaluations assesses the ability of our
method to construct a hierarchy of multi-typed topics that
human judgement deems to be high quality. We generate and
analyze multi-typed topical hierarchies using the DBLP dataset



TABLE V: # Links in our datasets

TABLE VI: Results of Intruder Detection tasks (% correct intruders identified)

DBLP Term Author  Venue | DBLP | NEWS

(# Nodes) (6,998) (12886) (9) ‘ Phrase ~ Venue  Author  Topic ‘ Phrase  Location  Person  Topic

Te 693,132 900,201 104,577

Author - 156255 99919 CATHYHIN 083 083 10 1.0 | 0.65 0.70 0.80  0.90
i . CATHYHIN; 0.64 - - 0.92 0.40 0.55 0.50 0.70

NEWS Term Person Location g:¥g¥ 82 - - 835 8; 2 - - 82(5)

# Nodes 13,129 4,555 3,845 1 : _ - : : - B ’

(% Nodes) (13129) (45%) ©G34) CATHYpewr mN | — 078 094 092 - 0.65 045 070

Term 686,007 386,565 506,526 NetCluspattern 0.33 0.78 0.89 0.58 0.23 0.20 0.55 0.45

Person - 53,094 129,945 NetCluspattern_1 0.53 - - 0.58 0.20 0.45 0.30 0.40

Location - - 85,047 NetClus 0.19 0.78 0.83 0.83 0.15 0.35 0.25 0.45

(20 conferences) and the NEWS dataset (16 topics collection).
Experiment Setup. We adapt two tasks from Chang et al.
[22], who were the first to explore human evaluation of topic
models. Each task involves a set of questions asking humans
to discover the ‘intruder’ object from several options. Three
annotators manually completed each task, and their evaluations
scores were pooled.

The first task is Phrase Intrusion, which evaluates how well
the hierarchies are able to separate phrases in different topics.
Each question consists of X (X = 5 in our experiments)
phrases; X — 1 of them are randomly chosen from the top
phrases of the same topic and the remaining phrase is ran-
domly chosen from a sibling topic. The second task is Entity
Intrusion, a variation that evaluates how well the hierarchies
are able to separate entities present in the dataset in different
topics. For each entity type, each question consists of X
entity patterns; X — 1 of them are randomly chosen from
the top patterns of the same topic and the remaining entity
pattern is randomly chosen from a sibling topic. This task is
constructed for each entity type in each dataset (Author and
Venue in DBLP; Person and Location in NEWS). The third
task is Topic Intrusion, which tests the quality of the parent-
child relationships in the generated hierarchies. Each question
consists of a parent topic ¢t and X candidate child topics. X —1
of the child topics are actual children of ¢ in the generated
hierarchy, and the remaining child topic is not. Each topic is
represented by its top 5 ranked patterns of each type - e.g.,
for the NEWS dataset, the top 5 phrases, people, and locations
are shown for each topic.

For each question, human annotators select the intruder
phrase, entity, or subtopic. If they are unable to make a choice,
or choose incorrectly, the question is marked as a failure.
Methods for Comparison:

o CATHYHIN - As defined in Section III

o CATHYHIN; — The pattern length of text and every entity
type is restricted to 1.

e CATHY - As defined in [2], the hierarchy is constructed
only from textual information.

e CATHY; - The phrase length is restricted to 1.

o CATHY heuristic min — Since neither CATHY nor CATHY)
provides topical ranks for entities, we construct this method
to have a comparison for the Entity Intrusion task. We use a
heuristic entity ranking method based on the textual hierarchy
generated by CATHY, and the original links in the network. An

entity’s rank for a given topic is a function of its frequency in
the topic (estimated as the number of documents in that topic
which are linked to the entity in the original network), and its
exclusivity.

o NetCluspaitern — NetClus is used for subtopic discovery, fol-
lowed by the topical mining and ranking method of CATHY-
HIN, as described in Section III-B (this can also be thought
of CATHYHIN, where Step 2 is replaced by NetClus).

e NetCluspagern_1 — Equivalent to NetCluspagern With the
pattern length of text and every entity type restricted to 1.

e NetClus — As defined in [1].

The pattern mining and ranking parameters for both CATHY
and CATHYHIN are set to be minsup = 5,w =y = 0.5 ac-
cording to [2]. The optimal smoothing parameter for NetClus
is As = 0.3 and 0.7 in DBLP and NEWS respectively.

Table VI displays the results of the intruder detection tasks.
For the Entity Intrusion task on the DBLP dataset, we re-
stricted the entity pattern length to 1 in order to generate mean-
ingful questions. This renders the methods CATHYHIN; and
NetClusyayern_1 equivalent to CATHYHIN and NetCluspagem
respectively, so we omit the former methods from reporting.
Experiment Results. The Phrase Intrusion task performs
much better when phrases are used rather than unigrams, for
both CATHYHIN and CATHY, on both datasets. The NEWS
dataset exhibits a stronger preference for phrases, as opposed
to the DBLP dataset, which may be due to the fact that the
terms in the NEWS dataset are more likely to be noisy and
uninformative outside of their context, whereas the DBLP
terms are more technical and therefore easier to interpret. This
characteristic may also help explain why the performance of
every method on DBLP data is consistently higher than on
NEWS data. However, neither phrase mining and ranking nor
unigram ranking can make up for poor performance during the
topic discovery step, as seen in the three NetClus variations.
Therefore, both phrase representation and high quality topics
are necessary for good topic interpretability.

For the Entity Intrusion task, all of the relevant meth-
ods show comparable performance in identifying Author and
Venue intruders in the DBLP dataset (though CATHYHIN
is still constistently the highest). Since the DBLP dataset is
well structured, and the entity links are highly trustworthy,
identifying entities by topic is likely easier. However, the
entities in the NEWS dataset were automatically discovered
from the data, and the link data is therefore noisy and im-



TABLE VII: The ‘Egypt’ topic and the least sensible subtopic, as

generated by three methods (only Phrases

CATHYHIN

CATH Yheuristic_HIN

and Locations are shown)

NetCluspattern

{egypt; egypts; death
toll; morsi} / {Egypt;
Egypt Cairo; Egypt
Israel; Egypt Gaza}

{egypt; egypts morsi;
egypt imf loan; egypts
president} / {Egypt;
Cairo; Tahrir Square;
Port Said}

{bill clinton; power nu-
clear; rate unemployment;
south sudan} / {Egypt
Cairo; Egypt Coptic; Israel
Jerusalem; Libya Egypt}

4 4 {

{death toll; egyptian; | {supreme leader; e{egyt[;ts COPnCchriSEZE?

sexual harassment; egypt | army general sex; 2yp . y

soccer} / {Egypt Cairo; | court; supreme court} obama romney; romney
X iy campaign} /  {Egypt

Egypt Gaza; Egypt

Israel }

/ {US; Sudan; Iran;
Washington }

Cairo; Egypt Coptic; Israel
Jerusalem; Egypt}

perfect. CATHYHIN is the most effective in identifying both
Location and Person intruders. Once again, both better topic
discovery and improved pattern representations are responsible
for CATHYHIN’s good results, and simply enhancing the pat-
tern representations, whether for CATHY or NetClus, cannot
achieve competitive performance.

CATHYHIN performs very well in the Topic Intrusion task
on both datasets. Similar to the Phrase Intrusion task, both
CATHYHIN and CATHY yield equally good or better result
when phrases and entity patterns are mined, rather than just
terms and single entities. The fact that CATHYHIN always
outperforms CATHY demonstrates that utilizing entity link
information is indeed helpful for improving topical hierarchy
quality. As a worst-case study, Table VII illustrates three
representations of the topic ‘Egypt’ (one of the 16 top stories
in NEWS dataset), each with its least comprehensible subtopic.
The locations found within the CATHYHIN subtopic are
sensible. However, CATHY peuristic_nin first constructs phrase-
represented topics from text, and then uses entity link infor-
mation to rank entities in each topic. Thus the entities are
not assured to fit well into the constructed topic, and indeed,
the CATHY heuristic_nin subtopic’s locations are not reasonable
given the parent topic. Finally, NetCluspaem conflates ‘Egypt’
with several other topics, and the pattern representations can
do little to improve the topic interpretability.

In all three intruder detection tasks on both datasets,
CATHYHIN consistently outperforms all other methods,
showing that an integrated heterogeneous model consistently
produces a more robust hierarchy which is more easily inter-
preted by human judgement.

V. CONCLUSION

In this work, we address the problem of constructing a
multi-typed topical hierarchy from heterogeneous information
networks. We develop a novel clustering and ranking method
which can be recursively applied to hierarchically discover
multi-typed subtopics from heterogeneous network data. Our
approach mines each discovered topic for topical patterns,
yielding a comprehensive representation of each topic com-
prising lists of ranked patterns with different types (phrases,
authors, etc.). Our experiments on the science and news
domains demonstrate the significant advantage of our unified
generative model for the task of hierarchical topic discovery,

as compared to the state-of-the-art heterogeneous network
analysis technique. We also show our constructed topical
hierarchies have high quality based on human judgement.

We hope to further improve our multi-typed topical hi-
erarchy construction method to be able to accomodate user
preference for the particular hierarchical organization of a
dataset. We are also interested in constructing evolving topical
hierarchies that would be able to work with the constantly
changing information found in data streams.
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