
On Detecting Association-Based Clique Outliers in
Heterogeneous Information Networks

Manish Gupta∗, Jing Gao†, Xifeng Yan‡, Hasan Cam§ and Jiawei Han¶
∗Microsoft, India. Email: gmanish@microsoft.com

†State University of New York at Buffalo. Email: jing@buffalo.edu
‡University of California, Santa Barbara. Email: xyan@cs.ucsb.edu

§US Army Research Lab. Email: hasan.cam.civ@mail.mil
¶University of Illinois at Urbana-Champaign. Email: hanj@cs.uiuc.edu

Abstract—In the real world, various systems can be mod-
eled using heterogeneous networks which consist of entities of
different types. People like to discover groups (or cliques) of
entities linked to each other with rare and surprising associations
from such networks. We define such anomalous cliques as
Association-Based Clique Outliers (ABCOutliers) for heteroge-
neous information networks, and design effective approaches to
detect them. The need to find such outlier cliques from networks
can be formulated as a conjunctive select query consisting of
a set of (type, predicate) pairs. Answering such conjunctive
queries efficiently involves two main challenges: (1) computing
all matching cliques which satisfy the query and (2)ranking
such results based on the rarity and the interestingness of the
associations among entities in the cliques. In this paper, we
address these two challenges as follows. First, we introduce a
new low-cost graph index to assist clique matching. Second,
we define the outlierness of an association between two entities
based on their attribute values and provide a methodology
to efficiently compute such outliers given a conjunctive select
query. Experimental results on several synthetic datasets and
the Wikipedia dataset containing thousands of entities show the
effectiveness of the proposed approach in computing interesting
ABCOutliers.

I. I NTRODUCTION

With the ever-increasing popularity of entity-centric appli-
cations, it has become very essential to study the interactions
between entities, which are captured using edges in entity-
relationship graphs. Entity-relationship graphs can be regarded
as heterogeneous information networks due to the heterogene-
ity in entity types. For example, bibliographic networks cap-
ture associations like ‘an author wrote a paper’ or ‘an author
attended a conference’. Similarly, social networks, biological
protein-enzyme networks, Wikipedia entity network, etc. also
capture a variety of rich associations containing entitiesof
different types.

Usually a certain group of the entities of a particular type
interact with entities belonging to a particular group of the
same or another type. However, certain associations are quite
different from such normal association trends. Finding such
rare and interestingentity associations becomes immediately
critical for discovering interesting relationships and/or data
de-noising, i.e., removing incorrect data attributes or entity
associations. Specifically, if a user is interested in a set
of entity types, each following certain predicates, we could

discover some unexpected cliques which contain unusual
associations amongst its entities, besides satisfying theuser
query predicates. Given a conjunctive select query, our goal
is to detect such unusual clique outliers as Association-Based
Clique Outliers (ABCOutliers) in heterogeneous information
networks. Unusual associations can be helpful in de-noising
the data, especially in situations when the data is obtained
from unstructured sources and contains significant amount of
noise.
Movie Network Example Most of the actors act in movies
made in their native language and produced in their own
country. Also, there are known associations between countries
and languages. For example, Chinese movies in China, Hindi
movies in India, English movies in USA or UK, etc. These are
all normal associations. However, it will be very surprising to
find an actor of American origin acting in a Vietnamese movie
being produced in China, for a〈(actor, movie, country)〉 query.
These associations contain rare co-occurrences of specific
entity attribute values participating in the associations.

While the example above captures a typed query without
any predicates, our aim is to build a system which also allows
queries with predicates associated with each entity type. This
will allow the user to filter the entities and drill down the
search forABCOutliersto more interesting subspaces of the
dataset.
Brief Overview of ABCOutlier Detection Given a heteroge-
neous network containing entities of various types, and a
conjunctive select query which contains (type, predicate)pairs,
the aim is to find the top outlier cliques1 in the network that
match the query. The proposed approach consists of two steps.
In the first step, we find all possible matching cliques from the
network. Next, we compute outlier scores for each match by
aggregating the outlierness of each of its edges. We define the
outlierness of an edge or an entity association as the average
outlierness of attribute associations between the two entities
with respect to the entire set of matches. The outlierness of
an association between two attribute values is based on (1)
degree of correlation of the attribute values with those of the
other attribute, and (2) frequency of individual occurrence and

1Clique is a subgraph with each node connected to all other nodes.

co-occurrence of values. Further, this computation is donein
top-K manner so that we do not need to evaluate the attribute
association outlierness across all attributes and all edges.
Summary
• To the best of our knowledge, the proposed notion of

Association-Based Clique Outliers,ABCOutliers is the
first work on query-basedoutlier detection forhetero-
geneousinformation networks.

• We propose a top-K methodology to rank cliques based
on the association outlierness of the attributes for its
entities.

• Extensive experiments on both synthetic datasets and
Wikipedia network show the effectiveness of the proposed
approach.

Organization We define theABCOutlier detection problem
in Section II . In SectionIII , we discuss the algorithm that
computes all candidates (matching cliques) satisfying theuser
query. The methodology to rank these candidates based on
outlierness scores is discussed in SectionIV. We present
results on several synthetic datasets and the Wikipedia dataset
with detailed insights in SectionV. We discuss related work
and summarize the paper in SectionsVI andVII respectively.

II. PROBLEM DEFINITION

We start with an introduction to some basic concepts.
Heterogeneous Information Network A heterogeneous in-
formation network is an undirected graphG = (V,E) where
V is the finite set of vertices (representing entities) andE
is the finite set of edges (representing relationships between
entities) each being an unordered pair of distinct vertices.
Each entity has a type from the setT . Each type has a
fixed set of attributes. Thus, each entity is associated with
a vector of attribute values of sizeDt where t is the type
of the entity. These attributes could be numeric, categorical,
sets of strings, time durations, etc.G is called heterogeneous
because the #types of entities (denoted byT) is >1. Thus
|T | = T > 1. Let the set of attributes associated with type
Ti be denoted byAi=(Ai1 , Ai2 , . . . AiDi

) whereDi=|Ai|. For
example, a Wikipedia entity network can consist of entitieslike
“Barack Obama” or “Taj Mahal” which belong to the types
“person” and “place” respectively. The person entity type has
attributes like birth date, profession, children, spouse,religion,
etc. Figure2 shows a network withT=3.
Conjunctive Select Query on a NetworkA conjunctive se-
lect queryQ of lengthL on a networkG consists of (type,
predicate) pairs〈(T1, P1),(T2, P2), . . ., (TL, PL)〉 and aims
to obtain all matching cliques containing one entity each of
the typesT1, T2, . . ., TL satisfying the predicatesP1, P2,
. . ., PL respectively. Each of the predicatesPi is defined only
on the attributes of typeTi and consists of conjunctions of
atomic conditions, i.e., conditions constructed from attributes
and constants using various comparison operators combined
using “and.” In addition, each of the entities in a particular
match should be linked to each other inG. In general, the
query may have multiple nodes of the same type. But for
simplicity of notation, we will assume that all the nodes in

…

⋮

L
1

L
2

L
L

Candidate

Computation

by Matching

Network G

T1
T2

T3
TT

Matches C1 … CM

Cluster

Computation for

an Attribute

Score

Computation for

a Query Edge

TopK

Quit?

Q1 Q2 … QL

Q

TopK

ABCOutliers

Matching

Outlier Detection
Yes

No

Fig. 1. ABCOutlier Detection System Diagram

the query are of different types. Figure2 shows a query with
L=3.
Match A match C for a query Q is a clique such that
it contains the same number and the same type of entities
as mentioned in the query. All entities contained inC are
connected to each other inG and satisfy the predicates inQ.
The ith matchCi for queryQ of lengthL can be expressed
asCi = 〈eD1×1

i1
, . . . , eDL×1

iL
〉 whereeDj×1

ij
denotes an entity

of type Tj associated with an attribute vector of sizeDj .
Association-Based Clique OutlierA clique C returned as a
result for a conjunctive select queryQ on a networkG is an
ABCOutlier if the associations within the pairs of entities in
C are highly unusual as expressed in terms of the associations
between the attributes of these entities. An association defined
by an attribute value pair is unusual if both values (or their
cluster representatives) frequently co-occur with some other
particular value (or its cluster representative) different from the
one in this pair. Consider an association between valuesv1 and
v2 for attributesa1 anda2. The association is interesting if (1)
there is a high correlation between values (or their clusters) of
attributesa1 anda2, (2) v1 and v2 are individually frequent,
and (3) co-occurrence ofv1 and v2 is rare (i.e., low joint
probability). Note that this definition is a stronger version of
negative associations [11].

For example, consider a size-2 query〈(person, gender =
“male”), (movement, true)〉. “Mahatma Gandhi” and “Civil
Rights movement in South Africa” can be marked as anAB-
COutlier for such a query based on the anomalous association
between attributesa1=“nationality of person” anda2=“country
of the movement”.
Association-Based Clique Outlier Detection Problem The
proposed problem can be expressed as follows. Given a
networkG and a queryQ, find the topK cliques that satisfy
the query with the highest outlier scores. Figure1 shows a
broad overview of the proposed system. Given a conjunctive
select queryQ, the top half shows how to compute the
matchesC1, C2, . . . , CM , while the lower half illustrates how
to compute the top-K ABCOutliersfrom these candidates.

III. C ANDIDATE COMPUTATION BY MATCHING

How to compute matching candidates given a networkG
and a queryQ? A näıve way is to perform an exhaustive
search of all possible one-to-one correspondences of query

C

A

B

B

A

B

B

A

C

C

A

B
1

2

3

4

5 8

6

7

9

10

11

12

C
A

B

Query Q

Network G

1

2

3

A B C

A B C A B C A B C

1 0 0 1 0 0 0 1 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 1 0 1 0

4 0 1 0 1 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0

7 0 0 1 0 0 0 1 0 0

8 0 0 1 0 0 0 1 0 0

9 0 2 1 2 0 0 1 0 0

10 0 0 0 0 0 1 0 2 0

11 0 0 0 0 0 1 0 1 1

12 0 0 1 0 0 0 2 0 0

Shared

Neighbors

Index

Fig. 2. An Example Graph, Query and Shared Neighbors Index

node to graph nodes of the matching type. But as pointed out
in [12], such a solution would be quite inefficient. (O(NT)
in the worst case whereN is #entities in the network and
T=#types.)

A. Indexing the Network and Computing Lists

The attribute information associated with each of the entities
in G is stored in a relational DB. For every typeTi, we create
a table withDi columns. Note that the DB is constructed just
once offline. The connectivity information of the network is
stored separately as entity pairs (along with type information)
in memory.
Offline Index Construction The network connectivity infor-
mation is also stored in a “shared neighbors index.” This index
stores for each entity, the #shared neighbors of each type
which are shared between the entity and its neighbors of a
particular type. For example, in Figure2, consider entity 9 in
the network. It has the following neighbors: 2 of typeA (10
and 11), 2 of typeB (7 and 12) and 1 of typeC (8). Now,
the #neighbors shared between 9 and 10 is 2 of typeB (7
and 12). Also, the #neighbors shared between 9 and 11 is 1 of
typeB (12) and 1 of typeC (8). Thus, overall node 9 shares
2 B and 1C neighbors, with its typeA neighbors (10 and
11). Hence, the entry (9,A, B) is 2 and the entry (9,A, C)
is 1.

The shared neighbors index is important for filtering can-
didates as explained in the next sub-section. For a graph
containingN nodes andT types, the shared neighbors index
has sizeO(NT 2) but can be very sparse and hence can be
stored in memory.
Online Computation of Lists Given a queryQ with L (type,
predicate) pairs, it is split intoL different relational queries
such that each query corresponds to a select on a table of a
particular type with the corresponding predicate. Thus, a query
Q=〈(T1, P1), (T2, P2), . . ., (TL, PL)〉 is split into L queries
Q1 = 〈(T1, P1)〉, Q2 = 〈(T2, P2)〉, . . ., QL = 〈(TL, PL)〉.
This is possible because each predicatePi is defined overTi
only and is independent of other types. Running each of these
L queries on the DB gives a list of the entities that match the
user-specified predicate. Each listL1, L2, . . . , LL could be of
a different size.

B. Candidate Filtering

Given multiple listsL1, L2, . . . , LL, we need to find cliques
formed out of entity nodes in these lists such that each clique

contains exactly one entity from each of the lists and all the
entities are connected to each other inG. The pseudo-code for
the methodology is presented in Algorithm1. We start with the
most selective typeTmin (C in Figure 2) with the minimum
#entities (Lmin) satisfying the query predicate (Step1).

We remove candidates from this list, which cannot be a part
of any match for the query. The pruning is done in two ways.
First, a node is pruned if its typed neighbors cannot satisfy
the requirements of the query. For example, in the queryQ,
node 3 of typeC needs a neighbor of typeA and a neighbor
of type B. Since all nodes of typeC in LC (4, 8, 9) have
at least 1 neighbor of typeA andB, none will be pruned.
Second form of pruning uses the shared neighbors index. The
query needs node 3 and its typeA neighbor to share at least
1 neighbor of typeB. From the shared neighbors index, we
can see that node 8 shares 0 neighbors of typeB with its
neighbor of typeA (11). Hence, node 8 can be pruned from
list LC . Such pruning of lists can be done for all the lists, but
pruning only listLmin may itself be sufficient to discard a
large number of possible candidates (Step2 of Algorithm 1).
Algorithm 1 Candidate Computation by Matching
Input: (1) QueryQ with L (type, predicate) pairs, (2) NetworkG, and (3) Candidate

lists L1, L2, . . . , LL.
Output: Matched CliquesC1, C2, . . . , CM (currMatches).
1: (Tmin, Lmin)← (Type with smallest list size, Smallest list).
2: currMatches← CandidateFiltering(Lmin).
3: for Type t = T1 . . . TL do
4: if t 6= Tmin then
5: newMatches← φ.
6: for Each cliqueCi ∈ currMatches do
7: Ci1

← The first element ofCi.
8: N ← Neighbors ofCi1

of type t (usingG).
9: N ← N − {entity e|e /∈ list Lt}.
10: for j = 2 . . . size(Ci) do
11: N ← N − {entity e|(e, Cij

) /∈ E(G)}.

12: for n = 1 . . . size(N) do
13: newMatches← newMatches ∪ {Ci.n}

14: currMatches← newMatches.

C. Generating Candidates

The elements of the pruned list form the length-1 candi-
date matches. We keep adding one type of entities to the
currMatches of length-l to get thenewMatches of length
l + 1 (Steps3 to 14) as follows. We randomly choose the
new entity typet to be added from the set of the entity
types remaining to be explored. Consider a clique in the
currMatches Ci of length l. The new entities of typet are
added toCi to get the matches of lengthl + 1 such that the
newly added entity is connected to each of the entities already
in Ci (Step13). Matches are grown one entity at a time until
they get pruned out when there is no entity of typet connected
to all other entities inCi or its size equals the size of query.

For example, for the graph and the query in Figure2, we
start with length-1 candidates{{4}, {8}, {9}} of typeC. Next,
we grow each of these candidates as follows. Let the next
type beB. Thus, candidate{4} grows to {{4, 1}, {4, 7}}.
Similarly, we obtain more candidates of length 2 using other
length-1 candidates. Finally, when we consider the third type
A for the query, the candidate{4, 1} grows to {4, 1, 3},
while some candidates like{4, 7} get pruned. The algorithm
terminates after exploring all candidates of length 3. The

returned result is the list of all matches that satisfy the query:
{{4, 1, 3}, {9, 7, 10}, {9, 12, 10}, {9, 12, 11}}.
Algorithm Complexity The candidate filtering step is
O(N/T × T 2) whereN = #entities in the network andT =
#types. Overall time complexity of the matching algorithm
is O(N/T (LB + T 2)) whereL = #query nodes andB is
the average #neighbors of an entity node of a particular type.
In practice, pruning reduces the size of the listLmin by a
large amount, and hence the execution times are typically very
small.

IV. OUTLIER SCORECOMPUTATION

We will first discuss the outlier score computation for a pair
of attribute values, and then use it to define edge and clique
outlierness. Further, we will design a method to obtain topK
results efficiently.

A. Scoring Attribute Value Pairs

Consider a valuevi for an attributeAik of typeTi and the
valuevj for an attributeAjl of typeTj . Let si andsj denote
small set of values for attributesAik and Ajl respectively.
The outlier score of the association(vi, vj) should reflect the
surprise factor in witnessing such an association. The outlier
score should be high if (1)vi and vj co-occur rarely, (2)
vi and vj are individually frequent, (3)∃sj such that the
co-occurrence frequency ofvi and sj > γ× the total co-
occurrence frequency ofvi wrt any value ofAjl , andvj /∈ sj ,
and (4)∃si such that the co-occurrence frequency ofvj andsi
> γ× the total co-occurrence frequency ofvj wrt any value
of Aik , andvi /∈ si. Here0 ≤ γ ≤ 1 andγ is set to a value
close to 1.

For example, consider the value “Hindi” for the attribute
“language” of person entity and its association with the value
“China” for an attribute “country” of entity “settlement”.(1)
“Hindi” and “China” co-occur rarely. (2) “Hindi” and “China”
are individually frequent. (3) Other languages like Chinese,
Mongolian, Tibetan constitute> 95% of languages related
to “China”. (4) Other countries like India, Pakistan constitute
> 95% of countries related to “Hindi”. Hence, this association
can be considered as an outlier association.
Clustering of Entity Attributes Computing the above mea-
sures for individual valuesmay lead to very noisy results
especially if the attribute has a large range of values. Hence,
we propose to compute the above two measures over the
clusters of attributesAik and Ajl . The attributesAik and
Ajl could be of various data types, for example, numeric
(years, elevation, age), time durations (active period, duration
of event), etc.

We discuss the different choices of clustering algorithms for
different data types in the following. The clustering of numeric
data can be done using K-Means algorithm with Euclidean
distance as the distance measure. Categorical data can be
simply clustered using the category label. Time durations
can be clustered using K-Means algorithm on the centers of
the time intervals. Sets of strings could be clustered by first
creating a network where strings belonging to the same set

are linked to each other, and then partitioning the network
using some graph partitioning algorithm like METIS [8].
For example, the “actors” attribute of the type “film” can
be clustered by first creating a co-starring network and then
partitioning such a network using METIS.

Note that for an association to be interesting, one important
condition is that the values (or their respective clusters)
participating in the association should be frequent. Hence, as a
post-processing step, we remove small clusters. Also note that
the patterns discovered and hence the outliers detected will
depend on the particular clustering algorithms used, as well
as on their parameter values.
Peakedness of Cluster Co-occurrence CurvesGiven a clus-
ter for an attributeAik for the entities of typeTi, we can plot
its distribution wrt the clusters of some other attributeAjl for
the entities of typeTj based on cluster associations across
the dataset. We can rearrange the points so that we obtain a
monotonically non-increasing probability density curve.The
points can be normalized such that the distribution adds up
to 1. Now, if the distribution is highly peaked, it implies that
this cluster ofAik has a very high correlation with one or
a few clusters ofAjl . Thus, establishing an outlier score for
the values ofAik based on its association with the clusters
of Ajl is meaningful. If the curve is flat, we can conclude
that there is no association pattern between the particular
cluster of attributeAik and clusters ofAjl and hence this
association should not be used for outlierness computation.
For example, consider the cluster “Hindi” for the attribute
“language” of entity type “film”. Nationality of persons related
to Hindi movies is frequently “India” and rarely any other
nationality. Thus, this cluster has very high peakedness wrt
the “nationality” attribute of related “person” entities.On the
other hand, consider the “1983” cluster of “birth date” attribute
of “person” entities. “1983” is not related to a particular small
set of latitudes. Hence, the association between “birth date”
of “person” and “latitude” of “settlement” entity should not
be used to compute outlierness.

We measure the peakedness of a monotonically non-
increasing probability distribution using a simple function
defined as follows. Letcik denote a cluster of the attribute
Aik , then the peakedness for the association curve of values
in clustercik wrt the cluster of associated values for attribute
Ajl can be computed aspeakedness(cik , Ajl) = max(0, 1−
β × (|cj | − 1)) where |cj | is the #most frequent clusters of
the attributeAjl which together share a total co-occurrence
(γ) of ≥95% with the clustercik . β controls the degree to
which the curve peakedness affects the outlier score, and
can be tuned based on the nature of the normal association
patterns in the data. We setβ to 0.05 in our experiments. Note
that this function captures a linear decay in the peakedness
value as the #co-occurring clusters increases. Thus, if the
histogram is flat, the #co-occurring clusters will be very high
and peakedness measure will be 0. On the other hand, if the
correlation betweencik andAjl is very high, the #co-occurring
clusters may be just 1 and will lead to a peakedness value of 1.
For example, for “China” and languages “Mandarin, Southern,

In
d
ia

P
a
k
is
ta
n

N
e
p
a
l

O
th
e
rs

Hindi Speaking

Countries

M
a
n
d
a
ri
n

S
o
u
th
e
rn

M
o
n
g
o
li
a
n

O
th
e
rs

Languages in

China

Fig. 3. Peakedness(Hindi, country) and Peakedness(China,language) are
both High

Mongolian”, peakedness=1 − 0.05 × (3 − 1) = 0.9, while if
“1983” is linked to 100 different latitude values, peakedness
will be max(0, 1 − 0.05 × (100 − 1)) = 0. Figure 3 shows
high peakedness cluster and attribute pairs.
Outlier Score of an AssociationBased on the definition of
outliers presented in SectionII and the concept of peakedness
presented above, the outlier score for the association of the
valuesvi andvj can be computed as follows. Letcik andcjl
represent the clusters of attributesAik andAjl which contain
the valuesvi andvj .

score(vi, vj) =
freq(cik)× freq(cjl)

freq(cik , cjl)

×
peakedness(cjl , Aik

) + peakedness(cik , Ajl
)

2
(1)

wherefreq(cik , cjl) denotes the co-occurrence frequency of
values in clustercik with values in clustercjl , freq(cik) and
freq(cjl) denote the frequencies of the clusterscik and cjl
respectively. The first part of Eq.1 ensures that the score is
high only if the negative association is strong (captures the
rarity of co-occurrence) and the second part ensures the score
is high only if it makes sense to compute negative associations
based on this attribute cluster pair (captures the interestingness
of this rarity). For example, for link between “Hindi” and
“China”, the negative association strength as well as average
peakedness is high, and hence the outlier score will be high.

B. Scoring Cliques

The outlier score for an edgee between the entitiesei and
ej of typesTi andTj respectively, is defined as the average
outlier score between the values of the attributesAi for entity
ei and the values of attributesAj for entityej . After computing
the outlier score for every attribute pair of an edge across
all candidate cliques, we normalize the scores such that the
maximum outlier score of an attribute pair lies between 0 and

1
Di×Dj

. Thus, outlier score of any edge lies between 0 and 1.

score(edge e) =

∑Di
a=1

∑Dj

b=1
score(va, vb)

Di ×Dj

(2)

Note that score(va, vb) is computed based on attribute
cluster co-occurrence patterns formatching cliques for this
query and hence, we need to re-compute these edge scores
for every query. Thus, the outlier computation is performed
on the data returned after filtering the network based on the
predicates on the user query. The outlier scores for the edges
will therefore depend on the user query and hence need to be
computed online.

We define the outlier score of a clique as the sum of the
outlier score of its edges. Though such a definition loses some
of the information regarding the outlierness of ternary, quater-

nary and higher order associations, it makes the computation
much faster for a clique of arbitrary size.

score(clique c) =
∑

e∈c

score(edge e) (3)

Thus, the outlier score for a clique of sizeL lies between
0 andL(L− 1)/2.

C. Top-K Outlier Score Computation

Since the outlier score of a clique is a linear composition
of the outlier scores of various attribute pair scores, the
application of top-K pruning [3] becomes natural. The outlier
detection algorithm with the top-K pruning check is shown
in Algorithm 2. The query is processed one type (Step4) and
one attribute (Step5) at a time. The list of processed types
are maintained inProcessedTypes. For every new typet and
attributeAtj , the following steps are done: (1) clusters are
computed for the attributeAtj of type t (Step 6), (2) small
clusters are removed (Step7), (3) outlier score is computed
for each edge connecting theProcessedTypes to type t wrt
Atj and each attribute of theseProcessedTypes (Steps11 to
12), (4) scores are normalized so that the score of any match
for an attribute pair of typest andt′ is less than 1

Dt×Dt′
(Step

13), (5) the actual scores and upper bound scores are updated
(Steps14 and15), and (6) top-K pruning check is done (Step
18). After each new type is processed, it is added to the set
of ProcessedTypes (Step 19). After computing the outlier
score of an attribute pair with typest and t′, upper bound of
the outlier score for each matchCi is updated as shown in
Eq. 4.

UpperBoundScores(Ci) = ActualScores(Ci)

+

[

L(L− 1)

2
− pe

]

+
1

Dt ×Dt′

× [Dt ×Dt′ − pa] (4)

wherepe is the #already processed edges out ofL(L−1)
2 and

pa is the #already processed attribute pairs out ofDt × Dt′

attribute pairs for the current edge. Note that besides finding
outliers, as a by-product of this algorithm, we also obtain the
frequent patterns of association among the various attributes
of different types.

For example, for Figure2, there are 3 types of nodes in the
query. LetA, B andC have 4, 5 and 6 attributes. We start
with a particular type, sayA. For the first type, clustering
is performed for each of the 4 attributes of typeA. Next,
associations with typeB are considered one attribute at a
time. Clustering is performed for the first attribute of typeB,
association scores are computed for the instantiations of edge
AB in the matches using clusters of attributes ofA and the
first attribute ofB. The association score for the instantiations
of edgeAB is completely computed only when all attributes
of typeB have been processed. However, upper bound scores
are also maintained and further edges and attributes will not be
processed if the top-K criteria (maximum upper bound score
of any candidate not in the top-K is less than the minimum
actual score of the top-K) is satisfied. Otherwise, the algorithm
proceeds to process attributes of typeC one by one, and
computing outlier scores for the instantiations of edgesAC
andBC in the matches.

Algorithm 2 ABCOutlier Detection Algorithm
Input: (1) Candidate MatchesC1, C2, . . . , CM , (2) QueryQ, (3) Frequency Thresh-

old ψ.
Output: Top-K ABCOutliers.
1: ProcessedTypes← φ.
2: UpperBoundScores← φ.
3: ActualScores← φ.
4: for Each typet in query Qdo
5: for Each attributeAtj

of type t do
6: Compute clusters for attributeAtj

.
7: Remove clusters with size< ψ.
8: for Each typet′ ∈ ProcessedTypes do
9: for Each attributeAt′

k
of type t′ do

10: AttrPairScores← φ.
11: for Each matchC do
12: AttrPairScores← Score wrt values ofAtj

& At′
k

(Eq.1)

13: NormalizeAttrPairScores such that max entry is 1
Dt×D

t′
.

14: UpdateActualScores (Eqs.2 and3) usingAttrPairScores.
15: UpdateUpperBoundScores (Eq. 4) usingAttrPairScores.
16: (u1, u2, . . . , uM)← Matches sorted asc wrtActualScores.
17: if UpperBoundScores(uK+1) < ActualScores(uK) then
18: Top-K Quit. Return.
19: ProcessedTypes← ProcessedTypes ∪ {t}.

Algorithm Complexity Overall complexity of the cluster
computation phase isO(LDMκI) whereL = #query nodes,
D = average #attributes for an entity,I = #iterations,κ =
#clusters andM = #matches. Outlier score computation for
an edge (Eq.2) takesO(D2) time, and therefore the outlier
detection algorithm has a complexity ofO(ML(L−1)D2/2).
MaxM could beN/T . Overall time complexity of the overall
pipeline is thusO(NT × (LB+T 2+LDκI+ L(L−1)D2

2)). For
small queries over large networks, the methodology is linear
in the #entities in the network.

V. EXPERIMENTS

A. Baselines

Since this is a first work on query based outlier detection,
it is difficult to find a baseline to compare with. We explore
two baselines:EBC (Entity Based Clique Outlier Detection)
and CBA (Community Based Association Outlier Detection).
For EBC, attributes of an entity are individually clustered and
an entity is marked as an outlier depending on the number
of attributes for which its value is anomalous compared to
values for the same attribute for other entities. Outlierness
of the clique is computed as the aggregate outlierness of
the entities in the clique with appropriate normalization.For
CBA, the outlier score for an edge is defined as the KL-
divergence between the community distributions of its end
points. Community distribution for each entity is computed
as follows. The entity network is augmented with categorical
and sets-of-strings attribute values as nodes. Entity nodes
are linked to each of their attribute nodes. Attribute nodes
within the same set of strings are linked to each other.
METIS [8] is used to compute hard partitions (K=20) on such
an augmented network. Further, the cluster labels of all the
attribute neighbors of an entity are aggregated to get its soft
community distribution and normalized.

B. Synthetic Datasets

We generate a variety of synthetic datasets to test mul-
tiple settings of #entities and relationships in the network,

#attributes associated with the entities, #entity types, etc. We
vary the #entities (N) as 10K, 20K and 50K. The #attributes
per entity is varied as 4, 6 and 10. We useψ=0.01. For each
such experimental setting the dataset is generated as follows.
Dataset Generation We randomly choose a type for each
entity. Next, we set #clusters per attribute to 5. Then, we
generate fixed #association patterns such that a pattern rep-
resents a set of attribute clusters of one type linked to a setof
attribute clusters of another type. These denote the normalco-
occurrence patterns. For every entity, depending on its type, we
randomly choose a set of attribute clusters from the generated
patterns. Each cluster is associated with a group of numeric
values. For each attribute of the entity, we choose a value
randomly for the cluster corresponding to that attribute. Next,
we generate all possible edges between the entities such that
they follow the association patterns. Finally, we randomly
select10×N edges whereN is the #entities in the network.
Outlier Injection For a given degree of outlierness (Ψ = 2%,
5%, 10%), we choose a random setR of entities in which
we will inject outlierness. We inject outliers by corrupting the
attribute values of entities. Essentially, for each entityin setR,
the values of its attributes are either chosen from some random
cluster or chosen as a value outside of any of the valid cluster
ranges. Random assignment of such attribute values breaks the
association patterns thereby injectingABCOutliers.
Results on Synthetic DatasetsFor each experimental setting,
we run 20 different queries and report the average precisionin
TableI for 10 types. We found that the results are similar for
#types = 4, 6, 10, but show results only for 10 types for lack of
space. The values denote the average precision with which the
two approaches (the proposed approachABC and the baseline
EBC) can detect the injected outliers. Note that in this case,
recall is the same as precision. The variance values for the
ABCOutlierandEBC algorithms are 2% and 3% respectively.
On an average, the #matches for a query were 2136, 4252 and
10621 for datasets of sizes 10K, 20K and 50K respectively. As
we can see, the proposed approach performs much better than
the baseline. The baseline approach cannot detect the outliers
injected by choosing attribute values randomly from among
the values for other clusters. Since the proposed approach
is association based, it can easily detect such outliers. We
also performed experiments using theCBAbaseline. However,
the accuracy values are very low usingCBA. This is simply
because the outliers discovered using community distributions
of entities are very different from the outliers discovered
considering associations of entity attributes. This further shows
that the outliers detected by the proposed approach are quite
different from those detected by conventional approaches.

C. Real Dataset

We extracted an entity network from Wikipedia Infobox
pages with∼760K entities and∼4.1M edges. Wikipedia
Infobox data for all these entities is used to extract the
attributes and type for the entities. We useψ=0.01.
Case Study 1Say the user is interested in finding movies
released in US, which are linked to unusual people and

N Ψ #Attributes=4 #Attributes=6 #Attributes=10
(%) ABC EBC ABC EBC ABC EBC

10000
2 86.6 75.8 91.6 74.7 95.5 68
5 93.7 77.6 93 79.9 94.2 72
10 93.4 73.8 93.1 76.5 96 72.3

20000
2 96.9 72.7 94.6 73 92.3 64.4
5 97.3 75.1 94.4 78.6 90.9 75.1
10 97.4 74.8 96.7 76.7 94.5 74.7

50000
2 90.3 69.5 95.8 76.9 95.5 65.8
5 92.9 68.8 94.5 73.1 95.5 77.6
10 90.8 79.3 97.5 78 94.9 66.5

TABLE I
AVERAGE PRECISION ONSYNTHETIC DATASETS (ABC=THE PROPOSED

ASSOCIATIONBASED ALGORITHM ABCOUTLIER, EBC= ENTITY BASED

CLIQUE OUTLIER DETECTION) (#TYPES=10)

locations. This can be captured using the query:〈(film, country
= “us”), (person, true), (settlement, true)〉. There were 16271
cliques reported for this query as matches. The top outlier
clique for this query is (film = “the road to el dorado”, person
= “hernán cort́es”, settlement = “seville”).The Road to El
Dorado is a 2000 animated adventure musical comedy film
produced by DreamWorks. The movie begins in16th century
(1519)Seville (in the south of Spain) and contains a plot that
relates toHernán Cortés’ fleet to conquer Mexico.

We briefly explain the outlierness of this clique as follows.
(1) The movie screenwriters are American screenwriters and
so are usually related to places where geographic subdivisions
are cities or ceremonial counties. Similarly, Seville’s subdivi-
sion “comarca” (Spanish local administrative division) isgen-
erally related to screenwriters from Spain, Portugal, Nicaragua,
Panama, or Brazil. Thus, the association of American screen-
writers with Spanish locations is unusual. (2) Hernán Cort́es
lived in the15th-16th century time frame. At that time there
were no “comarca”s in Spain. Hence, this association of a
medieval state with a modern local administrative divisionis
unusual. (3) The movie screenwriters are usually associated
with “us-ny”, “us-ca” coordinates, while the settlement isfrom
“es” (Spain) coordinates. (4) Comarca is a modern name and is
usually associated with20th and21st century. Thus, the link
between a person who lived in15th century and a modern
settlement is unusual.
Case Study 2It might be interesting to find American com-
panies with unusual links to Americans, and which are also
unusually linked to English movies as well as TV shows. This
can be captured using the query:〈(company, locationcountry
= “united states”), (film, language = “english”), (person,
birth place = “united states”), (television, true)〉. There were
1110 cliques reported for this query as matches. The top
outlier clique for this query is (company = “viacom”, film
= “mission:impossible iii”, person = “tom cruise”, television
= “south park”). A blog entry of Hollywoodinterrupted.com
in March 2006 alleged thatViacom canceled the rebroadcast
of the South Park episode “Trapped in the Closet” due to
threats byTom Cruise to refuse to participate in theMission:
Impossible III publicity circle.

We briefly explain the outlierness of this clique as follows.
(1) The movie writers are deeply connected to other writers
who write movies mostly distributed by 20th Century Fox
Animation, Fox 2000 Pictures, Walt Disney Animation and

DreamWorks Animation. However against this trend, these
writers have written movies distributed by MTV Networks,
BET Networks, and Paramount Pictures Corporation. (2) The
creators of this TV serial lie in a cluster which consists of
creators who are usually related to the companies of smaller
sizes – usually below 500. But here the creators are linked
to a big company through South Park. (3) Usually Viacom
and other companies related to its subsidiaries are involved
in making television serials with either a large number of
episodes (250+) or a very small number of episodes (< 10) un-
like 223 episodes in this case. (4) Usually, Comedy Central is
related to company divisions like 20th Century Fox Animation,
Walt Disney Animation, Rough Draft Feature Animation, RDS
Animations. Also company divisions like MTV Networks,
BET Networks, Paramount Pictures Corporation are usually
related to CBS, UPN, Cartoon Network. Thus the association
between the TV show network and the company divisions is
abnormal in this case.
Comparison with Community Based Association Method
Table II shows the top five outlier cliques obtained as a
result of running the proposed method (ABCOutlier) and the
community based association (CBA) approach for a query
on the Wikipedia dataset. The results using the proposed
approach are quite different from the results using the
community based association approach. While the proposed
approach ranks those associations higher which connect
entities with rare real attribute pairs, the community based
approach does the same considering only the community
distributions as attributes. For lack of space, we do not
explain the results in detail. Also, compared toCBA, our
approach does not need to specify the #clusters and is not
sensitive to local optima.

D. Outlier Scores and Running Time

In Section III , we proposed a shared neighbors index.
TableIII shows the index size and the index construction times
for the various network sizes we considered. Note that even
for large graphs like Wikipedia, index size is small enough
for it to fit in memory. Also the index construction times are
quite small.

On an average candidate filtering (SectionIII-B and Step2
of Algorithm 1) reduces the size of the smallest candidate list
to about 5% of its original size. For queries of sizes 2, 3, 4, 5,
6, 7, 8, 9 and 10 we observed an average of 73%, 81%, 71%,
59%, 24%, 54%, 11%, 15% and 38% reduction in matches
generation time for the Wikipedia dataset.

Figure4 shows the outlier score for all the matching cliques
for 18 different queries on the Wikipedia network. Very few
cliques have high outlier scores. Thus the outlier scores com-
puted using the proposed approach are quite discriminative.
Size 3 and 4 clique queries take an average execution time of
192s for the Wikipedia network.

For size 3 queries, we did not notice much gains based
on the top-K heuristics. For size 4 queries, the “top-K quit”
prevents an average of 15 attribute-pair computations saving
some execution time. However, we believe that for large

ABCOutlier Method CBA Method
film person settlement film person settlement

the road to el dorado herńan cort́es seville, spain samurai assassin haruko sugimura tokyo, japan
drums along the mohawk adam helmer german flatts, ny, us passenger 57 wesley snipes orlando, fl, us
what the bleep do we know!? j. z. knight yelm, wa, us psycho alfred hitchcock london, uk
atanarjuat zacharias kunuk igloolik, canada skidoo pete the pup richmond, ny, us
stardust stephen fry norwich, england she’s gotta have it joie lee brooklyn, ny, us

TABLE II
TOP FIVE OUTLIER CLIQUES FORQUERY: 〈FILM , PERSON, SETTLEMENT〉

0.001

0.01

0.1

1

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
1

1
0

0
0

1
2

0
0

0
1

3
0

0
0

1
4

0
0

0
1

5
0

0
0

1
6

0
0

0
1

7
0

0
0

1
8

0
0

0
1

9
0

0
0

2
0

0
0

0
2

1
0

0
0

2
2

0
0

0
2

3
0

0
0

2
4

0
0

0
2

5
0

0
0

2
6

0
0

0
2

7
0

0
0

2
8

0
0

0
2

9
0

0
0

3
0

0
0

0
3

1
0

0
0

O
u

tl
ie

r
S

co
re

Matching Cliques

Query 1 Query 2 Query 3

Query 4 Query 5 Query 6

Query 7 Query 8 Query 9

Query 10 Query 11 Query 12

Query 13 Query 14 Query 15

Query 16 Query 17 Query 18

Fig. 4. Outlier Scores for Multiple Queries
#Nodes #Edges Index Size (MB) Time (sec)

10K 100K 0.4 1.5
20K 200K 0.7 2.3
50K 500K 1.8 5.5
760K 4.1M 22 96.7

TABLE III
INDEX SIZES AND INDEX CONSTRUCTIONTIMES

queries on larger and dense networks, the time savings could
be substantially high. Also, we can re-order the attribute-pairs
used for the computation of outlier score (using heuristicslike
estimated contribution) such that the new order can encourage
early top-K quits.

VI. RELATED WORK

Outlier detection on networks has been studied for both
static [2], [9] and dynamic [1], [10] scenarios. Quite different
from existing work which only considers outlier detection
in homogeneous networks [4], [5], [6], the proposed work
aims at discovering outliers fromheterogeneousnetworks.
Moreover, existing outlier detection work for network data
sets has focused on finding outliers for the entire network
or in the context of a community. Instead of taking a gen-
eral global perspective, the proposed system aims at giving
the user a flexibility to find outliers following a particular
schema and predicates encoded in the form of a query.
Also, [4], [5] and [6] use community distributions as the
only information for computing outlier scores. However, real
information networks have very rich information associated
with each entity and hence we exploit all such information
for detectingABCOutliers. Query based outlier detection on
networks can be considered as a special application of graph
query processing. Compared to recent work on answering
graph queries on heterogeneous networks [7], [12] which
provide unranked results, the proposed method attempts to
rank such results based on the outlier scores.

VII. C ONCLUSION

In this work, we introduced the new concept of Association-
Based Clique Outliers,ABCOutliers. To the best of our knowl-
edge, this is the first work on query-based outlier detection

for heterogeneous information networks. Matching cliquesfor
a user query are discovered efficiently using a novel shared
neighbors index. The outlierness of a clique was computed
based on the association outlierness of the attributes of the
entities within the clique. Using several synthetic datasets, we
showed that the proposed approach can mineABCOutliers
with high accuracy. We showed interesting and meaningful
outliers detected from the heterogeneous Wikipedia network
containing thousands of entities enriched by the attributes
extracted from the Wikipedia Infoboxes.

VIII. A CKNOWLEDGEMENTS

The work was supported in part by the U.S. Army Research
Laboratory under Cooperative Agreement No. W911NF-09-
2-0053 (NS-CTA) and W911NF-11-2-0086, U.S. NSF grants
IIS-0905215, CNS-0931975, IIS-1017362, and U.S. Air Force
Office of Scientific Research MURI award FA9550-08-1-
0265. The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation here on.

REFERENCES

[1] C. C. Aggarwal, Y. Zhao, and P. S. Yu. Outlier Detection inGraph
Streams. In ICDE, pages 399–409, 2011.

[2] D. Chakrabarti. AutoPart: Parameter-free Graph Partitioning and Outlier
Detection. In ECML PKDD, pages 112–124, 2004.

[3] R. Fagin, R. Kumar, and D. Sivakumar. Comparing Top K Lists. In
SODA, pages 28–36, 2003.

[4] J. Gao, F. Liang, W. Fan, C. Wang, Y. Sun, and J. Han. On Community
Outliers and their Efficient Detection in Information Networks. In KDD,
pages 813–822, 2010.

[5] M. Gupta, J. Gao, Y. Sun, and J. Han. Community Trend OutlierDetection
using Soft Temporal Pattern Mining. In ECML PKDD, pages 692–708,
2012.

[6] M. Gupta, J. Gao, Y. Sun, and J. Han. Integrating Community Matching
and Outlier Detection for Mining Evolutionary Community Outliers. In
KDD, pages 859–867, 2012.

[7] H. He and A. K. Singh. Graphs-at-a-time: Query Language and Access
Methods for Graph Databases. In SIGMOD, pages 405–418, 2008.

[8] G. Karypis and V. Kumar. A Fast and High Quality MultilevelScheme
for Partitioning Irregular Graphs.SIAM Journal of Scientific Computing
(SISC), 20(1):359–392, Dec 1998.

[9] C. C. Noble and D. J. Cook. Graph-Based Anomaly Detection.In KDD,
pages 631–636. ACM, 2003.

[10] B. Pincombe. Anomaly Detection in Time Series of Graphs using
ARMA Processes.ASOR Bulletin, 24(4):2–10, 2005.

[11] A. Savasere, E. Omiecinski, and S. B. Navathe. Mining forStrong
Negative Associations in a Large Database of Customer Transactions. In
ICDE, pages 494–502, 1998.

[12] P. Zhao and J. Han. On Graph Query Optimization in Large Networks.
PVLDB, 3(1):340–351, 2010.

	I Introduction
	II Problem Definition
	III Candidate Computation by Matching
	III-A Indexing the Network and Computing Lists
	III-B Candidate Filtering
	III-C Generating Candidates

	IV Outlier Score Computation
	IV-A Scoring Attribute Value Pairs
	IV-B Scoring Cliques
	IV-C Top-K Outlier Score Computation

	V Experiments
	V-A Baselines
	V-B Synthetic Datasets
	V-C Real Dataset
	V-D Outlier Scores and Running Time

	VI Related Work
	VII Conclusion
	VIII Acknowledgements
	References

